1
|
Novbatova G, Fox I, Timme K, Keating AF. High fat diet-induced obesity and gestational DMBA exposure alter folliculogenesis and the proteome of the maternal ovary†. Biol Reprod 2024; 111:496-511. [PMID: 38813940 PMCID: PMC11327317 DOI: 10.1093/biolre/ioae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/29/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Obesity and ovotoxicant exposures impair female reproductive health with greater ovotoxicity reported in obese relative to lean females. The mother and developing fetus are vulnerable to both during gestation. 7,12-dimethylbenz[a]anthracene (DMBA) is released during carbon combustion including from cigarettes, coal, fossil fuels, and forest fires. This study investigated the hypothesis that diet-induced obesity would increase sensitivity of the ovaries to DMBA-induced ovotoxicity and determined impacts of both obesity and DMBA exposure during gestation on the maternal ovary. Female C57BL/6 J mice were fed a control or a High Sugar High Fat (45% kcal from fat; 20% kcal from sucrose) diet until ~30% weight gain was attained before mating with unexposed males. From gestation Day 7, mice were exposed intraperitoneally to either vehicle control (corn oil) or DMBA (1 mg/kg diluted in corn oil) for 7 d. Thus, there were four groups: lean control (LC); lean DMBA exposed; obese control; obese DMBA exposed. Gestational obesity and DMBA exposure decreased (P < 0.05) ovarian and increased liver weights relative to LC dams, but there was no treatment impact (P > 0.05) on spleen weight or progesterone. Also, obesity exacerbated the DMBA reduction (P < 0.05) in the number of primordial, secondary follicles, and corpora lutea. In lean mice, DMBA exposure altered abundance of 21 proteins; in obese dams, DMBA exposure affected 134 proteins while obesity alone altered 81 proteins in the maternal ovary. Thus, the maternal ovary is impacted by DMBA exposure and metabolic status influences the outcome.
Collapse
Affiliation(s)
- Gulnara Novbatova
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Isabelle Fox
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| |
Collapse
|
2
|
Timme K, González-Alvarez ME, Keating AF. Pre-pubertal obesity compromises ovarian oxidative stress, DNA repair and chemical biotransformation. Toxicol Appl Pharmacol 2024; 489:116981. [PMID: 38838792 DOI: 10.1016/j.taap.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Obesity in adult females impairs fertility by altering oxidative stress, DNA repair and chemical biotransformation. Whether prepubertal obesity results in similar ovarian impacts is under-explored. The objective of this study was to induce obesity in prepubertal female mice and assess puberty onset, follicle number, and abundance of oxidative stress, DNA repair and chemical biotransformation proteins basally and in response to 7,12-dimethylbenz(a)anthracene (DMBA) exposure. DMBA is a polycyclic aromatic hydrocarbon that has been shown to be ovotoxic. Lactating dams (C57BL6J) were fed either a normal rodent containing 3.5% kCal from fat (lean), or a high fat diet comprised of 60% kCal from fat, and 9% kCal from sucrose. The offspring were weaned onto the diet of their dam and exposed at postnatal day 35 to either corn oil or DMBA (1 mg/kg) for 7 d via intraperitoneal injection. Mice on the HFD had reduced (P < 0.05) age at puberty onset as measured by vaginal opening but DMBA did not impact puberty onset. Heart, spleen, kidney, uterus and ovary weight were increased (P < 0.05) by obesity and liver weight was increased (P < 0.05) by DMBA exposure in obese mice. Follicle number was largely unaffected by obesity or DMBA exposure, with the exception of primary follicle number, which were higher (P < 0.05) in lean DMBA exposed and obese control relative to lean control mice. There were also greater numbers (P < 0.05) of corpora lutea in obese relative to lean mice. In lean mice, DMBA exposure reduced (P < 0.05) the level of CYP2E1, EPHX1, GSTP1, BRCA1, and CAT but this DMBA-induced reduction was absent in obese mice. Basally, obesity reduced (P < 0.05) the abundance of CYP2E1, EPHX1, GSTP1, BRCA1, SOD1 and CAT. There was greater (P < 0.05) fibrotic staining in obese DMBA-exposed ovaries and PPP2CA was decreased (P < 0.05) in growing follicles by both obesity and DMBA exposure. Thus, prepubertal obesity alters the capacity of the ovary to respond to DNA damage, ovotoxicant exposure and oxidative stress.
Collapse
Affiliation(s)
- Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
3
|
González-Alvarez ME, Inyang I, Keating AF. Exposure to 7,12-dimethylbenz[a]anthracene impacts ovarian DNA damage sensing and repair proteins differently in lean and obese female mice and weight loss may mitigate obesity-induced ovarian dysfunction. Toxicol Appl Pharmacol 2024; 486:116930. [PMID: 38626870 DOI: 10.1016/j.taap.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024]
Abstract
Obesity impairs oocyte quality, fertility, pregnancy maintenance, and is associated with offspring birth defects. The model ovotoxicant, 7,12-dimethylbenz[a]anthracene (DMBA), causes ovarian DNA damage and follicle loss. Both DMBA-induced chemical biotransformation and the DNA damage response are partially attenuated in obese relative to lean female mice but whether weight loss could improve the DNA damage response to DMBA exposure has not been explored. Thus, at six weeks of age, C57BL/6 J female mice were divided in three groups: 1) Lean (L; n = 20) fed a chow diet for 12 weeks, 2) obese (O; n = 20) fed a high fat high sugar (HFHS) diet for 12 weeks and, 3) slim-down (S; n = 20). The S group was fed with HFHS diet for 7 weeks until attaining a higher body relative to L mice on week 7.5 and switched to a chow diet for 5 weeks to achieve weight loss. Mice then received either corn oil (CT) or DMBA (D; 1 mg/kg) for 7 d via intraperitoneal injection (n = 10/treatment). Obesity increased (P < 0.05) kidney and spleen weight, and DMBA decreased uterine weight (P < 0.05). Ovarian weight was reduced (P < 0.05) in S mice, but DMBA exposure increased ovary weight in the S mice. LC-MS/MS identified 18, 64, and 7 ovarian proteins as altered (P < 0.05) by DMBA in the L, S and O groups, respectively. In S and O mice, 24 and 8 proteins differed, respectively, from L mice. These findings support weight loss as a strategy to modulate the ovarian genotoxicant response.
Collapse
Affiliation(s)
| | - Imaobong Inyang
- Department of Animal Science, Iowa State University, United States of America
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, United States of America.
| |
Collapse
|
4
|
Inyang I, White HE, Timme K, Keating AF. Biological sex differences in hepatic response to in utero dimethylbenz(a)anthracene exposure. Reprod Toxicol 2024; 124:108553. [PMID: 38307155 DOI: 10.1016/j.reprotox.2024.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Fetal hepatic dimethylbenz(a)anthracene (DMBA) biotransformation is not defined, thus, this study investigated whether the fetal liver metabolizes DMBA and differs with biological sex. KK.Cg-a/a (lean; n = 20) or KK.Cg-Ay/J (obese; n = 20) pregnant mice were exposed to corn oil (CT) or DMBA (1 mg/kg bw/day) by intraperitoneal injection (n = 10/treatment) from gestation day 7-14. Postnatal day 2 male or female offspring livers were collected. Total RNA (n = 6) and protein (n = 6) were analyzed via a PCR-based array or LC-MS/MS, respectively. The level of Mgst3 was lower (P < 0.05) in livers of female compared to male offspring. Furthermore, in utero DMBA exposure increased (P < 0.1) Cyp2c29 and Gpx3 levels (P < 0.05) in female offspring. In male offspring, the abundance of Ahr, Comt (P < 0.1), Alox5, and Asna1 (P < 0.05) decreased due to DMBA exposure. Female and male offspring had 34 and 21 hepatic proteins altered (P < 0.05) by in utero DMBA exposure, respectively. Opposing patterns for hepatic CD81 and KRT78 occurred, being decreased in females but increased in males, while YWHAG was decreased by DMBA exposure in both. Functional KEGG pathway analysis identified enrichment of 26 and 13 hepatic metabolic proteins in male and female offspring, respectively, due to in utero DMBA exposure. In silico transcription factor analysis of differentially expressed proteins predicted involvement of female NRF1 but male AHR. Thus, hepatic biological sex differences and capacity to respond to toxicants in utero are supported.
Collapse
Affiliation(s)
| | - Hunter E White
- Department of Animal Science, Iowa State University, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, USA
| | | |
Collapse
|
5
|
Rishi JK, Timme K, White HE, Kerns KC, Keating AF. Altered histone abundance as a mode of ovotoxicity during 7,12-dimethylbenz[a]anthracene exposure with additive influence of obesity†. Biol Reprod 2024; 110:419-429. [PMID: 37856498 PMCID: PMC10873273 DOI: 10.1093/biolre/ioad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Histones are slowly evolving chromatin components and chromatin remodeling can incorporate histone variants differing from canonical histones as an epigenetic modification. Several identified histone variants are involved with the environmental stress-induced DNA damage response (DDR). Mechanisms of DDR in transcriptionally inactive, prophase-arrested oocytes and epigenetic regulation are under-explored in ovarian toxicology. The study objective was to identify ovarian proteomic and histone modifications induced by DMBA exposure and an influence of obesity. Post-pubertal wildtype (KK.Cg-a/a; lean) and agouti (KK.Cg-Ay/J; obese) female mice, were exposed to either corn oil (control; CT) or DMBA (1 mg/kg) for 7d via intraperitoneal injection (n = 10/treatment). Ovarian proteome analysis (LC-MS/MS) determined that obesity altered 225 proteins (P < 0.05) with histone 3 being the second least abundant (FC = -5.98, P < 0.05). Histone 4 decreased by 3.33-fold, histone variant H3.3 decreased by 3.05-fold, and H1.2, H1.4 and H1.1(alpha) variants increased by 1.59, 1.90 and 2.01-fold, respectively (P < 0.05). DMBA exposure altered 48 proteins in lean mice with no observed alterations in histones or histone variants. In obese mice, DMBA exposure altered 120 proteins and histone 2B abundance increased by 0.30-fold (P < 0.05). In DMBA-exposed mice, obesity altered the abundance of 634 proteins. Histones 4, 3 and 2A type 1-F decreased by 4.03, 3.71, 0.43-fold, respectively, whereas histone variant H1.2 and linker histone, H15 increased by 2.72- and 3.07-fold, respectively (P < 0.05). Thus, DMBA exposure alters histones and histone variants, and responsivity is more pronounced during obesity, potentially altering ovarian transcriptional regulation.
Collapse
Affiliation(s)
- Jaspreet K Rishi
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Karl C Kerns
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
González-Alvarez ME, Keating AF. Hepatic and ovarian effects of perfluorooctanoic acid exposure differ in lean and obese adult female mice. Toxicol Appl Pharmacol 2023; 474:116614. [PMID: 37422089 DOI: 10.1016/j.taap.2023.116614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Obesity and overweight cause poor oocyte quality, miscarriage, infertility, polycystic ovarian syndrome, and offspring birth defects and affects 40% and 20% of US women and girls, respectively. Perfluorooctanoic acid (PFOA), a per- and poly-fluoroalkyl substance (PFAS), is environmentally persistent and has negative female reproductive effects including endocrine disruption, oxidative stress, altered menstrual cyclicity, and decreased fertility in humans and animal models. PFAS exposure is associated with non-alcoholic fatty liver disease which affects ∼24-26% of the US population. This study investigated the hypothesis that PFOA exposure impacts hepatic and ovarian chemical biotransformation and alters the serum metabolome. At 7 weeks of age, female lean, wild type (KK.Cg-a/a) or obese (KK.Cg-Ay/J) mice received saline (C) or PFOA (2.5 mg/Kg) per os for 15 d. Hepatic weight was increased by PFOA exposure in both lean and obese mice (P < 0.05) and obesity also increased liver weight (P < 0.05) compared to lean mice. The serum metabolome was also altered (P < 0.05) by PFOA exposure and differed between lean and obese mice. Exposure to PFOA altered (P < 0.05) the abundance of ovarian proteins with roles in xenobiotic biotransformation (lean - 6; obese - 17), metabolism of fatty acids (lean - 3; obese - 9), cholesterol (lean - 8; obese - 11), amino acids (lean - 18; obese - 19), glucose (lean - 7; obese - 10), apoptosis (lean - 18; obese - 13), and oxidative stress (lean - 3; obese - 2). Use of qRT-PCR determined that exposure to PFOA increased (P < 0.05) hepatic Ces1 and Chst1 in lean but Ephx1 and Gstm3 in obese mice. Also, obesity basally increased (P < 0.05) Nat2, Gpi and Hsd17b2 mRNA levels. These data identify molecular changes resultant from PFOA exposure that may cause liver injury and ovotoxicity in females. In addition, differences in toxicity induced by PFOA exposure occurs in lean and obese mice.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
7
|
González-Alvarez ME, Roach CM, Keating AF. Scrambled eggs-Negative impacts of heat stress and chemical exposures on ovarian function in swine. Mol Reprod Dev 2023; 90:503-516. [PMID: 36652419 DOI: 10.1002/mrd.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Exposure to environmental toxicants and hyperthermia can hamper reproduction in female mammals including swine. Phenotypic manifestations include poor quality oocytes, endocrine disruption, infertility, lengthened time to conceive, pregnancy loss, and embryonic defects. The ovary has the capacity for toxicant biotransformation, regulated in part by the phosphatidylinositol-3 kinase signaling pathway. The impacts of exposure to mycotoxins and pesticides on swine reproduction and the potential for an emerging chemical class of concern, the per- and polyfluoroalkylated substances, to hamper porcine reproduction are reviewed. The negative impairments of heat stress (HS) on swine reproductive outcomes are also described and the cumulative effect of environmental exposures, such as HS, when present in conjunction with a toxicant is considered.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Crystal M Roach
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Rishi JK, Timme K, White HE, Kerns KC, Keating AF. Obesity partially potentiates dimethylbenz[a]anthracene-exposed ovotoxicity by altering the DNA damage repair response in mice†. Biol Reprod 2023; 108:694-707. [PMID: 36702632 PMCID: PMC10106840 DOI: 10.1093/biolre/ioac218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 01/28/2023] Open
Abstract
Obesity adversely affects reproduction, impairing oocyte quality, fecundity, conception, and implantation. The ovotoxicant, dimethylbenz[a]anthracene, is biotransformed into a genotoxic metabolite to which the ovary responds by activating the ataxia telangiectasia mutated DNA repair pathway. Basal ovarian DNA damage coupled with a blunted response to genotoxicant exposure occurs in obese females, leading to the hypothesis that obesity potentiates ovotoxicity through ineffective DNA damage repair. Female KK.Cg-a/a (lean) and KK.Cg-Ay/J (obese) mice received corn oil or dimethylbenz[a]anthracene (1 mg/kg) at 9 weeks of age for 7 days via intraperitoneal injection (n = 10/treatment). Obesity increased liver weight (P < 0.001) and reduced (P < 0.05) primary, preantral, and corpora lutea number. In lean mice, dimethylbenz[a]anthracene exposure tended (P < 0.1) to increase proestrus duration and reduced (P = 0.07) primordial follicle number. Dimethylbenz[a]anthracene exposure decreased (P < 0.05) uterine weight and increased (P < 0.05) primary follicle number in obese mice. Total ovarian abundance of BRCA1, γH2AX, H3K4me, H4K5ac, H4K12ac, and H4K16ac (P > 0.05) was unchanged by obesity or dimethylbenz[a]anthracene exposure. Immunofluorescence staining demonstrated decreased (P < 0.05) abundance of γH2AX foci in antral follicles of obese mice. In primary follicle oocytes, BRCA1 protein was reduced (P < 0.05) by dimethylbenz[a]anthracene exposure in lean mice. Obesity also decreased (P < 0.05) BRCA1 protein in primary follicle oocytes. These findings support both a follicle stage-specific ovarian response to dimethylbenz[a]anthracene exposure and an impact of obesity on this ovarian response.
Collapse
Affiliation(s)
- Jaspreet K Rishi
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Karl C Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Estefanía González-Alvarez M, Severin A, Sayadi M, Keating AF. PFOA-Induced Ovotoxicity Differs Between Lean and Obese Mice With Impacts on Ovarian Reproductive and DNA Damage Sensing and Repair Proteins. Toxicol Sci 2022; 190:173-188. [PMID: 36214631 PMCID: PMC9789752 DOI: 10.1093/toxsci/kfac104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally persistent perfluoroalkyl substance that is widely used in consumer products. Exposure to PFOA is associated with reproductive and developmental effects including endocrine disruption, delayed puberty in girls, and decreased fetal growth. In the United States, obesity affects 40% of women and 20% of girls, with higher rates in minority females. Obesity causes infertility, poor oocyte quality, miscarriage, and offspring defects. This study proposed that PFOA exposure would impact estrous cyclicity, ovarian steroid hormones, and the ovarian proteome and further hypothesized that obesity would impact PFOA-induced ovotoxicity. Female wild type (KK.Cg-a/a; lean) or KK.Cg-Ay/J mice (obese) received saline (CT) or PFOA (2.5 mg/kg) per os for 15 days beginning at 7 weeks of age. There were no effects on food intake, body weight, estrous cyclicity, serum progesterone, and heart, spleen, kidney, or uterus weight (p > .05). Ovary weight was decreased (p < .05) by PFOA exposure relative to vehicle control-treated mice in lean but not obese mice. Liquid chromatography-tandem mass spectrometry was performed on isolated ovarian protein and PFOA exposure altered the ovarian abundance of proteins involved in DNA damage sensing and repair pathways and reproduction pathways (p < .05) differentially in lean and obese mice. The data suggest that PFOA exposure alters ovary weight and differentially targets ovarian proteins in lean and obese females in ways that might reduce female fecundity.
Collapse
Affiliation(s)
| | - Andrew Severin
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Maryam Sayadi
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
10
|
González-Alvarez ME, McGuire BC, Keating AF. Obesity alters the ovarian proteomic response to zearalenone exposure†. Biol Reprod 2021; 105:278-289. [PMID: 33855340 PMCID: PMC8256104 DOI: 10.1093/biolre/ioab069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, is detrimental to female reproduction. Altered chemical biotransformation, depleted primordial follicles and a blunted genotoxicant response have been discovered in obese female ovaries, thus, this study investigated the hypothesis that obesity would enhance ovarian sensitivity to ZEN exposure. Seven-week-old female wild-type nonagouti KK.Cg-a/a mice (lean) and agouti lethal yellow KK.Cg-Ay/J mice (obese) received food and water ad libitum, and either saline or ZEN (40 μg/kg) per os for 15 days. Body and organ weights, and estrous cyclicity were recorded, and ovaries collected posteuthanasia for protein analysis. Body and liver weights were increased (P < 0.05) in the obese mice, but obesity did not affect (P > 0.05) heart, kidney, spleen, uterus, or ovary weight and there was no impact (P > 0.05) of ZEN exposure on body or organ weight in lean or obese mice. Obese mice had shorter proestrus (P < 0.05) and a tendency (P = 0.055) for longer metestrus/diestrus. ZEN exposure in obese mice increased estrus but shortened metestrus/diestrus length. Neither obesity nor ZEN exposure impacted (P > 0.05) circulating progesterone, or ovarian abundance of EPHX1, GSTP1, CYP2E1, ATM, BRCA1, DNMT1, HDAC1, H4K16ac, or H3K9me3. Lean mice exposed to ZEN had a minor increase in γH2AX abundance (P < 0.05). In lean and obese mice, LC-MS/MS identified alterations to proteins involved in chemical metabolism, DNA repair and reproduction. These data identify ZEN-induced adverse ovarian modes of action and suggest that obesity is additive to ZEN-induced ovotoxicity.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Bailey C McGuire
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| |
Collapse
|
11
|
E GX, Zhou DK, Zheng ZQ, Yang BG, Li XL, Li LH, Zhou RY, Nai WH, Jiang XP, Zhang JH, Hong QH, Ma YH, Chu MX, Gao HJ, Zhao YJ, Duan XH, He YM, Na RS, Han YG, Zeng Y, Jiang Y, Huang YF. Identification of a Goat Intersexuality-Associated Novel Variant Through Genome-Wide Resequencing and Hi-C. Front Genet 2021; 11:616743. [PMID: 33633772 PMCID: PMC7901718 DOI: 10.3389/fgene.2020.616743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Polled intersex syndrome (PIS) leads to reproductive disorders in goats and exerts a heavy influence on goat breeding. Since 2001, the core variant of an 11.7 kb deletion at ~129 Mb on chromosome 1 (CHI1) has been widely used as a genetic diagnostic criterion. In 2020, a ~0.48 Mb insertion within the PIS deletion was identified by sequencing in XX intersex goats. However, the suitability of this variation for the diagnosis of intersex goats worldwide and its further molecular genetic mechanism need to be clarified. Results: The whole-genome selective sweep of intersex goats from China was performed with whole-genome next-generation sequencing technology for large sample populations and a case–control study on interbreeds. A series of candidate genes related to the goat intersexuality phenotype were found. We further confirmed that a ~0.48 Mb duplicated fragment (including ERG and KCNJ15) downstream of the ~20 Mb PIS region was reversely inserted into the PIS locus in intersex Chinese goats and was consistent with that in European Saanen and Valais black-necked goats. High-throughput chromosome conformation capture (Hi-C) technology was then used to compare the 3D structures of the PIS variant neighborhood in CHI1 between intersex and non-intersex goats. A newly found structure was validated as an intrachromosomal rearrangement. This inserted duplication changed the original spatial structure of goat CHI1 and caused the appearance of several specific loop structures in the adjacent ~20 kb downstream region of FOXL2. Conclusions: Results suggested that the novel complex PIS variant genome was sufficient as a broad-spectrum clinical diagnostic marker of XX intersexuality in goats from Europe and China. A series of private dense loop structures caused by segment insertion into the PIS deletion might affect the expression of FOXL2 or other neighboring novel candidate genes. However, these structures require further in-depth molecular biological experimental verification. In general, this study provided new insights for future research on the molecular genetic mechanism underlying female-to-male sex reversal in goats.
Collapse
Affiliation(s)
- Guang-Xin E
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dong-Ke Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhu-Qing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bai-Gao Yang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiang-Long Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinghuangdao, China
| | - Lan-Hui Li
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - Rong-Yan Zhou
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - Wen-Hui Nai
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xun-Ping Jiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Hua Zhang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qiong-Hua Hong
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ming-Xing Chu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hui-Jiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yong-Ju Zhao
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xing-Hai Duan
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Meng He
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan-Guo Han
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong-Fu Huang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Clark KL, Talton OO, Ganesan S, Schulz LC, Keating AF. Developmental origins of ovarian disorder: impact of maternal lean gestational diabetes on the offspring ovarian proteome in mice†. Biol Reprod 2020; 101:771-781. [PMID: 31290541 DOI: 10.1093/biolre/ioz116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 01/06/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is an obstetric disorder affecting approximately 10% of pregnancies. The four high-fat, high-sucrose (HFHS) mouse model emulates GDM in lean women. Dams are fed a HFHS diet 1 week prior to mating and throughout gestation resulting in inadequate insulin response to glucose in mid-late pregnancy. The offspring of HFHS dams have increased adiposity, thus, we hypothesized that maternal metabolic alterations during lean GDM would compromise ovarian function in offspring both basally and in response to a control or HFHS diet in adulthood. Briefly, DLPL were lean dams and control diet pups; DLPH were lean dams and HFHS pups; DHPL were HFHS dams and control diet pups; and DHPH were HFHS dams and HFHS pups. A HFHS challenge in the absence of maternal GDM (DLPL vs. DLPH) increased 3 and decreased 30 ovarian proteins. Maternal GDM in the absence of a dietary stress (DLPL vs. DHPL) increased abundance of 4 proteins and decreased abundance of 85 proteins in the offspring ovary. Finally, 87 proteins increased, and 4 proteins decreased in offspring ovaries due to dietary challenge and exposure to maternal GDM in utero (DLPL vs. DHPH). Canopy FGF signaling regulator 2, deleted in azoospermia-associated protein 1, septin 7, and serine/arginine-rich splicing factor 2 were altered across multiple offspring groups. Together, these findings suggest a possible impact on fertility and oocyte quality in relation to GDM exposure in utero as well as in response to a western diet in later life.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Omonseigho O Talton
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Laura C Schulz
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
13
|
Ovarian Follicle Depletion Induced by Chemotherapy and the Investigational Stages of Potential Fertility-Protective Treatments-A Review. Int J Mol Sci 2019; 20:ijms20194720. [PMID: 31548505 PMCID: PMC6801789 DOI: 10.3390/ijms20194720] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Ovarian follicle pool depletion, infertility, and premature menopause are all known sequelae of cancer treatment that negatively impact the quality of life of young cancer survivors. The mechanisms involved in this undesired iatrogenic ovarian damage have been intensively studied, but many of them remain unclear. Several chemotherapeutic drugs have been shown to induce direct and indirect DNA-damage and/or cellular stress, which are often followed by apoptosis and/or autophagy. Damage to the ovarian micro-vessel network induced by chemotherapeutic agents also seems to contribute to ovarian dysfunction. Another proposed mechanism behind ovarian follicle pool depletion is the overactivation of primordial follicles from the quiescent pool; however, current experimental data are inconsistent regarding these effects. There is great interest in characterizing the mechanisms involved in ovarian damage because this might lead to the identification of potentially protective substances as possible future therapeutics. Research in this field is still at an experimental stage, and further investigations are needed to develop effective and individualized treatments for clinical application. This review provides an overview of the current knowledge and the proposed hypothesis behind chemotherapy-induced ovarian damage, as well as current knowledge on possible co-treatments that might protect the ovary and the follicles from such damages.
Collapse
|
14
|
Harphoush S, Wu G, Qiuli G, Zaitoun M, Ghanem M, Shi Y, Le G. Thymoquinone ameliorates obesity-induced metabolic dysfunction, improves reproductive efficiency exhibiting a dose-organ relationship. Syst Biol Reprod Med 2019; 65:367-382. [PMID: 31262199 DOI: 10.1080/19396368.2019.1626933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Women with obesity are more likely to have a complicated reproductive life. Insulin resistance and metabolic dysfunction are associated with obesity. Thymoquinone (TQ) is a well-known antioxidant, considered to be an AMPK-activator. The goal of this work was to investigate the ability of TQ to improve fertility and lactation and clarify the possible mechanism. Female C57BL/6 mice were subjected to High Fat Diet (HFD) supplemented with TQ (10% pmm) and TQ (20% pmm). Histopathological examination was conducted on mammary and ovarian samples. Metabolic and oxidant status was evaluated, and qRT-PCR analysis was performed to verify AMPK/PGC1α/SIRT1 metabolic pathway activity. The present study reports positive effects of TQ on ovarian metabolic function in a dose-dependent manner. TQ showed its positive effects on mammary gland metabolic function at lower dose. This is the first study that indicates these dose related impacts of TQ. Abbreviations: AKT1: serine-threonine protein kinase 1; AMPK: 5' AMP-activated protein kinase; CAT: catalase; CON: control; FBS: fasting blood sugar; GLUT1: glucose transporter 1; GSH: reduced glutathione; GSSG: Glutathione disulfide; HE: hematoxylin and eosin stains; HDL: high-density lipoprotein; HFD: high fat diet; IL-6: interleukin-6; K18: keratin 18; LD: lactation day; LDL: low-density lipoprotein; LKB1: serine-threonine liver kinase B1; MDA: malondialdehyde; mTOR: the mammalian target of rapamycin; NAD: nicotinamide adenine dinucleotide; NADH: nicotinamide adenine dinucleotide phosphate; NS: nigella sativa; PBS: phosphate-buffered saline; PGC1α: peroxisome proliferator-activated receptor gamma coactivator 1-alpha; SIRT1: sirtuin 1; SOD: superoxide dismutase; T-AOC: total antioxidants; TFAM: transcription factor A mitochondrial; TG: triglycerides; TNF-α: tumor necrosis factor-α; TQ: thymoquinone; TQ10: high fat diet + thymoquinone 10% ppm; TQ20: high fat diet + thymoquinone 20% ppm; UCP2: uncoupling Protein 2.
Collapse
Affiliation(s)
- Seba Harphoush
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,Faculty of Health Science, Al-baath University , Homs , Syria.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Guoqing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Gao Qiuli
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Margaret Zaitoun
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,Faculty of Health Science, Al-baath University , Homs , Syria.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Maissam Ghanem
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,Faculty of Health Science, Al-baath University , Homs , Syria.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| |
Collapse
|
15
|
Abstract
The prevalence of obesity is high among reproductive-age women and is associated with impaired reproductive function. Obesity is multifactorial in origin, yet many cases of obesity result from overconsumption of a diet high in fat. Excess dietary fat increases both adipose and nonadipose tissue lipid content and, through lipotoxicity, leads to cell dysfunction and death. High dietary fat intake, with or without the development of obesity, impairs female hypothalamic-pituitary-ovarian (HPO) axis functionality and fertility. Based on the current evidence, it appears the reproductive dysfunction involves increased leptin and insulin signaling at the various levels of the HPO axis, as well as changes in peroxisome proliferator-activated receptor γ actions and increased inflammation, yet other mechanisms may also be involved. This review summarizes the current body of knowledge on impaired female reproductive function after high-fat diet exposure, as well as discusses proposed mechanisms through which this may occur.
Collapse
Affiliation(s)
- Natalie M Hohos
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Malgorzata E Skaznik-Wikiel
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|