1
|
Perrotta I, Aquila S, Mazzulla S. Expression profile and subcellular localization of GAPDH in the smooth muscle cells of human atherosclerotic plaque: an immunohistochemical and ultrastructural study with biological therapeutic perspectives. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1145-1157. [PMID: 24851941 DOI: 10.1017/s1431927614001020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been considered a classical glycolytic enzyme involved exclusively in cytosolic energy production. Several recent studies, however, have demonstrated that GAPDH is a multifunctional protein whose presence and activity can be regulated by disease states and/or experimental manipulation. Expression levels of GAPDH have been shown to be altered in certain tumors as well as in proliferating and differentiating cells. Since dedifferentiation and proliferation of smooth muscle cells (SMCs) are important features of human atherosclerosis, we have characterized the expression profile of GAPDH in the SMCs of atherosclerotic plaques and its putative interrelationship with the synthetic/proliferative status of these cells utilizing the proliferating cell nuclear antigen (PCNA) antibody, a valuable marker of cell proliferation. Western blot data revealed that GAPDH was significantly upregulated in atherosclerotic plaque specimens. Immunohistochemical stains demonstrated that GAPDH accumulated in the nucleus of dedifferentiated SMCs that also showed positive immunoreactivity for PCNA, but remained cytoplasmatic in the contractile SMCs (PCNA-negative), thus reflecting the proliferative, structural and synthetic differences between them. We suggest that, in human atherosclerotic plaque, GAPDH might exert additional functions that are independent of its well-documented glycolytic activity and might play key roles in development of the disease.
Collapse
Affiliation(s)
- Ida Perrotta
- 1Department of Biology,Ecology and Earth Science (Di.B.E.S.T.),University of Calabria - Arcavacata,Rende 87036,Cosenza,Italy
| | - Saveria Aquila
- 2Centro Sanitario - Department of Pharmacy and Sciences of Health and Nutrition,University of Calabria - Arcavacata,Rende 87036,Cosenza,Italy
| | - Sergio Mazzulla
- 1Department of Biology,Ecology and Earth Science (Di.B.E.S.T.),University of Calabria - Arcavacata,Rende 87036,Cosenza,Italy
| |
Collapse
|
2
|
Riva C, Binelli A. Analysis of the Dreissena polymorpha gill proteome following exposure to dioxin-like PCBs: mechanism of action and the role of gender. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2014; 9:23-30. [PMID: 24365568 DOI: 10.1016/j.cbd.2013.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 06/03/2023]
Abstract
PCBs are a persistent environmental problem due to their high stability and lipophilicity. The non-ortho- and the mono-ortho-substituted PCBs (dioxin-like-PCBs) share a common and well-described toxicity mechanism in vertebrates, initially involving binding to cytosolic AhRs. Invertebrate AhRs, however, show a lack of dioxin binding, and little information is available regarding the mechanism of toxicity of dl-PCBs in invertebrates. In this study, a proteomic approach was applied to analyse the variations in the pattern of the gill proteome of the freshwater mussel Dreissena polymorpha. Mussels were exposed to a mixture of dl-PCBs, and to perform a more in-depth evaluation, we chose to investigate the role of gender in the proteome response by analysing male and female mussels separately. The results revealed significant modulation of the gill tissue proteome: glycolysis and Ca(2+) homeostasis appear to be the main pathways targeted by dl-PCBs. In light of the differences between the male and female gill proteome profiles following exposure to dl-PCBs, further in-depth investigations of the role of gender in the protein expression profiles of a selected biological model are required.
Collapse
Affiliation(s)
- C Riva
- University of Milan, Department of Bioscience, Via Celoria 26, 20133 Milan, Italy.
| | - A Binelli
- University of Milan, Department of Bioscience, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
3
|
Han F, Zhang B. Characterizing cell-cell interactions induced spatial organization of cell phenotypes: application to density-dependent protein nucleocytoplasmic distribution. Cell Biochem Biophys 2013; 65:163-72. [PMID: 22915253 DOI: 10.1007/s12013-012-9412-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cell-cell interactions play an important role in spatial organization (pattern formation) during the development of multicellular organisms. An understanding of these biological roles requires identifying cell phenotypes that are regulated by cell-cell interactions and characterizing the spatial organizations of the phenotypes. However, conventional methods for assaying cell-cell interactions are mainly applicable at a cell population level. These measures are incapable of elucidating the spatial organizations of the phenotypes, resulting in an incomplete view of cell-cell interactions. To overcome this issue, we developed an automated image-based method to investigate cell-cell interactions based on spatial localizations of cells. We demonstrated this method in cultured cells using cell density-dependent nucleocytoplasmic distribution of β-catenin and aryl hydrocarbon receptor as the phenotype. This novel method was validated by comparing with a conventional population-based method, and proved to be more sensitive and reliable. The application of the method characterized how the phenotypes were spatially organized in a population of cultured cells. We further showed that the spatial organization was governed by cell density and was protein-specific. This automated method is very simple, and will be applicable to study cell-cell interactions in different systems from prokaryotic colonies to multicellular organisms. We envision that the ability to extract and interpret how cell-cell interactions determine the spatial organization of a cell phenotype will provide new insights into biology that may be missed by traditional population-averaged studies.
Collapse
Affiliation(s)
- Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
| | | |
Collapse
|
4
|
Wang C, Han C, Li T, Yang D, Shen X, Fan Y, Xu Y, Zheng W, Fei C, Zhang L, Xue F. Nuclear translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). Vet Res 2013; 44:29. [PMID: 23651214 PMCID: PMC3655105 DOI: 10.1186/1297-9716-44-29] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 04/18/2013] [Indexed: 01/09/2023] Open
Abstract
In mammalian cells, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) has recently been shown to be implicated in numerous apoptotic paradigms, especially in neuronal apoptosis, and has been demonstrated to play a vital role in some neurodegenerative disorders. However, this phenomenon has not been reported in protists. In the present study, we report for the first time that such a mechanism is involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). We found that upon treatment of parasites with diclazuril, the expression levels of GAPDH transcript and protein were significantly increased in second-generation merozoites. Then, we examined the subcellular localization of GAPDH by fluorescence microscopy and Western blot analysis. The results show that a considerable amount of GAPDH protein appeared in the nucleus within diclazuril-treated second-generation merozoites; in contrast, the control group had very low levels of GAPDH in the nucleus. The glycolytic activity of GAPDH was kinetically analyzed in different subcellular fractions. A substantial decrease (48.5%) in glycolytic activity of GAPDH in the nucleus was displayed. Moreover, the activities of caspases-3, -9, and −8 were measured in cell extracts using specific caspase substrates. The data show significant increases in caspase-3 and caspase-9 activities in the diclazuril-treated group.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sheng WY, Wang TCV. Proteomic analysis of the differential protein expression reveals nuclear GAPDH in activated T lymphocytes. PLoS One 2009; 4:e6322. [PMID: 19621076 PMCID: PMC2708351 DOI: 10.1371/journal.pone.0006322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022] Open
Abstract
Despite the important role of T cell activation in the adaptive immunity, very little is known about the functions of proteins that are differentially expressed in the activated T cells. In this study, we have employed proteomic approach to study the differentially expressed proteins in activated T cells. A total of 25 proteins was characterized that displayed a decreased expression, while a total of 20 proteins was characterized that displayed an increased expression in the activated T cells. Among them, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified unexpectedly as one of the up-regulated proteins. Western blot analysis of proteins separated by 2-dimensional gel electrophoresis had identified several modified GAPDHs which were detectable only in the activated T cells, but not in resting T cells. These modified GAPDHs had higher molecular mass and more basic PI, and were present in the nucleus of activated T cells. Promoter occupancy studies by chromatin immunoprecipitation assay revealed that nuclear GAPDH could be detected in the promoter of genes that were up-regulated during T cell activation, but not in the promoter of genes that were not unaffected or down-regulated. Our results suggest that nuclear GAPDH may function as transcriptional regulator in activated T cells.
Collapse
Affiliation(s)
- Wei-Yun Sheng
- Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Taiwan
| | - Tzu-Chien V. Wang
- Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: Relevance to protein misfolding and aggregation. Brain Res 2009; 1279:1-8. [DOI: 10.1016/j.brainres.2009.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 04/05/2009] [Accepted: 05/02/2009] [Indexed: 12/21/2022]
|
7
|
Mareddy S, Broadbent J, Crawford R, Xiao Y. Proteomic profiling of distinct clonal populations of bone marrow mesenchymal stem cells. J Cell Biochem 2009; 106:776-86. [PMID: 19229859 DOI: 10.1002/jcb.22088] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) have attracted immense research interest in the field of regenerative medicine due to their ability to be cultured for successive passages and multi-lineage differentiation. The molecular mechanisms governing MSC self-renewal and differentiation remain largely unknown. The development of sophisticated techniques, in particular clinical proteomics, has enabled researchers in various fields to identify and characterize cell specific biomarkers for therapeutic purposes. This study seeks to understand the cellular and sub-cellular processes responsible for the existence of stem cell populations in bone marrow samples by revealing the whole cell proteome of the clonal cultures of bone marrow-derived MSCs (BMSCs). Protein profiling of the MSC clonal populations was conducted by Two-Dimensional Liquid Chromatography/Matrix-Assisted Laser Desorption/Ionisation (MALDI) Mass Spectrometry (MS). A total of 83 proteins were identified with high confidence of which 11 showed differential expression between subpopulations, which included cytoskeletal and structural proteins, calcium binding proteins, cytokinetic proteins, and members of the intermediate filament family. This study generated a proteome reference map of BMSCs from the clonal populations, which will be valuable to better understand the underlying mechanism of BMSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Shobha Mareddy
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | | | | | | |
Collapse
|
8
|
Barbini L, Rodríguez J, Dominguez F, Vega F. Glyceraldehyde-3-phosphate dehydrogenase exerts different biologic activities in apoptotic and proliferating hepatocytes according to its subcellular localization. Mol Cell Biochem 2007; 300:19-28. [PMID: 17426931 DOI: 10.1007/s11010-006-9341-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/28/2006] [Indexed: 01/27/2023]
Abstract
Recent evidences indicate new roles for the glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in essential mammalian cell processes, such as apoptosis and proliferation. To clarify the involvement of this protein in growth and programmed cell death in the liver, cell models of hepatocytes in culture were used to study GAPDH expression, localization and enzymatic activity in hepatocyte proliferation and apoptosis. GAPDH expression in cell compartments was studied by Western blot. Nuclear expression of GAPDH increased in apoptosis, and cytoplasmic expression was elevated in apoptosis and proliferation. Subcellular localization was determined by GAPDH immunostaining and confocal microscopic analysis. Quiescent and proliferating hepatocytes showed cytoplasmic GAPDH, while apoptotic cells showed cytoplasmic but also some nuclear staining. The glycolytic activity of GAPDH was studied in nuclear and cytoplasmic cell compartments. GAPDH enzymatic activity increased in the nucleus of apoptotic cells and in cytoplasms of apoptotic and proliferating hepatocytes. Our observations indicate that during hepatocyte apoptosis GAPDH translocates to the nucleus, maintaining in part its dehydrogenase activity, and suggest that this translocation may play a role in programmed hepatocyte death. GAPDH over-expression and the increased enzymatic activity in proliferating cells, with preservation of its cytoplasmic localization, would occur in response to the elevated energy requirements of dividing hepatocytes. In conclusion, GAPDH plays different roles or biological activities in proliferating and apoptotic hepatocytes, according to its subcellular localization.
Collapse
Affiliation(s)
- Luciana Barbini
- Departamento de Fisiologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario, 27002 Lugo, Spain.
| | | | | | | |
Collapse
|
9
|
Cayatte C, Pons C, Guigonis JM, Pizzol J, Elies L, Kennel P, Rouquié D, Bars R, Rossi B, Samson M. Protein Profiling of Rat Ventral Prostate following Chronic Finasteride Administration. Mol Cell Proteomics 2006; 5:2031-43. [PMID: 16837577 DOI: 10.1074/mcp.m600165-mcp200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the effects of antiandrogens on the prostate, we investigated the changes in the proteome of rat ventral prostate (VP) following treatment with a well characterized 5alpha-reductase inhibitor, finasteride. Sprague-Dawley rats were treated daily by gavage with finasteride at 0, 1, 5, 25, and 125 mg/kg/day. Changes in plasma hormone levels as well as the weight and histology of sex accessory tissues were determined after 28 days of treatment and showed a dose-related decrease of VP weights together with a marked atrophy of the tissue visible at the macroscopic and microscopic levels. In addition, significant reductions in seminal vesicle and epididymis weights were noted. VP proteins were analyzed by two-dimensional gel electrophoresis: 37 proteins, mainly involved in protein synthesis, processing, and cellular trafficking and in metabolism, detoxification, and oxidative stress, were identified as modulated by finasteride. The prominent feature of this study is the demonstration of finasteride dose-dependent up-regulation of a protein similar to l-amino-acid oxidase 1 (Lao1). An up-regulation of this protein was also observed with the antiandrogen flutamide. Lao1 expression occurred as early as 48 h after antiandrogen administration and persisted throughout the treatment duration. Immunohistochemistry showed that this protein was only detectable in epithelial cells and secretory vesicles. Altogether these data point to a potential use of Lao1 to reveal antiandrogen-induced prostate injury.
Collapse
|
10
|
Hara MR, Cascio MB, Sawa A. GAPDH as a sensor of NO stress. Biochim Biophys Acta Mol Basis Dis 2006; 1762:502-9. [PMID: 16574384 DOI: 10.1016/j.bbadis.2006.01.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 12/20/2005] [Accepted: 01/24/2006] [Indexed: 02/05/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a classic glycolytic enzyme, and accumulating evidence has suggested that GAPDH is a multi-functional protein. In particular, its role as a mediator for cell death has been highlighted. For the last decade, many groups reported that a pool of GAPDH translocates to the nucleus under a variety of stressors, most of which are associated with oxidative stress. At the molecular level, sequential steps lead to nuclear translocation of GAPDH during cell death as follows: first, a catalytic cysteine in GAPDH (C150 in rat GAPDH) is S-nitrosylated by nitric oxide (NO) that is generated from inducible nitric oxide synthase (iNOS) and/or neuronal NOS (nNOS); second, the modified GAPDH becomes capable of binding with Siah1, an E3 ubiquitin ligase, and stabilizes it; third, the GAPDH-Siah protein complex translocates to the nucleus, dependent on Siah1's nuclear localization signal, and degrades Siah1's substrates in the nucleus, which results in cytotoxicity. A recent report suggests that GAPDH may be genetically associated with late-onset of Alzheimer's disease. (-)-deprenyl, which has originally been used as a monoamine oxidase inhibitor for Parkinson's disease, binds to GAPDH and displays neuroprotective actions, but its molecular mechanism is still unclear. The NO/GAPDH/Siah1 death cascade will contribute to the molecular understanding of a role of GAPDH in neurodegenerative disorders and help to establish novel therapeutic strategies.
Collapse
Affiliation(s)
- Makoto R Hara
- Department of Neuroscience, Johns Hopkins University School of Medicine, 600 North Wolfe street, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
11
|
Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2005; 45:269-90. [PMID: 15822178 DOI: 10.1146/annurev.pharmtox.45.120403.095902] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence supports the notion that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with multiple functions, including its surprising role in apoptosis. GAPDH is overexpressed and accumulates in the nucleus during apoptosis induced by a variety of insults in diverse cell types. Knockdown of GAPDH using an antisense strategy demonstrates its involvement in the apoptotic cascade in which GAPDH nuclear translocation appears essential. Knowledge concerning the mechanisms underlying GAPDH nuclear translocation and subsequent cell death is growing. Additional evidence suggests that GAPDH may be an intracellular sensor of oxidative stress during early apoptosis. Abnormal expression, nuclear accumulation, changes in physical properties, and loss of glycolytic activity of GAPDH have been found in cellular and transgenic models as well as postmortem tissues of several neurodegenerative diseases. The interaction of GAPDH with disease-related proteins as well as drugs used to treat these diseases suggests that it is a potential molecular target for drug development.
Collapse
Affiliation(s)
- De-Maw Chuang
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1363, USA.
| | | | | |
Collapse
|
12
|
Lu S, Gu X, Hoestje S, Epner DE. Identification of an additional hypoxia responsive element in the glyceraldehyde-3-phosphate dehydrogenase gene promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:152-6. [PMID: 11955624 DOI: 10.1016/s0167-4781(01)00359-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme overexpressed in many tumors and induced by hypoxia in normal and malignant cells. The degree to which hypoxia transcriptionally activates GAPDH is cell type specific. The GAPDH promoter region contains a hypoxia responsive element (HRE) consisting of a hypoxia inducible factor-1 (HIF-1) consensus binding site plus adjacent sequence [Graven et al. (1999) Biochim. Biophys. Acta 1447, 208-218]. Using transient transfection experiments with the GAPDH promoter region linked to a luciferase reporter gene, we found that GAPDH was transcriptionally activated by hypoxia in each of three human prostate cancer cell lines tested, with the greatest level of induction in the most differentiated cell line. Using sequence analysis of the GAPDH promoter region, we identified a novel HRE distinct from the previously characterized one that consists of two consensus HIF-1 sites arranged as inverted repeats separated by 5 bp. Hypoxia transcriptionally activated a promoter construct in which the previously characterized HRE was mutated and the novel HRE remained intact. Heterologous promoter constructs containing only one or two copies of the novel HRE plus a minimal promoter consisting of a TATA box drove hypoxia inducible expression of the luciferase reporter gene in transient transfection assays. Mutation of HIF-1 sites within the novel HRE resulted in complete loss of function.
Collapse
Affiliation(s)
- Shan Lu
- Department of Medicine, Baylor College of Medicine, VA Medical Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
13
|
Aronson WJ, Glaspy JA, Reddy ST, Reese D, Heber D, Bagga D. Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology 2001; 58:283-8. [PMID: 11489728 DOI: 10.1016/s0090-4295(01)01116-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The results of epidemiologic and animal studies support the role of a low-fat diet supplemented with omega-3 fatty acids contained in fish oil in preventing the development and progression of prostate cancer. As a first step in studying the role of a low-fat, fish oil-supplemented (LF/FOS) diet in a clinical setting, we conducted a prospective study in men with untreated prostate cancer to evaluate whether a 3-month dietary intervention affects the ratio of omega-3 to omega-6 fatty acids in plasma and gluteal fat. In addition, we evaluated the feasibility of studying cyclooxygenase-2 (COX-2) expression in serial prostate needle biopsy specimens before and after the diet. METHODS Nine men with untreated prostate cancer consumed an LF/FOS diet for 3 months. Plasma, gluteal adipose tissue, and prostate needle biopsy specimens were obtained from each patient before and after the intervention. The fatty acid compositions of the plasma and gluteal adipose tissue were determined by gas-liquid chromatography, and the COX-2 expression in the prostatic tissue specimens was determined by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS Short-term intervention with an LF/FOS diet caused a significant increase in the omega-3/omega-6 fatty acid ratio in plasma (P = 0.002) and gluteal adipose tissue (P = 0.002) in men with prostate cancer. The COX-2 expression in prostatic tissue was quantitated by RT-PCR in 7 of 9 patients, and COX-2 expression decreased in 4 of these 7 patients. CONCLUSIONS A short-term dietary intervention in men with prostate cancer leads to a significant increase in the omega-3/omega-6 fatty acid ratios in plasma and adipose tissue. The potential for this diet to prevent the development and progression of prostate cancer by way of altered COX-2 expression and prostaglandin production in prostatic tissue requires further study.
Collapse
Affiliation(s)
- W J Aronson
- Department of Urology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-1738, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dastoor Z, Dreyer JL. Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J Cell Sci 2001; 114:1643-53. [PMID: 11309196 DOI: 10.1242/jcs.114.9.1643] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies indicating a role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in apoptosis or oxidative stress has been reported. Using confocal laser-scanning microscopy, we have investigated the cellular distribution of GAPDH in central nervous system (CNS)-derived cells (neuroblastoma mNB41A3), in non-CNS derived cells (R6 fibroblast) and in an apoptosis-resistant Bcl2 overexpressing cell line (R6-Bcl2). Induction of apoptosis by staurosporine or MG132 and oxidative stress by H(2)O(2) or FeCN enhanced the nuclear translocation of endogenous GAPDH in all cell types, as detected by immunocytochemistry. In apoptotic cells, GAPDH expression is three times higher than in non-apoptotic cells. Consistent with a role for GAPDH in apoptosis, overexpression of a GAPDH-green fluorescent protein (GAPDH-GFP) hybrid increased nuclear import of GAPDH-GFP into transfected cells and the number of apoptotic cells, and made them more sensitive to agents that induce apoptosis. Bcl2 overexpression prevents nuclear translocation of GAPDH and apoptosis in untransfected cells, but not in transfected cells that overexpress GAPDH-GFP. Our observations indicate that nuclear translocation of GAPDH may play a role in apoptosis and oxidative stress, probably related to the activity of GAPDH as a DNA repair enzyme or as a nuclear carrier for pro-apoptotic molecules.
Collapse
Affiliation(s)
- Z Dastoor
- Institute of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|