1
|
Jorge AS, Recchia K, Glória MH, de Souza AF, Pessôa LVDF, Fantinato Neto P, Martins DDS, de Andrade AFC, Martins SMMK, Bressan FF, Pieri NCG. Porcine Germ Cells Phenotype during Embryonic and Adult Development. Animals (Basel) 2023; 13:2520. [PMID: 37570330 PMCID: PMC10417053 DOI: 10.3390/ani13152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Primordial germ cells (PGCs) are the precursors of gametes. Due to their importance for the formation and reproduction of an organism, understanding the mechanisms and pathways of PGCs and the differences between males and females is essential. However, there is little research in domestic animals, e.g., swine, regarding the epigenetic and pluripotency profiles of PGCs during development. This study analyzed the expression of epigenetic and various pluripotent and germline markers associated with the development and differentiation of PGCs in porcine (pPGCs), aiming to understand the different gene expression profiles between the genders. The analysis of gonads at different gestational periods (from 24 to 35 days post fertilization (dpf) and in adults) was evaluated by immunofluorescence and RT-qPCR and showed phenotypic differences between the gonads of male and female embryos. In addition, the pPGCs were positive for OCT4 and VASA; some cells were H3k27me3 positive in male embryos and adult testes. In adults, the cells of the testes were positive for germline markers, as confirmed by gene expression analysis. The results may contribute to understanding the pPGC pathways during reproductive development, while also contributing to the knowledge needed to generate mature gametes in vitro.
Collapse
Affiliation(s)
- Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Laís Vicari de Figueirêdo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | | | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
2
|
Vilchis F, Mares L, Chávez B, Paredes A, Ramos L. Late-onset vanishing testis-like syndrome in a 38,XX/38,XY agonadic pig (Sus scrofa). Reprod Fertil Dev 2021; 32:284-291. [PMID: 31679558 DOI: 10.1071/rd18514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/15/2019] [Indexed: 11/23/2022] Open
Abstract
Here we describe the case of a pig with intersex traits including ambiguous external genitalia, sex chromosome abnormalities and a late-onset vanishing testis-like syndrome. It was identified shortly after birth by presenting a predominantly female phenotype with two large scrotal masses resembling testes. The karyotype is 38,XX (53%)/38,XY (47%). Sex steroid levels were undetectable at 1 and 7 months old, whereas circulating cortisol levels were typical. DNA studies excluded gene alterations in sex-determining region Y (SRY), dosage-sensitive sex reversal-congenital adrenal hypoplasia critical region on the X chromosome protein 1 (DAX1), SRY-related high mobility group-box gene 9 (SOX9), nuclear receptor subfamily 5, group a, member 1 (NR5A1), nuclear receptor subfamily 3, group c, member 4 (NR3C4) and steroid 5-alpha-reductase 2 (SRD5A2). At 8 months of age the XX/XY pig evinced delayed growth; however, the most striking phenotypic change was that the testes-like structures completely vanished in a 2-3-week period. The internal genitalia were found to consist of a portion of a vagina and urethra. No fallopian tubes, uterus or remnants of Wolffian derivatives were observed. More importantly, no testes, ovaries, ovotestis or gonadal streaks could be identified. The XX/XY sex chromosome dosage and/or overexpression of the DAX1 gene on the X chromosome in the presence of a wild-type SRY gene may have caused this predominantly female phenotype. This specimen represents an atypical case of 38,XX/38,XY chimeric, ovotesticular disorder of sex development associated with agonadism.
Collapse
Affiliation(s)
- Felipe Vilchis
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México
| | - Lizette Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México
| | - Bertha Chávez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México
| | - Arcadio Paredes
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México
| | - Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México; and Corresponding author. ;
| |
Collapse
|
3
|
Kurtz S, Petersen B. Pre-determination of sex in pigs by application of CRISPR/Cas system for genome editing. Theriogenology 2019; 137:67-74. [PMID: 31208775 DOI: 10.1016/j.theriogenology.2019.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In livestock industries, one sex is usually preferred because of the impact on the production (e.g. milk from cows, eggs from laying hens). Furthermore, in pig production, the male-specific boar taint is a big hurdle for consumer acceptance. Consequently, a shift in the ratio towards the desired sex would be a great benefit. The most widely applied method for pre-determination of the sex is fluorescence-activated sperm sorting, which relies on the different DNA content of the X- and Y-chromosomal sperm. However, the successful practical adaption of this method depends on its ease of use. At present, sperm sexing via fluorescence-activated cell sorting (FACS) has only reached commercial application in cattle. Nevertheless, sperm sexing technology still needs to be improved with respect to efficiency and reliability, to obtain high numbers of sexed sperm and less invasive sperm treatment to avoid damage. New genome editing technologies such as Zinc finger nucleases (ZFN), Transcription-activator like endonucleases (TALENs) and the CRISPR/Cas system have emerged and offer great potential to affect determination of the sex at the genome level. The sex-determining region on the Y chromosome (SRY) serves as a main genetic switch of male gender development. It was previously shown that a knockout of the SRY gene in mice and rabbits displayed suppressed testis development in the fetal gonadal ridges resulting in a female phenotype. These new technologies hold great opportunities to pre-determine sex in pigs. However, further investigations are needed to exploit their full potential for practical application.
Collapse
Affiliation(s)
- Stefanie Kurtz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt am Rübenberge, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt am Rübenberge, Germany.
| |
Collapse
|
4
|
Elevated incidence of freemartinism in pigs detected by droplet digital PCR and cytogenetic techniques. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Seyfang J, Ralph CR, Hebart ML, Tilbrook AJ, Kirkwood RN. Anogenital distance reflects the sex ratio of a gilt's birth litter and predicts her reproductive success1. J Anim Sci 2018; 96:3856-3862. [PMID: 30060191 DOI: 10.1093/jas/sky248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/08/2018] [Indexed: 11/13/2022] Open
Abstract
Anogenital distance (AGD) has been used to reflect masculinization in litter-bearing species. As masculinization affects behavior and reproduction, AGD could be measured to assist in selecting gilts with a temperament more suited to commercial production and greater reproductive potential. We hypothesized that gilts from a male-biased litter would have a longer AGD and poorer reproductive performance. In Exp. 1, AGD and weight were measured at day 1, day 21, and week 16 of age for gilts from male-biased litters (≥60% males; n = 51) and female-biased litters (≥60% females; n = 51). Sow AGD was measured 3 d after farrowing. In Exp. 2, AGD was measured at gilt selection at approximately 24 wk of age and gilts followed to second parity. Litter sex ratio affected AGD at 16 wk of age, with gilts from female-biased litters having longer AGD (mean ± SEM, 9.1 ± 0.7 mm vs. 11.0 ± 0.6 mm, P = 0.013). Anogenital distance was not different on day 1 or day 21. There was no effect of sex ratio on weight at any time, and sow AGD was not associated with the sex ratio of her litter. Gilts with an AGD longer than the mean of 11.55 mm were heavier (mean ± SEM, 118.8 ± 0.4 kg vs. 117.7 ± 0.4 kg, P = 0.023), were achieved puberty earlier (179.6 ± 0.6d vs. 182.2 ± 0.6 d, P = 0.001), were mated younger (200.6 ± 0.6 d vs. 203.2 ± 0.6 d, P = 0.001), and were more likely to be mated (91% vs. 83%, P = 0.005) than gilts with an AGD shorter than the mean. Gilts with an AGD greater than 11.55 mm had a greater born alive litter size (11.79 ± 0.20 vs. 11.20 ± 0.19, P = 0.018) compared with gilts with an AGD shorter than 11.55 mm. At 16 wk, AGD was associated with sex bias and could be used as a selection tool to predict reproductive success of the first parity, with a longer AGD being associated with gilts that had been born into a female-biased litter and that had better reproductive performance.
Collapse
Affiliation(s)
- Jemma Seyfang
- Animal Welfare Science Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Cameron R Ralph
- Animal Welfare Science Centre, South Australian Research and Development Institute, Primary Industry and Regions SA, The University of Adelaide Campus, Roseworthy, SA, Australia
| | - Michelle L Hebart
- Animal Welfare Science Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Alan J Tilbrook
- Animal Welfare Science Centre, South Australian Research and Development Institute, Primary Industry and Regions SA, The University of Adelaide Campus, Roseworthy, SA, Australia
| | - Roy N Kirkwood
- Animal Welfare Science Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
6
|
Katsura Y, Kondo HX, Ryan J, Harley V, Satta Y. The evolutionary process of mammalian sex determination genes focusing on marsupial SRYs. BMC Evol Biol 2018; 18:3. [PMID: 29338681 PMCID: PMC5771129 DOI: 10.1186/s12862-018-1119-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maleness in mammals is genetically determined by the Y chromosome. On the Y chromosome SRY is known as the mammalian male-determining gene. Both placental mammals (Eutheria) and marsupial mammals (Metatheria) have SRY genes. However, only eutherian SRY genes have been empirically examined by functional analyses, and the involvement of marsupial SRY in male gonad development remains speculative. RESULTS In order to demonstrate that the marsupial SRY gene is similar to the eutherian SRY gene in function, we first examined the sequence differences between marsupial and eutherian SRY genes. Then, using a parsimony method, we identify 7 marsupial-specific ancestral substitutions, 13 eutherian-specific ancestral substitutions, and 4 substitutions that occurred at the stem lineage of therian SRY genes. A literature search and molecular dynamics computational simulations support that the lineage-specific ancestral substitutions might be involved with the functional differentiation between marsupial and eutherian SRY genes. To address the function of the marsupial SRY gene in male determination, we performed luciferase assays on the testis enhancer of Sox9 core (TESCO) using the marsupial SRY. The functional assay shows that marsupial SRY gene can weakly up-regulate the luciferase expression via TESCO. CONCLUSIONS Despite the sequence differences between the marsupial and eutherian SRY genes, our functional assay indicates that the marsupial SRY gene regulates SOX9 as a transcription factor in a similar way to the eutherian SRY gene. Our results suggest that SRY genes obtained the function of male determination in the common ancestor of Theria (placental mammals and marsupials). This suggests that the marsupial SRY gene has a function in male determination, but additional experiments are needed to be conclusive.
Collapse
Affiliation(s)
- Yukako Katsura
- Department of Biology, The Pennsylvania State University, State College, USA
- Department of Biology, Temple University, Philadelphia, USA
- Department of Biomedical Sciences, Nihon University, Tokyo, Japan
| | - Hiroko X. Kondo
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
- Laboratory for Computational Molecular Design, RIKEN Quantitative Biology Center, Osaka, Japan
| | - Janelle Ryan
- Hudson Institute of Medical Research, Melbourne, Australia
| | - Vincent Harley
- Hudson Institute of Medical Research, Melbourne, Australia
| | - Yoko Satta
- Department of Evolutionary Study of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| |
Collapse
|
7
|
Hemendinger RA, Gores P, Blacksten L, Harley V, Halberstadt C. Identification of a Specific Sertoli Cell Marker, Sox9, for Use in Transplantation. Cell Transplant 2017. [DOI: 10.3727/000000002783985567] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The immunoprivileged environment of the testes was first described in the 1930s, and the Sertoli cell was later identified as the main cell type responsible for this phenomenon. Recent work has examined the possibility of recreating this immunoprivileged environment at heterotopic sites using isolated Sertoli cells. These studies have focused on protection of pancreatic islets and neuronal cells from immune destruction in the hopes of reversing type I diabetes and Parkinson's disease. The absence of a definitive marker for identifying Sertoli cells at the transplant site has been an obstacle to this research. The current study examines the presence of a nuclear transcription factor, Sox9, which is preferentially expressed in Sertoli cells. Syngeneic Lewis rat Sertoli cells were transplanted into the renal subcapsular space and a subcutaneous site in Lewis female rats and examined histologically 21 days later. In addition, porcine Sertoli cells were transplanted into the renal subcapsular space in female SCID mice. Control testes and the transplant sites were examined immunohistochemically using an antibody to Sox9. The results from the study demonstrate that Sox9 expression is restricted to the Sertoli cells of the neonatal rat and porcine testis, indicating high homology between species. In addition, Sox9 expression was also observed in the testicular-like tubules that formed in both syngeneic and xenogeneic heterotopic transplants in rats and SCID mice. The Sox9 expression was restricted to the regions where Sertoli cells would be found in the native testis. These results suggest that the Sox9 protein is a useful marker in identifying Sertoli cells in heterotopic transplants in a manner similar to insulin as a marker for pancreatic islets.
Collapse
Affiliation(s)
- R. A. Hemendinger
- Department of General Surgery and The Transplant Center, Carolinas Medical Center, Charlotte, NC 28232
| | - P. Gores
- Department of General Surgery and The Transplant Center, Carolinas Medical Center, Charlotte, NC 28232
| | - L. Blacksten
- Department of General Surgery and The Transplant Center, Carolinas Medical Center, Charlotte, NC 28232
| | - V. Harley
- Prince Henry's Institute, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - C. Halberstadt
- Department of General Surgery and The Transplant Center, Carolinas Medical Center, Charlotte, NC 28232
| |
Collapse
|
8
|
Parma P, Veyrunes F, Pailhoux E. Sex Reversal in Non-Human Placental Mammals. Sex Dev 2016; 10:326-344. [PMID: 27529721 DOI: 10.1159/000448361] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/31/2023] Open
Abstract
Gonads are very peculiar organs given their bipotential competence. Indeed, early differentiating genital ridges evolve into either of 2 very distinct organs: the testis or the ovary. Accumulating evidence now demonstrates that both genetic pathways must repress the other in order for the organs to differentiate properly, meaning that if this repression is disrupted or attenuated, the other pathway may completely or partially be expressed, leading to disorders of sex development. Among these disorders are the cases of XY male-to-female and XX female-to-male sex reversals as well as true hermaphrodites, in which there is a discrepancy between the chromosomal and gonadal sex. Here, we review known cases of XY and XX sex reversals described in mammals, focusing mostly on domestic animals where sex reversal pathologies occur and on wild species in which deviations from the usual XX/XY system have been documented.
Collapse
Affiliation(s)
- Pietro Parma
- Department of Agricultural and Environmental Sciences, Milan University, Milan, Italy
| | | | | |
Collapse
|
9
|
Vernunft A, Ivell R, Heng K, Anand-Ivell R. The Male Fetal Biomarker INSL3 Reveals Substantial Hormone Exchange between Fetuses in Early Pig Gestation. PLoS One 2016; 11:e0152689. [PMID: 27031644 PMCID: PMC4816311 DOI: 10.1371/journal.pone.0152689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
The peptide hormone INSL3 is uniquely produced by the fetal testis to promote the transabdominal phase of testicular descent. Because it is fetal sex specific, and is present in only very low amounts in the maternal circulation, INSL3 acts as an ideal biomarker with which to monitor the movement of fetal hormones within the pregnant uterus of a polytocous species, the pig. INSL3 production by the fetal testis begins at around GD30. At GD45 of the ca. 114 day gestation, a time at which testicular descent is promoted, INSL3 evidently moves from male to female allantoic compartments, presumably impacting also on the female fetal circulation. At later time-points (GD63, GD92) there is less inter-fetal transfer, although there still appears to be significant INSL3, presumably of male origin, in the plasma of female fetuses. This study thus provides evidence for substantial transfer of a peptide hormone between fetuses, and probably also across the placenta, emphasizing the vulnerability of the fetus to extrinsic hormonal influences within the uterus.
Collapse
Affiliation(s)
- Andreas Vernunft
- FBN Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - Kee Heng
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - Ravinder Anand-Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Sargent KM, McFee RM, Spuri Gomes R, Cupp AS. Vascular endothelial growth factor A: just one of multiple mechanisms for sex-specific vascular development within the testis? J Endocrinol 2015; 227:R31-50. [PMID: 26562337 PMCID: PMC4646736 DOI: 10.1530/joe-15-0342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 01/25/2023]
Abstract
Testis development from an indifferent gonad is a critical step in embryogenesis. A hallmark of testis differentiation is sex-specific vascularization that occurs as endothelial cells migrate from the adjacent mesonephros into the testis to surround Sertoli-germ cell aggregates and induce seminiferous cord formation. Many in vitro experiments have demonstrated that vascular endothelial growth factor A (VEGFA) is a critical regulator of this process. Both inhibitors to VEGFA signal transduction and excess VEGFA isoforms in testis organ cultures impaired vascular development and seminiferous cord formation. However, in vivo models using mice which selectively eliminated all VEGFA isoforms: in Sertoli and germ cells (pDmrt1-Cre;Vegfa(-/-)); Sertoli and Leydig cells (Amhr2-Cre;Vegfa(-/-)) or Sertoli cells (Amh-Cre;Vegfa(-/-) and Sry-Cre;Vegfa(-/-)) displayed testes with observably normal cords and vasculature at postnatal day 0 and onwards. Embryonic testis development may be delayed in these mice; however, the postnatal data indicate that VEGFA isoforms secreted from Sertoli, Leydig or germ cells are not required for testis morphogenesis within the mouse. A Vegfa signal transduction array was employed on postnatal testes from Sry-Cre;Vegfa(-/-) versus controls. Ptgs1 (Cox1) was the only upregulated gene (fivefold). COX1 stimulates angiogenesis and upregulates, VEGFA, Prostaglandin E2 (PGE2) and PGD2. Thus, other gene pathways may compensate for VEGFA loss, similar to multiple independent mechanisms to maintain SOX9 expression. Multiple independent mechanism that induce vascular development in the testis may contribute to and safeguard the sex-specific vasculature development responsible for inducing seminiferous cord formation, thus ensuring appropriate testis morphogenesis in the male.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renee M McFee
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renata Spuri Gomes
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| |
Collapse
|
11
|
Mack LA, Lay DC, Eicher SD, Johnson AK, Richert BT, Pajor EA. Growth and reproductive development of male piglets are more vulnerable to midgestation maternal stress than that of female piglets12. J Anim Sci 2014; 92:530-48. [PMID: 24398844 DOI: 10.2527/jas.2013-6773] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- L. A. Mack
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - D. C. Lay
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - S. D. Eicher
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - A. K. Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B. T. Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - E. A. Pajor
- Department of Production Animal Health, University of Calgary, Calgary, AB, CA T2N IN4
| |
Collapse
|
12
|
Rousseau S, Iannuccelli N, Mercat MJ, Naylies C, Thouly JC, Servin B, Milan D, Pailhoux E, Riquet J. A genome-wide association study points out the causal implication of SOX9 in the sex-reversal phenotype in XX pigs. PLoS One 2013; 8:e79882. [PMID: 24223201 PMCID: PMC3819277 DOI: 10.1371/journal.pone.0079882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/26/2013] [Indexed: 01/10/2023] Open
Abstract
Among farm animals, pigs are known to show XX sex-reversal. In such cases the individuals are genetically female but exhibit a hermaphroditism, or a male phenotype. While the frequency of this congenital disease is quite low (less than 1%), the economic losses are significant for pig breeders. These losses result from sterility, urogenital infections and the carcasses being downgraded because of the risk of boar taint. It has been clearly demonstrated that the SRY gene is not involved in most cases of sex-reversal in pigs, and that autosomal recessive mutations remain to be discovered. A whole-genome scan analysis was performed in the French Large-White population to identify candidate genes: 38 families comprising the two non-affected parents and 1 to 11 sex-reversed full-sib piglets were genotyped with the PorcineSNP60 BeadChip. A Transmission Disequilibrium Test revealed a highly significant candidate region on SSC12 (most significant p-value<4.65.10-10) containing the SOX9 gene. SOX9, one of the master genes involved in testis differentiation, was sequenced together with one of its main regulatory region Tesco. However, no causal mutations could be identified in either of the two sequenced regions. Further haplotype analyses did not identify a shared homozygous segment between the affected pigs, suggesting either a lack of power due to the SNP properties of the chip, or a second causative locus. Together with information from humans and mice, this study in pigs adds to the field of knowledge, which will lead to characterization of novel molecular mechanisms regulating sexual differentiation and dysregulation in cases of sex reversal.
Collapse
|
13
|
Valenzuela N, Neuwald JL, Literman R. Transcriptional evolution underlying vertebrate sexual development. Dev Dyn 2012; 242:307-19. [DOI: 10.1002/dvdy.23897] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Jennifer L. Neuwald
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| |
Collapse
|
14
|
Abstract
Gonadal cellular organization is very similar in all vertebrates, though different processes can trigger bipotential gonads to develop into either testes or ovaries. While mammals and birds, apart from some exceptions, show genetic sex determination (GSD), other animals, like turtles and crocodiles, express temperature-dependent sex determination. In some groups of animals, GSD can also be overridden by hormone or temperature influences, indicating how fragile this system can be. This review aims to explain the fundamental molecular mechanisms involved in mammalian GSD, mainly referring to mouse as a major model. Conceivably, other mammals might show a molecular mechanism different from the commonly investigated murine species.
Collapse
Affiliation(s)
- P Parma
- Department of Animal Science, Agricultural Faculty of Science, Milan University, Milan, Italy.
| | | |
Collapse
|
15
|
Lervik S, von Krogh K, Karlsson C, Olsaker I, Andresen Ø, Dahl E, Verhaegen S, Ropstad E. Steroidogenesis in primary cultures of neonatal porcine Leydig cells from Duroc and Norwegian Landrace breeds. Theriogenology 2011; 76:1058-69. [DOI: 10.1016/j.theriogenology.2011.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 10/17/2022]
|
16
|
Hyldig SMW, Croxall N, Contreras DA, Thomsen PD, Alberio R. Epigenetic reprogramming in the porcine germ line. BMC DEVELOPMENTAL BIOLOGY 2011; 11:11. [PMID: 21352525 PMCID: PMC3051914 DOI: 10.1186/1471-213x-11-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 02/25/2011] [Indexed: 11/16/2022]
Abstract
Background Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig. Results Our results show loss of DNA methylation in PGC colonizing the genital ridges. Analysis of IGF2-H19 regulatory region showed a gradual demethylation between E22-E42. In contrast, DMR2 of IGF2R was already demethylated in male PGC by E22. In females, IGF2R demethylation was delayed until E29-31, and was de novo methylated by E42. DNA repeats were gradually demethylated from E25 to E29-31, and became de novo methylated by E42. Analysis of histone marks showed strong H3K27me3 staining in migratory PGC between E15 and E21. In contrast, H3K9me2 signal was low in PGC by E15 and completely erased by E21. Cell cycle analysis of gonadal PGC (E22-31) showed a typical pattern of cycling cells, however, migrating PGC (E17) showed an increased proportion of cells in G2. Conclusions Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding of the sequential reprogramming of PGC in the pig will facilitate the derivation of embryonic germ cells in this species.
Collapse
Affiliation(s)
- Sara M W Hyldig
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Genetic control of gonadal development proceeds through either the male or female molecular pathways, driving bipotential gonadal anlage differentiation into a testis or ovary. Antagonistic interactions between the 2 pathways determine the gonadal sex. Essentially sex determination is the enhancement of one of the 2 pathways according to genetic sex. Initially, Sry with other factors upregulates Sox9 expression in XY individuals. Afterwards the expression of Sox9 is maintained by a positive feedback loop with Fgf9 and prostaglandin D2 as well as by autoregulative ability of Sox9. If these factors reach high concentrations, then Sox9 and/or Fgf9 may inhibit the female pathway. Surprisingly, splicing, nuclear transport, and extramatrix proteins may be involved in sex determination. The male sex determination pathway switches on the expression of genes driving Sertoli cell differentiation. Sertoli cells orchestrate testicular differentiation. In the absence of Sry, the predomination of the female pathway results in the realization of a robust genetic program that drives ovarian differentiation.
Collapse
|
18
|
Procházka R, Nemcová L, Nagyová E, Scsuková S, Mlynarcíková A. Development of functional LH Receptors on pig cumulus-oocyte complexes cultured in vitro by a novel two-step culture system. Mol Reprod Dev 2009; 76:751-61. [PMID: 19382213 DOI: 10.1002/mrd.21039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We show in the present study that freshly isolated pig cumulus-oocyte complexes (COCs) display a limited response to LH, as assessed by the expression of hyaluronan synthase 2 (Has2) mRNA, activation of protein kinase A (PKA), production of hyaluronic acid (HA) and progesterone, cumulus cell expansion and resumption of meiosis. These data indicate that freshly isolated COCs do not possess a sufficient number of functional LH receptors (LHR). However, the expression of Lhr significantly increased during the culture of COCs in vitro in a medium supplemented with FSH. Assuming that the effect of FSH on LHR induction is mediated via cAMP signaling pathways, we developed a new culture system, in which the COCs were pre-cultured for 72 hr in a medium supplemented with dbcAMP. The pre-cultured COCs remained in the germinal vesicle stage, their cumulus investment underwent a dramatic increase in size and gap junctions between the cumulus cells were preserved. The stimulation of such COCs with either FSH or LH led to the resumption and completion of meiosis, activation of PKA, expression of Has2, synthesis of large amounts of HA and progesterone, and extensive expansion of cumulus cells. We conclude that the formation of functional LHR is stimulated in cumulus cells during the culture in vitro in a cAMP-dependent pathway. The dbcAMP-treated COCs thus represent a new model in which the resumption of meiosis and cumulus expansion can be induced exclusively by the action of recombinant LH.
Collapse
Affiliation(s)
- Radek Procházka
- Academy of Sciences of the Czech Republic, Institute of Animal Physiology and Genetics, Libechov, Czech Republic.
| | | | | | | | | |
Collapse
|
19
|
Pérez-Enciso M, Ferraz ALJ, Ojeda A, López-Béjar M. Impact of breed and sex on porcine endocrine transcriptome: a bayesian biometrical analysis. BMC Genomics 2009; 10:89. [PMID: 19239697 PMCID: PMC2656523 DOI: 10.1186/1471-2164-10-89] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 02/24/2009] [Indexed: 11/17/2022] Open
Abstract
Background Transcriptome variability is due to genetic and environmental causes, much like any other complex phenotype. Ascertaining the transcriptome differences between individuals is an important step to understand how selection and genetic drift may affect gene expression. To that end, extant divergent livestock breeds offer an ideal genetic material. Results We have analyzed with microarrays five tissues from the endocrine axis (hypothalamus, adenohypophysis, thyroid gland, gonads and fat tissue) of 16 pigs from both sexes pertaining to four extreme breeds (Duroc, Large White, Iberian and a cross with SinoEuropean hybrid line). Using a Bayesian linear model approach, we observed that the largest breed variability corresponded to the male gonads, and was larger than at the remaining tissues, including ovaries. Measurement of sex hormones in peripheral blood at slaughter did not detect any breed-related differences. Not unexpectedly, the gonads were the tissue with the largest number of sex biased genes. There was a strong correlation between sex and breed bias expression, although the most breed biased genes were not the most sex biased genes. A combined analysis of connectivity and differential expression suggested three biological processes as being primarily different between breeds: spermatogenesis, muscle differentiation and several metabolic processes. Conclusion These results suggest that differences across breeds in gene expression of the male gonads are larger than in other endocrine tissues in the pig. Nevertheless, the strong presence of breed biased genes in the male gonads cannot be explained solely by changes in spermatogenesis nor by differences in the reproductive tract development.
Collapse
Affiliation(s)
- Miguel Pérez-Enciso
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | | | |
Collapse
|
20
|
Ross DGF, Bowles J, Koopman P, Lehnert S. New insights into SRY regulation through identification of 5' conserved sequences. BMC Mol Biol 2008; 9:85. [PMID: 18851760 PMCID: PMC2572636 DOI: 10.1186/1471-2199-9-85] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 10/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SRY is the pivotal gene initiating male sex determination in most mammals, but how its expression is regulated is still not understood. In this study we derived novel SRY 5' flanking genomic sequence data from bovine and caprine genomic BAC clones. RESULTS We identified four intervals of high homology upstream of SRY by comparison of human, bovine, pig, goat and mouse genomic sequences. These conserved regions contain putative binding sites for a large number of known transcription factor families, including several that have been implicated previously in sex determination and early gonadal development. CONCLUSION Our results reveal potentially important SRY regulatory elements, mutations in which might underlie cases of idiopathic human XY sex reversal.
Collapse
Affiliation(s)
- Diana G F Ross
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | | | | | | |
Collapse
|
21
|
A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol Biol 2008; 9:44. [PMID: 18445271 PMCID: PMC2387164 DOI: 10.1186/1471-2199-9-44] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 04/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background In mammals, sex determination is genetically controlled. The SRY gene, located on Y chromosome, functions as the dominant genetic switch for testis development. The SRY gene is specifically expressed in a subpopulation of somatic cells (pre-Sertoli cells) of the developing urogenital ridge for a brief period during gonadal differentiation. Despite this tight spatiotemporal expression pattern, the molecular mechanisms that regulate SRY transcription remain poorly understood. Sry expression has been shown to be markedly reduced in transgenic mice harboring a mutant GATA4 protein (a member of the GATA family of transcription factors) disrupted in its ability to interact with its transcriptional partner FOG2, suggesting that GATA4 is involved in SRY gene transcription. Results Although our results show that GATA4 directly targets the pig SRY promoter, we did not observe similar action on the mouse and human SRY promoters. In the mouse, Wilms' tumor 1 (WT1) is an important regulator of both Sry and Müllerian inhibiting substance (Amh/Mis) expression and in humans, WT1 mutations are associated with abnormalities of sex differentiation. GATA4 transcriptionally cooperated with WT1 on the mouse, pig, and human SRY promoters. Maximal GATA4/WT1 synergism was dependent on WT1 but not GATA4 binding to their consensus regulatory elements in the SRY promoter and required both the zinc finger and C-terminal regions of the GATA4 protein. Although both isoforms of WT1 synergized with GATA4, synergism was stronger with the +KTS rather than the -KTS isoform. WT1/GATA4 synergism was also observed on the AMH promoter. In contrast to SRY, WT1/GATA4 action on the mouse Amh promoter was specific for the -KTS isoform and required both WT1 and GATA4 binding. Conclusion Our data therefore provide new insights into the molecular mechanisms that contribute to the tissue-specific expression of the SRY and AMH genes in both normal development and certain syndromes of abnormal sex differentiation.
Collapse
|
22
|
Expression of P450arom, AMH and ER.ALPHA. mRNA in Gonads of Turkey, Duck and Goose within One Week of Age. J Poult Sci 2008. [DOI: 10.2141/jpsa.45.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Effects of Aromatase Inhibitor (Fadrozole)-Induced Sex-Reversal on Gonadal Differentiation and mRNA Expression of P450arom, AMH and ER.ALPHA. in Embryos and Growth in Posthatching Quail. J Poult Sci 2008. [DOI: 10.2141/jpsa.45.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Espinosa Reyes TM, García Sáez J, Pérez Gesen C, Fernández Teruel T, Carvajal Martínez F, Tuero Á. Trastornos de la diferenciación sexual: 20 años de experiencia. Rev Int Androl 2007. [DOI: 10.1016/s1698-031x(07)74060-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Abstract
Arguably the most defining moment in our lives is fertilization, the point at which we inherit either an X or a Y chromosome from our father. The profoundly different journeys of male and female life are thus decided by a genetic coin toss. These differences begin to unfold during fetal development, when the Y-chromosomal Sry ("sex-determining region Y") gene is activated in males and acts as a switch that diverts the fate of the undifferentiated gonadal primordia, the genital ridges, towards testis development. This sex-determining event sets in train a cascade of morphological changes, gene regulation, and molecular interactions that directs the differentiation of male characteristics. If this does not occur, alternative molecular cascades and cellular events drive the genital ridges toward ovary development. Once testis or ovary differentiation has occurred, our sexual fate is further sealed through the action of sex-specific gonadal hormones. We review here the molecular and cellular events (differentiation, migration, proliferation, and communication) that distinguish testis and ovary during fetal development, and the changes in gene regulation that underpin these two alternate pathways. The growing body of knowledge relating to testis development, and the beginnings of a picture of ovary development, together illustrate the complex mechanisms by which these organ systems develop, inform the etiology, diagnosis, and management of disorders of sexual development, and help define what it is to be male or female.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Division of Molecular Genetics and Development and Australian Research Council Centre of Excellence in Biotechnology and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
26
|
Wilhelm D, Koopman P. The makings of maleness: towards an integrated view of male sexual development. Nat Rev Genet 2006; 7:620-31. [PMID: 16832429 DOI: 10.1038/nrg1903] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As the mammalian embryo develops, it must engage one of the two distinct programmes of gene activity, morphogenesis and organogenesis that characterize males and females. In males, sexual development hinges on testis determination and differentiation, but also involves many coordinated transcriptional, signalling and endocrine networks that underpin the masculinization of other organs and tissues, including the brain. Here we bring together current knowledge about these networks, identify gaps in the overall picture, and highlight the known defects that lead to disorders of male sexual development.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
27
|
Pannetier M, Tilly G, Kocer A, Hudrisier M, Renault L, Chesnais N, Costa J, Le Provost F, Vaiman D, Vilotte JL, Pailhoux E. GoatSRYinduces testis development in XX transgenic mice. FEBS Lett 2006; 580:3715-20. [PMID: 16765952 DOI: 10.1016/j.febslet.2006.05.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/15/2006] [Accepted: 05/18/2006] [Indexed: 11/21/2022]
Abstract
The testis-determining gene SRY is not well-conserved among mammals, particularly between mouse and other mammals, both in terms of protein structure and of expression regulation. To evaluate SRY phylogenic conservation in regards to its function, we expressed the goat gene (gSRY) in XX transgenic mouse gonads. Here, we show that gSRY induces testis formation, despite a goat expression profile. Our results demonstrate that sex-reversal can be induced in XX-mice by a non-mouse SRY thus suggesting a conserved molecular mechanism of action of this testis-determining gene across mammalian species.
Collapse
Affiliation(s)
- Maëlle Pannetier
- INRA, Biologie du Développement et Reproduction, Bât. J. Poly, 78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boyer A, Pilon N, Raiwet DL, Lussier JG, Silversides DW. Human and pigSRY 5′ flanking sequences can direct reporter transgene expression to the genital ridge and to migrating neural crest cells. Dev Dyn 2006; 235:623-32. [PMID: 16411204 DOI: 10.1002/dvdy.20670] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms for sex determination vary greatly between animal groups, and include chromosome dosage and haploid-diploid mechanisms as seen in insects, temperature and environmental cues as seen in fish and reptiles, and gene-based mechanisms as seen in birds and mammals. In eutherian mammals, sex determination is genetic, and SRY is the Y chromosome located gene representing the dominant testes determining factor. How SRY took over this function from ancestral mechanisms is not known, nor is it known what those ancestral mechanisms were. What is known is that SRY is haploid and thus poorly protected from mutations, and consequently is poorly conserved between mammalian species. To functionally compare SRY promoter sequences, we have generated transgenic mice with fluorescent reporter genes under the control of various lengths of human and pig SRY 5' flanking sequences. Human SRY 5' flanking sequences (5 Kb) supported reporter transgene expression within the genital ridge of male embryos at the time of sex determination and also supported expression within migrating truncal neural crest cells of both male and female embryos. The 4.6 Kb of pig SRY 5' flanking sequences supported reporter transgene expression within the male genital ridge but not within the neural crest; however, 2.6 Kb and 1.6 Kb of pig SRY 5' flanking sequences retained male genital ridge expression and now supported extensive expression within cells of the neural crest in embryos of both sexes. When 2 Kb of mouse SRY 5' flanking sequences (-3 to -1 Kb) were placed in front of the 1.6 Kb of pig SRY 5' flanking sequences and this transgene was introduced into mice, reporter transgene expression within the male genital ridge was retained but neural crest expression was lost. These observations suggest that SRY 5' flanking sequences from at least two mammalian species contain elements that can support transgene expression within cells of the migrating neural crest and that additional SRY 5' flanking sequences can extinguish this expression.
Collapse
Affiliation(s)
- Alexandre Boyer
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | | | | | | | | |
Collapse
|
29
|
Meyers-Wallen VN. Sf1 and Mis expression: molecular milestones in the canine sex determination pathway. Mol Reprod Dev 2005; 70:383-9. [PMID: 15685633 DOI: 10.1002/mrd.20217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In mammals, the Y-linked Sry gene is normally responsible for testis induction. However, testes develop in the absence of Sry in human patients and animal models with Sry-negative XX sex reversal. The mechanism of testis induction in this disorder is presently unknown. Characterization of gene expression in normal embryos contributes to the framework within which the canine Sry-negative XX sex reversal model can be evaluated. The objective of this study was to add two molecular milestones to the canine sex determination pathway by determining the temporal and spatial expression patterns of Sf1 and Mis in normal urogenital ridges (UGR) at various gestational stages. The onset of Sf1 expression signifies the start of the sex determination period, whereas initial Mis expression identifies the end of the testis induction period. Sf1 expression in UGR was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and whole mount in situ hybridization (WMISH) at Carnegie stages (CS) 15 to 20. Canine sex determination begins at CS 15 with Sf1 expression in the emerging indifferent gonad. Gonadal Sf1 expression was detected in both sexes at all ages, and in the presumptive adrenal primordium at CS 15 and 17. At stages > or = CS 17, Sf1 expression was pronounced in male and female gonads. Mis expression, assayed by WMISH at CS 13.5-20, was observed only in male gonads > or = CS 18, indicating that the testis induction period ends at CS 18. The expression patterns of both genes are similar to those observed in humans and domestic animals.
Collapse
Affiliation(s)
- Vicki N Meyers-Wallen
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
30
|
Abstract
Growth and development of pig fetuses is dependent on the coordinated expression of multiple genes. Between 21 and 45 days of gestation, fetuses experience increasing growth rates that can result in uterine crowding and increased mortality. We used differential display reverse transcription-PCR (DDRT-PCR) to identify differentially expressed genes in pig fetuses at 21, 35, and 45 days of gestation. Pig cDNAs were identified with homologies to CD3 gamma-subunit, collagen type XIV alpha1, complement component C6, craniofacial developmental protein 1, crystallin-gammaE, DNA binding protein B, epsilon-globin, formin binding protein 2, ribosomal protein L23, small acidic protein, secreted frizzled related protein 2, titin, vitamin D binding protein, and two hypothetical protein products. Two novel expressed sequence tags (ESTs) were also identified. Expression patterns were confirmed for eight genes, and spatiotemporal expression of three genes was evaluated. We identified novel transcriptome changes in fetal pigs during a period of rapid growth. These changes involved genes with a spectrum of proposed functions, including musculoskeletal growth, immune system function, and cellular regulation. This information can ultimately be used to enhance production efficiency through improved pig growth and survival.
Collapse
Affiliation(s)
- Stephanie R Wesolowski
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
31
|
Meyers-Wallen VN. Sry and Sox9 expression during canine gonadal sex determination assayed by quantitative reverse transcription-polymerase chain reaction. Mol Reprod Dev 2003; 65:373-81. [PMID: 12840810 DOI: 10.1002/mrd.10317] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Testis induction is associated with gonadal Sry and Sox9 expression in mammals, and with Sox9 expression in vertebrates where Sry is absent. In mammals, Sry might initiate testis induction by upregulating Sox9 expression; however, direct evidence supporting this hypothesis is lacking. Models of Sry-negative XX sex reversal (XXSR), in which testes develop in the absence of Sry, could provide the link between Sry and Sox9 in testis induction. To define the stages at which testis determination occurs in the canine model, Sry and Sox9 expression were measured in normal urogenital ridges (UGR) and gonads by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Testicular Sry expression rose continuously during canine developmental ages comparable to human carnegie stages (CS) 16-18, with maximal expression at CS 18. Sox9 was expressed in both male and female canine UGR up to CS 17, at which time testis expression became tenfold greater than in the ovary. Although Sox9 was detected by qRT-PCR in ovaries and mesonephroi of both sexes, expression was detected only in canine testes by whole mount in situ hybridization (WMISH). The timing of Sry and Sox9 expression is consistent with a role in testis determination: Sry expression begins at CS 16 in testes, followed by upregulation of Sox9 expression at CS 17. The quantity and temporal and spatial patterns of Sry and Sox9 expression in normal canine gonads are similar to those in humans, sheep, and pigs. These studies should provide the basis for understanding the mechanism of testis induction in the canine model of Sry-negative XXSR.
Collapse
Affiliation(s)
- V N Meyers-Wallen
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
32
|
Pilon N, Daneau I, Paradis V, Hamel F, Lussier JG, Viger RS, Silversides DW. Porcine SRY promoter is a target for steroidogenic factor 1. Biol Reprod 2003; 68:1098-106. [PMID: 12606467 DOI: 10.1095/biolreprod.102.010884] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To study the process of mammalian sex determination and in particular to further understand the mechanisms of transcriptional regulation of the SRY gene, we have isolated a 4.5-kilobase (kb) pig SRY 5' flanking sequence. To facilitate the in vitro analysis of these sequences, we have generated a porcine genital ridge (PGR) cell line (9E11) that expresses SRY as well as SOX9, steroidogenic factor-1 (SF-1), and DAX1. Via primer extension analysis on RNA from this cell line, a transcription start site for porcine SRY was identified at -661 base pairs (bps) 5' from the translation initiation site. Deletion studies of the SRY 5' flanking sequences in PGR 9E11 cells demonstrated that -1.4 kb of 5' flanking sequences retained full transcriptional activity compared with the -4.5 kb fragment, but that transcriptional activity fell when further deletions were made. Sequences downstream of the transcriptional start site are important for promoter activity, because deleting transcribed but not translated sequences eliminated promoter activity. Sequence analysis of the -1.4 kb fragment identified two potential binding sites for SF-1, at -1369 and at -290 from the ATG. To address the role of SF-1 transactivation in SRY promoter activity, mutagenesis studies of the potential SF-1 binding sites were performed and revealed that these sites were indeed important for SRY promoter activity. Cotransfection studies in a heterologous cell system (mouse CV-1 cells) demonstrated that pig SF-1 was able to transactivate the pig SRY promoter. Gel shift assays confirmed that the upstream site was recognized by mouse SF-1 protein. We conclude that two sites for SF-1 transactivation exist within the pig SRY promoter, at -1369 bp and at -290 bp, and that the site at -1369 bp is quantitatively the most important.
Collapse
Affiliation(s)
- Nicolas Pilon
- Centre de recherche en reproduction animale, Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | | | | | |
Collapse
|
33
|
Daneau I, Pilon N, Boyer A, Behdjani R, Overbeek PA, Viger R, Lussier J, Silversides DW. The porcine SRY promoter is transactivated within a male genital ridge environment. Genesis 2002; 33:170-80. [PMID: 12203914 DOI: 10.1002/gene.10106] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In mammals the SRY gene functions as a dominant genetic switch for testis determination (Gubbay et al.: Nature 346:1128-1135, 1990; Koopman et al.: Nature 351:117-121, 1991; Sinclair et al.: Nature 346:240-244, 1990). To study SRY transcriptional regulation within an evolutionary context, we have generated transgenic mice that express green fluorescent protein (GFP) under the control of 4.5 kb of pig SRY 5' flanking sequences (pSRYp-GFP). Autofluorescence was observed in the genital ridges of e11.5 male embryos (18-21 tail somites), and by e12.5 (27 tail somites) autofluorescence was observed within the testes cords. The expression of the transgene did not display the abrupt termination characteristic of endogenous mouse SRY, but rather showed a gradual reduction in expression characteristic of human, pig and sheep SRY. Surprisingly, no autofluorescence was observed in normal XX genital ridges, although more sensitive RT-PCR analysis detected transgene transcription. When the transgene was bred into a constitutively male line of mice (Odsex; Bishop et al.: Nat Genet 26:490-494, 2000), autofluorescence was visible in genital ridges of XX animals, in the genetic absence of Sry protein. Via RT-PCR analysis, purified autofluorescent cells from e12.5 gonadal ridges expressed mouse SRY but not Oct4 transcripts, whereas autofluorescent cells from e14.5 gonadal ridges expressed MIS but not Oct4 transcripts, in each case consistent with a pre-Sertoli cell phenotype. In vitro expression studies performed in CV-1 cells demonstrated that pig SOX9 cDNA transactivated the pig SRY promoter but that pig SRY cDNA did not. When a SOX9 potential binding site identified at -205 of the pig SRY 5' flanking sequences was mutated, the SOX9 transactivation effect was reduced by 70%. This site is conserved in the 5' flanking sequences of bovine and human SRY genes but not in the mouse gene. Gel retardation assays using this binding site showed specific binding to SOX9-enriched nuclear extracts that was competed by excess unlabelled binding site but not by mutated binding site. We suggest that pig SRY gene is responsive to a testicular environment and propose a model of feedback amplification of pig SRY transcription by SOX9.
Collapse
Affiliation(s)
- Isabelle Daneau
- Faculty of Veterinary Medicine, University of Montreal, Saint Hyacinthe, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pask AJ, Harry JL, Graves JAM, O'Neill RJW, Layfield SL, Shaw G, Renfree MB. SOX9 has both conserved and novel roles in marsupial sexual differentiation. Genesis 2002; 33:131-9. [PMID: 12124946 DOI: 10.1002/gene.10096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In addition to an essential role in chondrogenesis, SOX9 is a highly conserved and integral part of the testis determining pathway in human and mouse. To determine whether SOX9 is involved in sex determination in noneutherian mammals we cloned a marsupial orthologue and studied its expression. The tammar wallaby SOX9 gene proved to be highly conserved, and maps to a region of the tammar genome syntenic to human chromosome 17. Marsupial SOX9 transcripts were detected by RT-PCR in the developing limb buds and both the developing ovary and testis from the first sign of gonadal development through to adulthood. Northern blot, in situ hybridisation, and immunohistochemical analyses showed that SOX9 reaches high levels of expression in the developing testis, where it is confined to the Sertoli cell nuclei, and the brain. This is similar to the expression pattern seen in human and mouse embryos and is consistent with a conserved role for SOX9 in vertebrate brain, skeletal, and gonadal development. In addition, SOX9 was expressed in the developing scrotum and mammary gland primordium regions of the tammar up to the time of birth. SOX9 protein was also detected in the developing Wolffian duct epithelium in the male mesonephros. These previously undescribed locations of SOX9 expression suggest that SOX9 may play additional roles in the differentiation of the marsupial reproductive system.
Collapse
Affiliation(s)
- Andrew J Pask
- Department of Zoology, The University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Pailhoux E, Parma P, Sundström J, Vigier B, Servel N, Kuopio T, Locatelli A, Pelliniemi LJ, Cotinot C. Time course of female-to-male sex reversal in 38,XX fetal and postnatal pigs. Dev Dyn 2001; 222:328-40. [PMID: 11747069 DOI: 10.1002/dvdy.1194] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an attempt to understand the etiology of intersexuality in pigs, we thoroughly analyzed the gonads of 38,XX (SRY negative) female to male sex-reversed animals at different developmental stages: during fetal life [50 and 70 days postcoitum (dpc)], just after birth [35 days postpartum (dpp)] and during adulthood. For each animal studied, we performed parallel histological and ultrastructural analyses on one gonad and RT-PCR analysis on the other gonad in order to define the expression profiles of sexually regulated genes: SOX9, 3beta-HSD, P450 aromatase, AMH, FOXL2, and Wnt4. Light and electron microscopic examination showed that testicular cords differentiated in XX sex-reversed gonads but were hypoplastic. Although the testicular cords contained gonia at the fetal stages, the germ cells had all died through apoptosis within a few weeks after birth. Ultrastructurally normal Leydig cells also differentiated, but later, and enclosed whorl-like residual bodies. At the fetal stages, three of the six genes studied in the intersex gonads presented, as early as 50 dpc, a modified expression profile corresponding to an elevated expression of SOX9 and the beginning of AMH and P450 aromatase gene transcription. In addition to genes involved in the testicular pathway, the same gonads expressed FOXL2, an ovarian-specific factor. The ovaries of true hermaphrodites were ineffective in ensuring correct folliculogenesis and presented abnormal expression profiles of ovarian specific genes after birth. These results indicate that the genes involved in this pathology act very early during gonadogenesis and affect the ovary-differentiating pathway with variable expressivity from ovarian germ cell depletion through to trans-differentiation into testicular structures.
Collapse
Affiliation(s)
- E Pailhoux
- Unité de Biologie du Développement et Biotechnologies, INRA, Jouy en Josas, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
McCoard SA, Wise TH, Fahrenkrug SC, Ford JJ. Temporal and spatial localization patterns of Gata4 during porcine gonadogenesis. Biol Reprod 2001; 65:366-74. [PMID: 11466202 DOI: 10.1095/biolreprod65.2.366] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The zinc finger transcription factor Gata4, is associated with gonadal development in many species. The present study characterizes temporal and spatial localization of Gata4 throughout gonadogenesis in porcine embryos. Immunohistochemical studies illustrated that Gata4 protein is present in the coelomic epithelium prior to histological differentiation of the nascent bipotential gonad, marking the future site of both XX and XY porcine gonads. Many somatic cells of both XX and XY bipotential gonads continue to retain Gata4 immunoreactivity throughout sexual differentiation and subsequent gonadal development. Testicular cords were evident by 26 days postcoitum. Gata4 was present in Sertoli cells, identified by virtue of coexpression with Müllerian inhibiting substance and also interstitial cells including Leydig cells throughout fetal and postnatal life. Many somatic cells of the differentiating ovary including follicular cells also contained Gata4 protein throughout fetal and postnatal life. Gata4 was not present in germ cells, endothelial cells, or other undifferentiated mesenchymal cells of both XX and XY gonads. A population of Gata4-positive cells in the dorsal mesentery was continuous with the coelomic epithelium of the gonad. This localization pattern led to the hypothesis that a subpopulation of somatic cells in the dorsal mesentery moves toward the gonad. An in vitro cell migration assay demonstrated that Gata4-positive cells preferentially migrate toward explanted gonadal tissue, and morphological features of the developing gonad supported this hypothesis. This study illustrates that Gata4 is a very early marker for gonad formation, highlights species differences in temporal and spatial localization patterns, and suggests a potential role for Gata4 in the development of both XX and XY porcine gonads. Further, we suggest that mesenchymal cells of the dorsal mesentery may provide a source of somatic cells that migrate and incorporate into the gonad and contribute to various somatic cell lineages. Overall, the spatial and temporal localization patterns of Gata4 during porcine gonadogenesis implies a much earlier and wider role for Gata4 than previously reported in other species.
Collapse
Affiliation(s)
- S A McCoard
- U.S. Department of Agriculture, Agricultural Research Service, RLH U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166, USA.
| | | | | | | |
Collapse
|
37
|
Veitia RA, Salas-Cortés L, Ottolenghi C, Pailhoux E, Cotinot C, Fellous M. Testis determination in mammals: more questions than answers. Mol Cell Endocrinol 2001; 179:3-16. [PMID: 11420125 DOI: 10.1016/s0303-7207(01)00460-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In humans, testis development depends on a regulated genetic hierarchy initiated by the Y-linked SRY gene. Failure of testicular determination results in the condition termed 46,XY gonadal dysgenesis (GD). Several components of the testis determining pathway have recently been identified though it has been difficult to articulate a cascade with the known elements of the system. It seems, however, that early gonadal development is the result of a network of interactions instead of the outcome of a linear cascade. Accumulating evidence shows that testis formation in man is sensitive to gene dosage. Haploinsufficiency of SF1, WT1 and SOX9 is responsible for 46,XY gonadal dysgenesis. Besides, data on SRY is consistent with possible dosage anomalies in certain cases of male to female sex reversal. 46,XY GD due to monosomy of distal 9p and 10q might also be associated with an insufficient gene dosage effect. Duplications of the locus DSS can lead to a failure of testicular development and a duplication of the region containing SOX9 has been implicated in XX sex reversal. Transgenic studies in mouse have shown, however, that this mammal is less sensitive to gene dosage than man. Here, we will try to put in place the known pieces of the jigsaw puzzle that is sex determination in mammals, as far as current knowledge obtained from man and animal models allows. We are certain that from this attempt more questions than answers will arise.
Collapse
Affiliation(s)
- R A Veitia
- Immunogénétique Humaine, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
38
|
Silversides DW, Pilon N, Behdjani R, Boyer A, Daneau I, Lussier J. Genetic manipulation of sex differentiation and phenotype in domestic animals. Theriogenology 2001; 55:51-63. [PMID: 11198088 DOI: 10.1016/s0093-691x(00)00445-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals, a gene based sex determination system ensures that approximately 50% of offspring will be of the male sex and 50% will be of the female sex. In domestic animal production systems, this ratio is not always ideal. Recent advances in our understanding of the molecular biology of sex determination and differentiation, as well as in the control of gene expression and the direct modification of animal genomes, allows us to consider methods for the direct genetic manipulation of sexual phenotype.
Collapse
Affiliation(s)
- D W Silversides
- Centre de recherche en reproduction animale (CRRA), Faculty of Veterinary Medicine, University of Montréal, St. Hyacinthe Québec, Canada J2S 7C6.
| | | | | | | | | | | |
Collapse
|