1
|
Lee SE, Lee HB, Yoon JW, Park HJ, Kim SH, Han DH, Lim ES, Kim EY, Park SP. Rapamycin treatment during prolonged in vitro maturation enhances the developmental competence of immature porcine oocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:905-919. [PMID: 39398303 PMCID: PMC11466741 DOI: 10.5187/jast.2023.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2024]
Abstract
Porcine oocytes undergo in vitro maturation (IVM) for 42-44 h. During this period, most oocytes proceed to metaphase and then to pro-metaphase if the nucleus has sufficiently matured. Forty-four hours is sufficient for oocyte nuclear maturation but not for full maturation of the oocyte cytoplasm. This study investigated the influences of extension of the IVM duration with rapamycin treatment on molecular maturation factors. The phospho-p44/42 mitogen-activated protein kinase (MAPK) level was enhanced in comparison with the total p44/42 MAPK level after 52 h of IVM. Oocytes were treated with and without 10 μM rapamycin (10 R and 0 R, respectively) and examined after 52 h of IVM, whereas control oocytes were examined after 44 h of IVM. Phospho-p44/42 MAPK activity was upregulated the 10 R and 0 R oocytes than in control oocytes. The expression levels of maternal genes were highest in 10 R oocytes and were higher in 0 R oocytes than in control oocytes. Reactive oxygen species (ROS) activity was dramatically increased in 0 R oocytes but was similar in 10 R and control oocytes. The 10 R group exhibited an increased embryo development rate, a higher total cell number per blastocyst, and decreased DNA fragmentation. The mRNA level of development-related (POU5F1 and NANOG) mRNA, oocyte-apoptotic (BCL2L1) genes were highest in 10 R blastocysts. These results suggest that prolonged IVM duration with rapamycin treatment represses ROS production and increases expression of molecular maturation factors. Therefore, this is a good strategy to enhance the developmental capacity in porcine oocytes.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Subtropical Livestock Research Institute,
National Institute of Animal Science, RDA, Jeju 63242,
Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Hyo-Jin Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Mirae Cell Bio, Seoul 04795,
Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Mirae Cell Bio, Seoul 04795,
Korea
- Department of Bio Medical Informatic,
College of Applied Life Sciences, Jeju National University,
Jeju 63242, Korea
| |
Collapse
|
2
|
Wang Y, Wang A, Liu H, Yang R, Zhang B, Tang B, Li Z, Zhang X. Vitamin C Improves Oocyte In Vitro Maturation and Potentially Changes Embryo Quality in Cattle. Vet Sci 2024; 11:372. [PMID: 39195826 PMCID: PMC11360740 DOI: 10.3390/vetsci11080372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
To obtain high-quality bovine oocytes, the effects of vitamin C (VC) on the IVM of bovine oocytes and early embryo development were investigated. The results showed the following. (1) The IVM medium containing 50 µg/mL VC improved the oocyte maturation rate but did not affect the parthenogenetic embryo development. (2) The IVC medium containing 20 µg/mL VC improved the cleavage rate of the IVF embryos and enhanced the mRNA transcriptions of pluripotency gene Oct4, Sox2, Cdx2, and Nanog in the blastocysts but had no effects on the blastocyst rate. (3) Combining supplementation of 50 µg/mL VC in IVM medium + 20 µg/mL VC in IVC medium (named as VC 50/20, similar hereinafter) elevated the cleavage rate of IVF embryos and enhanced the mRNA expressions of Oct4, Sox2, Cdx2, and Nanog in the blastocysts. (4) Combination of VC 0/20 and VC 50/20 enhanced the transcription of anti-apoptotic gene Bcl-2 and VC 50/0 weakened the transcription of pro-apoptotic gene Bax, while VC 0/40 and VC 0/60 increased Bax expression and diminished the Bcl-2/Bax ratio in blastocysts. Together, employing 50 µg/mL VC improves the IVM of bovine oocytes and combination of VC 50/20 potentially changes bovine embryo quality by enhancing the expressions of the pluripotency genes and regulating the expressions of apoptosis-related genes.
Collapse
Affiliation(s)
- Yueqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.W.); (A.W.); (H.L.); (R.Y.); (B.Z.); (B.T.)
| | - Aibing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.W.); (A.W.); (H.L.); (R.Y.); (B.Z.); (B.T.)
| | - Hongmei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.W.); (A.W.); (H.L.); (R.Y.); (B.Z.); (B.T.)
| | - Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.W.); (A.W.); (H.L.); (R.Y.); (B.Z.); (B.T.)
| | - Boyang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.W.); (A.W.); (H.L.); (R.Y.); (B.Z.); (B.T.)
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.W.); (A.W.); (H.L.); (R.Y.); (B.Z.); (B.T.)
| | - Ziyi Li
- First Hospital, Jilin University, Changchun 130021, China
| | - Xueming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.W.); (A.W.); (H.L.); (R.Y.); (B.Z.); (B.T.)
| |
Collapse
|
3
|
Marei WFA, Mohey-Elsaeed O, Pintelon I, Leroy JLMR. Risks of using mitoquinone during in vitro maturation and its potential protective effects against lipotoxicity-induced oocyte mitochondrial stress. J Assist Reprod Genet 2024; 41:371-383. [PMID: 38146030 PMCID: PMC10894804 DOI: 10.1007/s10815-023-02994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023] Open
Abstract
PURPOSE Oxidative stress and mitochondrial dysfunction play central roles in reduced oocyte quality and infertility in obese patients. Mitochondria-targeted treatments containing co-enzyme Q10 such as mitoquinone (MitoQ) can increase mitochondrial antioxidative capacity; however, their safety and efficiency when supplemented to oocytes under lipotoxic conditions have not been described. METHODS We tested the effect of different concentrations of MitoQ or its cationic carrier (TPP) (0, 0.1, 0.5, 1.0 μM each) during bovine oocyte IVM. Then, we tested the protective capacity of MitoQ (0.1 μM) against palmitic acid (PA)-induced lipotoxicity and mitochondrial dysfunction in oocytes. RESULTS Exposure to MitoQ, or TPP only, at 1 μM significantly (P<0.05) reduced oocyte mitochondrial inner membrane potential (JC-1 staining) and resulted in reduced cleavage and blastocyst rates compared with solvent control. Lower concentrations of MitoQ or TPP had no effects on embryo development under control (PA-free) conditions. As expected, PA increased the levels of MMP and ROS in oocytes (CellROX staining) and reduced cleavage and blastocyst rates compared with the controls (P<0.05). These negative effects were ameliorated by 0.1 μM MitoQ. In contrast, 0.1 μM TPP alone had no protective effects. MitoQ also normalized the expression of HSP10 and TFAM, and partially normalized HSP60 in the produced blastocysts, indicating at least a partial alleviation of PA-induced mitochondrial stress. CONCLUSION Oocyte exposure to MitoQ may disturb mitochondrial bioenergetic functions and developmental capacity due to a TPP-induced cationic overload. A fine-tuned concentration of MitoQ can protect against lipotoxicity-induced mitochondrial stress during IVM and restore developmental competence and embryo quality.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Omnia Mohey-Elsaeed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Navid S, Saadatian Z, Talebi A. Assessment of developmental rate of mouse embryos yielded from in vitro fertilization of the oocyte with treatment of melatonin and vitamin C simultaneously. BMC Womens Health 2023; 23:525. [PMID: 37794412 PMCID: PMC10552323 DOI: 10.1186/s12905-023-02673-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND In recent decades, in vitro fertilization (IVF) has been widely used as a method of assisted reproductive technology (ART) to improve fertility in individuals. To be more successful in this laboratory method, we used the presence of two common types of antioxidants (melatonin and vitamin C) simultaneously and exclusively in IVF medium. METHODS The cumulus-oocyte complexes (COCs) were obtained from Gonadotropin-releasing hormone (GnRH) and Human Chorionic Gonadotropin (HMG) -stimulated mice. Subsequently, metaphase II (MII) oocytes were fertilized in vitro. In the experiment, the IVF medium was randomly divided into two equal groups: The control group did not receive any antioxidants. In the treatment group, 100 µM melatonin and 5 mM vitamin C were added to the IVF medium. Finally, oocytes and putative embryos transferred into developmental medium and cultured 120 h after IVF to the blastocyst stage. After and before IVF, oocytes and putative embryos were stained with dichlorodihydrofluorescein diacetate (DCFDA) and the H2O2 level was measured with an inverted fluorescence microscope using ImageJ software. At the end of the fifth day after IVF, the expression of Bax and B cell lymphoma 2 (Bcl2) was evaluated using real-time PCR. RESULTS The levels of reactive oxygen species (ROS) in oocytes and putative embryos observed in the treatment group demonstrated a significant reduce compared to the control group (p ≤ 0.01. (.Furthermore, the number of embryos in the blastocycte stage(P < 0.05), the expression level of the Bcl2 (P < 0.05) gene, the Bax unlike gene, significantly increased compared with the control group. CONCLUSION We conclude that the presence of melatonin and vitamin C antioxidants simultaneously and exclusively in the IVF medium leads to a reduction in ROS and ,as a result, improves the growth of the embryo up to the blastocyst stage.
Collapse
Affiliation(s)
- Shadan Navid
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Sexual Health and Fertility Research Center , Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
5
|
Jeong JY, Cai L, Kim M, Choi H, Oh D, Jawad A, Kim S, Zheng H, Lee E, Lee J, Hyun SH. Antioxidant effect of ergothioneine on in vitro maturation of porcine oocytes. J Vet Sci 2023; 24:e24. [PMID: 37012032 PMCID: PMC10071278 DOI: 10.4142/jvs.22204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine. OBJECTIVES This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF). METHODS Each EGT concentration (0, 10, 50, and 100 µM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF. RESULTS After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 µM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 µM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 µM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group. CONCLUSIONS Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.
Collapse
Affiliation(s)
- Ji-Young Jeong
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju 28644, Korea
| | - Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Ali Jawad
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Sohee Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Haomiao Zheng
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
6
|
Park A, Oh HJ, Ji K, Choi EM, Kim D, Kim E, Kim MK. Effect of Passage Number of Conditioned Medium Collected from Equine Amniotic Fluid Mesenchymal Stem Cells: Porcine Oocyte Maturation and Embryo Development. Int J Mol Sci 2022; 23:ijms23126569. [PMID: 35743012 PMCID: PMC9224282 DOI: 10.3390/ijms23126569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Oocyte in vitro maturation (IVM) is the most important first step in in vitro embryo production. One prerequisite for the success of IVM in oocytes is to provide a rich culture microenvironment that meets the nutritional needs of developing oocytes. We applied different equine amniotic fluid mesenchymal stem cell conditioned medium (eAFMSC-CM) from passages 7, 18, and 27 to porcine oocytes during IVM to determine its effects on oocyte development and subsequent embryo development, specifically. The eAFMSC-CM from passage 7 (eAFMSC-CMp7) has a considerable impact on 9 genes: BAX, BCL2, SOD2, NRF2, TNFAIP6, PTGS2, HAS2, Cx37, and Cx43, which are associated with cumulus cell mediated oocyte maturation. GSH levels and distribution of mitochondrial and cortical granules were significantly increased in oocytes incubated with eAFMSC-CMp7. In addition, catalase and superoxide dismutase activities were high after IVM 44 h with eAFMSC-CMp7. After in vitro fertilization, blastocyst quality was significantly increased in the eAFMSC-CMp7 group compared to control. Lastly, the antioxidant effect of eAFMSC-CMp7 substantially regulated the expression of apoptosis, pluripotency related genes and decreased autophagy activity in blastocysts. Taken together, this study demonstrated that the eAFMSC-CMp7 enhanced the cytoplasmic maturation of oocytes and subsequent embryonic development by generating high antioxidant activity.
Collapse
Affiliation(s)
- Ahyoung Park
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Hyun Ju Oh
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Kukbin Ji
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Eunha Miri Choi
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Dongern Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
| | - Eunyoung Kim
- MK Biotech Inc., 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Min Kyu Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (A.P.); (H.J.O.); (K.J.); (E.M.C.); (D.K.)
- MK Biotech Inc., 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-042-821-5773
| |
Collapse
|
7
|
Yousefian I, Zare-Shahneh A, Goodarzi A, Baghshahi H, Fouladi-Nashta AA. The effect of Tempo and MitoTEMPO on oocyte maturation and subsequent embryo development in bovine model. Theriogenology 2021; 176:128-136. [PMID: 34607131 DOI: 10.1016/j.theriogenology.2021.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) are one of the factors which reduces oocyte quality and viability of the in vitro produced embryos. Oocyte mitochondria are the major source of ROS production, hence, and the addition of mitochondrion-specific antioxidants could be suggested to minimize the damage caused by ROS during culture. MitoTEMPO, a targeted mitochondrial antioxidant, is formed by conjugating TEMPO to triphenylphosphonium and has an activity like that of superoxide dismutase. It can pass through lipid bilayers easily and accumulate selectively in mitochondria. The goal of this study was to investigate the effects of MitoTEMPO and its non-targeted form, TEMPO, on the developmental competence of bovine oocytes. Accordingly, oocytes were cultured in maturation medium supplemented with either five mM TEMPO (T5) or one μM MitoTEMPO (M1), or T5 + M1 (MT15), or without the antioxidants (C). Nuclear maturation to metaphase II (MII) stage, intracellular glutathione (GSH) content and ROS levels in matured oocytes were analyzed. In addition, cleavage after in vitro fertilization, and blastocyst rates, total cell number in blastocysts as well as the relative abundance of apoptosis-related genes (BAX and BCL2) in blastocysts were determined. Results revealed that the proportion of oocytes at the MII stage, embryos at the blastocyst stage and total cell number in blastocysts increased significantly in the M1 group compared to the C and T5 groups. The levels of intracellular GSH and ROS in oocytes decreased in the M1 group than in the C group (P < 0.05). The expression level of the pro-apoptotic gene (BAX) reduced in blastocysts from the M1 group in comparison to the C and T5 groups (P < 0.05). On the other hand, the expression level of anti-apoptotic gene (BCL2) in obtained blastocysts was not affected by TEMPO and MitoTEMPO. However, the ratio of BAX/BCL2 in blastocysts from the M1 and MT15 groups decreased significantly compared to the C group. These findings suggest that MitoTEMPO can mitigate the adverse effects of oxidative stress on the developmental competence of bovine oocytes.
Collapse
Affiliation(s)
- I Yousefian
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - A Zare-Shahneh
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - A Goodarzi
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - H Baghshahi
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - A A Fouladi-Nashta
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Campus, UK
| |
Collapse
|
8
|
Namula Z, Sato Y, Wittayarat M, Le QA, Nguyen NT, Lin Q, Hirata M, Tanihara F, Otoi T. Curcumin supplementation in the maturation medium improves the maturation, fertilisation and developmental competence of porcine oocytes. Acta Vet Hung 2020; 68:298-304. [PMID: 33221737 DOI: 10.1556/004.2020.00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/21/2020] [Indexed: 01/14/2023]
Abstract
This study was conducted to determine the effects of supplementing the maturation medium with the antioxidant curcumin on the in vitro maturation (IVM), fertilisation and development of porcine oocytes. Curcumin supplementation was performed at concentrations of 0, 5, 10, 20, and 40 µM. At concentrations of 5-20 µM, curcumin had significant positive effects (P < 0.05) on maturation and fertilisation rates compared to the non-treated group. Of the groups cultured with 5-20 µM curcumin, the number of oocytes with DNA-fragmented nuclei after IVM was significantly lower than in groups matured without curcumin. Moreover, curcumin supplementation at 10 µM also gave a significantly higher rate of blastocyst formation compared with oocytes matured without curcumin. Increasing the curcumin concentration to 40 µM yielded negative effects on fertilisation and embryonic development compared with the groups treated with lower concentrations of curcumin. Supplementation with 10 µM curcumin had beneficial effects on the oocyte maturation rate and DNA fragmentation index compared to the non-treated group both in the presence and absence of hydrogen peroxide. These results indicate that curcumin supplementation at a suitable concentration (10 µM) is potentially useful for porcine oocyte culture systems, in terms of protecting oocytes from various forms of oxidative stress.
Collapse
Affiliation(s)
- Zhao Namula
- 1Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
- 4Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yoko Sato
- 2School of Biological Science, Tokai University, Sapporo, Hokkaido 005-8601, Japan
| | - Manita Wittayarat
- 3Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Quynh Anh Le
- 4Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Nhien Thi Nguyen
- 4Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Qingyi Lin
- 1Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
| | - Maki Hirata
- 1Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
- 4Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- 1Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
- 4Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- 1Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
- 4Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
9
|
Chen M, Liu W, Li Z, Xiao W. Effect of epigallocatechin-3-gallate (EGCG) on embryos inseminated with oxidative stress-induced DNA damage sperm. Syst Biol Reprod Med 2020; 66:244-254. [PMID: 32427532 DOI: 10.1080/19396368.2020.1756525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023]
Abstract
UNLABELLED Cryopreservation can induce damage in human spermatozoa through reactive oxygen species (ROS) generation. To reduce the potential risk of oxidative stress-induced sperm DNA damage, addition of different epigallocatechin-3-gallate (EGCG) concentrations were performed to determine the optimum concentration which was beneficial for IVF outcome for both fresh and frozen-thawed sperm. Next, the mouse sperm model exhibiting oxidative stress-induced DNA damage by exogenously treating with H2O2 but overcoming the low fertilization rate of frozen-thawed sperm was used to investigate the effect of EGCG on the embryonic development and the potential EGCG-mediated effects on ataxia telangiectasia mutated (ATM) pSer-1981 in zygotes, the latter was known for leading to the activation of major kinases involved in the DNA repair pathway and the cell cycle checkpoint pathway. We found the fertilization and embryonic development of embryos inseminated with frozen-thawed sperm was impaired compared to fresh sperm. EGCG promoted the development of embryos inseminated with both types of sperm at optimum concentration. In embryos inseminated with the H2O2 sperm, fertilization, embryonic development, and the time at which the cleavage rate of one-cell embryos reached ≥95% were not affected by EGCG treatment. However, the EGCG-treated group required less time to achieve 50% cleavage rate of one-cell embryos, and the EGCG-treated zygotes showed enhanced expression of ATM (pSer-1981) than the untreated group. EGCG at optimum concentrations may exert beneficial effects by modulating the ATM activation and moving up the time to enter into mitotic (M) phase. ABBREVIATIONS ROS: reactive oxygen species; EGCG: epigallocatechin-3-gallate; ATM: ataxia telangiectasia mutated; M: mitotic.
Collapse
Affiliation(s)
- Man Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Wanmin Liu
- Department of Gynecology, The Jiangmen Central Hospital , Jiangmen, China
| | - Zhiling Li
- Reproductive Medicine Center, The First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Wanfen Xiao
- Reproductive Medicine Center, The First Affiliated Hospital of Shantou University Medical College , Shantou, China
| |
Collapse
|
10
|
In vitro Production of Porcine Embryos: Current Status and Possibilities – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This paper presents the current possibilities, state of knowledge and prospects of in vitro production (IVP) of pig embryos, which consists of in vitro oocyte maturation, in vitro fertilization and in vitro embryo culture. In pigs, oocyte maturation is one of the most important stages in the embryo IVP process. It determines the oocyte’s fertilization ability as well as its embryonic development. Through many research studies of the proper selection of oocytes and appropriate maturation medium composition (especially the addition of various supplements), the in vitro maturation of pig oocytes has been significantly improved. Recent studies have demonstrated that modifications of the diluents and in vitro fertilization media can reduce polyspermy. Furthermore, several adjustments of the porcine culture media with the addition of some supplements have enhanced the embryo quality and developmental competence. These updates show the progress of IVP in pigs that has been achieved; however, many problems remain unsolved.
Collapse
|
11
|
Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res Vet Sci 2020; 132:342-350. [PMID: 32738731 DOI: 10.1016/j.rvsc.2020.07.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Producing high-competent oocytes during the in vitro maturation (IVM) is considered a key step for the success of the in vitro production (IVP) of embryos. One of the known disruptors of oocyte developmental competence on IVP is oxidative stress (OS), which appears due to the imbalance between the production and neutralization of reactive oxygen species (ROS). The in vitro conditions induce supraphysiological ROS levels due to the exposure to an oxidative environment and the isolation of the oocyte from the follicle protective antioxidant milieu. In juvenile in vitro embryo transfer (JIVET), which aims to produce embryos from prepubertal females, the oocytes are more sensitive to OS as they have inherent lower quality. Therefore, the IVM strategies that aim to prevent OS have great interest for both IVP and JIVET programs. The focus of this review is on the effects of ROS on oocyte IVM and the main antioxidants that have been tested for protecting the oocyte from OS. Considering the importance that OS has on oocyte competence, it is crucial to create standardized antioxidant IVM systems for improving the overall IVP success.
Collapse
|
12
|
Spinaci M, Nerozzi C, Tamanini CL, Bucci D, Galeati G. Glyphosate and its formulation Roundup impair pig oocyte maturation. Sci Rep 2020; 10:12007. [PMID: 32686734 PMCID: PMC7371730 DOI: 10.1038/s41598-020-68813-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022] Open
Abstract
Glyphosate, formulated as glyphosate-based herbicides (GBHs) including the best-known formulation Roundup, is the world's most widely used herbicide. During the last years, the growing and widespread use of GBHs has raised a great concern about the impact of environmental contamination on animal and human health including potential effect on reproductive systems. Using an in vitro model of pig oocyte maturation, we examined the biological impact of both glyphosate and Roundup on female gamete evaluating nuclear maturation, cytoplasmic maturation and developmental competence of oocytes, steroidogenic activity of cumulus cells as well as intracellular levels of glutathione (GSH) and ROS of oocytes. Our results indicate that although exposure to glyphosate and Roundup during in vitro maturation does not affect nuclear maturation and embryo cleavage, it does impair oocyte developmental competence in terms of blastocyst rate and cellularity. Moreover, Roundup at the same glyphosate-equivalent concentrations was shown to be more toxic than pure glyphosate, altering steroidogenesis and increasing oocyte ROS levels, thus confirming that Roundup adjuvants enhance glyphosate toxic effects and/or are biologically active in their side-effect and therefore should be considered and tested as active ingredients.
Collapse
Affiliation(s)
- Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy.
| | - Chiara Nerozzi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Car Lo Tamanini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Giovanna Galeati
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
13
|
Improve the developmental competence of porcine oocytes from small antral follicles by pre-maturation culture method. Theriogenology 2020; 149:139-148. [PMID: 32272343 DOI: 10.1016/j.theriogenology.2020.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 11/24/2022]
Abstract
The oocytes from small antral follicle have low developmental potential to reach blastocyst due to incomplete cytoplasmic maturation during in vitro maturation (IVM). Thus, we developed an in vitro culture system for porcine oocytes derived from small antral follicles with l-ascorbic acid supplement during pre-maturation (pre-IVM) to support their development to blastocyst stage. Besides that, how l-ascorbic acid effect on the developmental competence of porcine oocytes with a special focus on histone modifications will be elucidated. The in vitro culture process consisted of two steps. The first step is 22 h of pre-IVM and the second step is 42 h of IVM. We utilized dibutyryl-cyclicAMP (dbcAMP) with L-ascorbic supplement during pre-IVM. Based on the result of this procedure, we proposed that the best culture condition in which hormone human chorionic gonadotropin (hCG) be added during the last 7 h of pre-IVM and continued culture to complete IVM. We observed that, in this culture system, the meiotic competence of porcine oocytes derived from small follicles was as high as those derived from large follicles after undergoing IVM. In addition, our study suggested that l-ascorbic acid supplementation at 100 μg/mL sharply enhanced the developmental potential of porcine oocytes. Interestingly, oocytes from small antral follicles treated with l-ascorbic acid could obtain the blastocyst quantity and quality as high as that of large antral follicles. The treated groups showed a significantly higher number of blastomeres compared to those in non-treated groups in both small and large follicle groups. Besides that, = The increasing levels of acetylation of histone H3 at lysine 9 (H3K9) and methylation of histone H3 at lysine 4 (H3K4) in blastocyst derived from small and large antral follicle under the present of l-ascrobic acid lead to a significant positive effect on the developmental competence and improvement in quality of porcine embryos.
Collapse
|
14
|
A polyphenol-rich extract from an oenological oak-derived tannin influences in vitro maturation of porcine oocytes. Theriogenology 2019; 129:82-89. [PMID: 30826721 DOI: 10.1016/j.theriogenology.2019.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022]
Abstract
Tannins have been demonstrated to have antioxidant and various health benefit properties. The aim of this study was to determine the effect of an ethanol extract (TRE) of a commercial oenological tannin (Quercus robur toasted oak wood, Tan'Activ R®) on female gamete using an in vitro model of pig oocyte maturation (IVM) and examining nuclear maturation, cytoplasmic maturation, intracellular GSH and ROS levels and cumulus cell steroidogenesis. To this aim, during IVM performed in medium either supplemented (IVM A) or not supplemented (IVM B) with cysteine and β-mercaptoethanol, TRE was added at different concentrations (0, 1, 5, 10, 20 μg/ml). The addition of TRE at all the concentration tested to either IVM A or IVM B, did not influence oocyte nuclear maturation. When IVM was performed in IVM A, no effect was induced on cytoplasmic maturation by TRE at the concentration of 1, 5 and 10 μg/ml, while TRE 20 μg/ml significantly reduced the penetration rate after IVF (p < 0.05) and the blastocyst rate after parthenogenetic activation (p < 0.01). Oocyte maturation in IVM B, compared to IVM A group, decreased GSH (p < 0.001) and increased ROS (p < 0.01) intracellular levels and in turn impaired oocyte cytoplasmic maturation reducing the ability to sustain male pronuclear formation after IVM (p < 0.001) and the developmental competence after parthenogenetic activation (p < 0.001). TRE supplementation to IVM B significantly reduced ROS production (5, 10, 20 μg/ml TRE) to levels similar to IVM A group, and increased GSH levels (10, 20 μg/ml TRE) compared to IVM B (p < 0.05) without reaching those of IVM A group. TRE supplementation to IVM B at the concentrations of 1, 5 and 10 μg/ml significantly improved (p < 0.001) oocyte cytoplasmic maturation enhancing the ability to sustain male pronuclear formation without reaching, however, IVM A group levels. TRE addition at all the concentration tested to both IVM A and IVM B, did not induce any effect on E2 and P4 secretion by cumulus cells suggesting that the biological effect of the ethanol extract is not exerted thought a modulation of cumulus cell steroidogenesis. In conclusion, TRE, thanks to its antioxidant activity, was partially able to reduce the negative effect of the absence of cysteine and β-mercaptoethanol in IVM B, while TRE at high concentration in IVM A was detrimental for oocyte cytoplasmic maturation underlying the importance of maintaining a balanced redox environment during oocyte maturation.
Collapse
|
15
|
Nohalez A, Martinez C, Parrilla I, Roca J, Gil M, Rodriguez-Martinez H, Martinez E, Cuello C. Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology 2018; 113:113-119. [DOI: 10.1016/j.theriogenology.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 01/30/2023]
|
16
|
Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes. Sci Rep 2018; 8:6132. [PMID: 29666467 PMCID: PMC5904140 DOI: 10.1038/s41598-018-24395-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
L-ascorbic acid (Vitamin C) can enhance the meiotic maturation and developmental competence of porcine oocytes, but the underlying molecular mechanism remains obscure. Here we show the role of ascorbic acid in regulating epigenetic status of both nucleic acids and chromatin to promote oocyte maturation and development in pigs. Supplementation of 250 μM L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AA2P) during in vitro maturation significantly enhanced the nuclear maturation (as indicated by higher rate of first polar body extrusion and increased Bmp15 mRNA level), reduced level of reactive oxygen species, and promoted developmental potency (higher cleavage and blastocyst rates of parthenotes, and decreased Bax and Caspase3 mRNA levels in blastocysts) of pig oocytes. AA2P treatment caused methylation erasure in mature oocytes on nucleic acids (5-methylcytosine (5 mC) and N 6 -methyladenosine (m6A)) and histones (Histone H3 trimethylations at lysines 27, H3K27me3), but establishment of histone H3 trimethylations at lysines 4 (H3K4me3) and 36 (H3K36me3). During the global methylation reprogramming process, levels of TET2 (mRNA and protein) and Dnmt3b (mRNA) were significantly elevated, but simultaneously DNMT3A (mRNA and protein), and also Hif-1α, Hif-2α, Tet3, Mettl14, Kdm5b and Eed (mRNA) were significantly inhibited. Our findings support that ascorbic acid can reprogram the methylation status of not only DNA and histone, but also RNA, to improve pig oocyte maturation and developmental competence.
Collapse
|
17
|
Khazaei M, Aghaz F. Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2017; 11:63-70. [PMID: 28670422 PMCID: PMC5347452 DOI: 10.22074/ijfs.2017.4995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/09/2016] [Indexed: 11/04/2022]
Abstract
In vitro maturation (IVM) is emerging as a popular technology at the forefront of fertility treatment and preservation. However, standard in vitro culture (IVC) conditions usually increase reactive oxygen species (ROS), which have been implicated as one of the major causes for reduced embryonic development. It is well-known that higher than physiological levels of ROS trigger granulosa cell apoptosis and thereby reduce the transfer of nutrients and survival factors to oocytes, which leads to apoptosis. ROS are neutralized by an elaborate defense system that consists of enzymatic and non-enzymatic antioxidants. The balance between ROS levels and antioxidants within IVM media are important for maintenance of oocytes that develop to the blastocyst stage. The effects of antioxidant supplementation of IVM media have been studied in various mammalian species. Therefore, this article reviews and summarizes the effects of ROS on oocyte quality and the use of antioxidant supplementations for IVM, in addition to its effects on maturation rates and further embryo development.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Aghaz
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
GOEL PUJA, GOEL AK, BHATIA AK, KHARCHE SD. Influence of exogenous supplementation of IGF-I, cysteamine and their combination on in vitro caprine blastocyst development. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i2.67707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The present study was carried out to investigate the putative beneficial effects of insulin-like growth factor-I (IGF-I) and cysteamine supplementation alone or their combination on in vitro embryo development competence of fertilized goat oocytes. Presumptive zygotes (18 h post insemination) were randomly assigned for in vitro embryo development in embryo development medium (EDM) supplemented with IGF-I (Gr. 1), Cysteamine (Gr. 2), IGF- I + Cysteamine (Gr. 3) and Control containing only EDM (Gr. 4). Statistically non-significant difference was observed in cleavage rate among all the treated groups. Morula formation rate was significantly higher in IGF-I supplemented group compared to IGF-I + cysteamine supplemented and non-supplemented (control) groups. Furthermore, supplementation of IGF-I, cysteamine and IGF-I + cysteamine in embryo culture medium significantly improved blastocyst formation rate compared to control. However, a nonsignificant difference in blastocyst formation was observed among the supplemented groups. These findings lead to the conclusion that under in vitro conditions, supplementation of IGF-I and cysteamine alone or combination in IVC media were equally effective in embryo development and blastocyst production, however, this effect was significantly higher as compared to non- supplemented group (control).
Collapse
|
19
|
Astaxanthin present in the maturation medium reduces negative effects of heat shock on the developmental competence of porcine oocytes. Reprod Biol 2015; 15:86-93. [DOI: 10.1016/j.repbio.2015.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 01/10/2015] [Accepted: 01/18/2015] [Indexed: 11/24/2022]
|
20
|
Mallol A, Santaló J, Ibáñez E. Improved development of somatic cell cloned mouse embryos by vitamin C and latrunculin A. PLoS One 2015; 10:e0120033. [PMID: 25749170 PMCID: PMC4352067 DOI: 10.1371/journal.pone.0120033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022] Open
Abstract
Impaired development of embryos produced by somatic cell nuclear transfer (SCNT) is mostly associated with faulty reprogramming of the somatic nucleus to a totipotent state and can be improved by treatment with epigenetic modifiers. Here we report that addition of 100 μM vitamin C (VitC) to embryo culture medium for at least 16 h post-activation significantly increases mouse blastocyst formation and, when combined with the use of latrunculin A (LatA) during micromanipulation and activation procedures, also development to term. In spite of this, no significant effects on pluripotency (OCT4 and NANOG) or nuclear reprogramming markers (H3K14 acetylation, H3K9 methylation and DNA methylation and hydroxymethylation) could be detected. The use of LatA alone significantly improved in vitro development, but not full-term development. On the other hand, the simultaneous treatment of cloned embryos with VitC and the histone deacetylase inhibitor psammaplin A (PsA), in combination with the use of LatA, resulted in cloning efficiencies equivalent to those of VitC or PsA treatments alone, and the effects on pluripotency and nuclear reprogramming markers were less evident than when only the PsA treatment was applied. These results suggest that although both epigenetic modifiers improve cloning efficiencies, possibly through different mechanisms, they do not show an additive effect when combined. Improvement of SCNT efficiency is essential for its applications in reproductive and therapeutic cloning, and identification of molecules which increase this efficiency should facilitate studies on the mechanism of nuclear reprogramming and acquisition of totipotency.
Collapse
Affiliation(s)
- Anna Mallol
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Santaló
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elena Ibáñez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail:
| |
Collapse
|
21
|
Zhang JY, Jiang Y, Lin T, Kang JW, Lee JE, Jin DI. Lysophosphatidic acid improves porcine oocyte maturation and embryo development in vitro. Mol Reprod Dev 2015; 82:66-77. [DOI: 10.1002/mrd.22447] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Yu Zhang
- Department of Animal Science & Biotechnology; Research Center for Transgenic Cloned Pigs; Chungnam National University; Daejeon Korea
| | - Yong Jiang
- Department of Biochemistry and Molecular Biology; Medical University of South Carolina; Charleston South Carolina
| | - Tao Lin
- Department of Animal Science & Biotechnology; Research Center for Transgenic Cloned Pigs; Chungnam National University; Daejeon Korea
| | - Jung Won Kang
- Department of Animal Science & Biotechnology; Research Center for Transgenic Cloned Pigs; Chungnam National University; Daejeon Korea
| | - Jae Eun Lee
- Department of Animal Science & Biotechnology; Research Center for Transgenic Cloned Pigs; Chungnam National University; Daejeon Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology; Research Center for Transgenic Cloned Pigs; Chungnam National University; Daejeon Korea
| |
Collapse
|
22
|
Alvarez GM, Morado SA, Soto MP, Dalvit GC, Cetica PD. The control of reactive oxygen species influences porcine oocyte in vitro maturation. Reprod Domest Anim 2014; 50:200-205. [PMID: 25522082 DOI: 10.1111/rda.12469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
Abstract
The aim of this study was to examine the effect of varying intracellular reactive oxygen species (ROS) levels during oocyte in vitro maturation with enzymatic ROS production systems (xanthine + xanthine oxidase or xanthine + xanthine oxidase + catalase), scavenger systems (catalase or superoxide dismutase + catalase) or cysteine on porcine oocyte maturation. Oocyte ROS levels showed an increase when H2O2 or O2∙(-) production systems were added to the culture medium (p < 0.05). On the other hand, the presence of ROS scavengers in the maturation medium did not modify oocyte ROS levels compared with the control after 48 h of maturation, but the addition of cysteine induced a decrease in oocyte ROS levels (p < 0.05). The ROS production systems used in this work did not modified the percentage of oocyte nuclear maturation, but increased the decondensation of sperm head (p < 0.05) and decreased the pronuclear formation (p < 0.05). In turn, the addition of O2∙(-) and H2O2 scavenging systems during in vitro maturation did not modify the percentage of oocytes reaching metaphase II nor the oocytes with decondensed sperm head or pronuclei after fertilization. However, both parameters increased in the presence of cysteine (p < 0.05). The exogenous generation of O2∙(-) and H2O2 during oocyte in vitro maturation would not affect nuclear maturation or later sperm penetration, but most of the spermatozoa cannot progress to form the pronuclei after fusion with the oocyte. The decrease in endogenous ROS levels by the addition of cysteine would improve pronuclear formation after sperm penetration.
Collapse
Affiliation(s)
- G M Alvarez
- Area of Biochemistry, INITRA (Institute of Research and Technology in Animal Reproduction), Executing Unit INPA (Research in Animal Production) UBA-CONICET, School of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - S A Morado
- Area of Biochemistry, INITRA (Institute of Research and Technology in Animal Reproduction), Executing Unit INPA (Research in Animal Production) UBA-CONICET, School of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - M P Soto
- Area of Biochemistry, INITRA (Institute of Research and Technology in Animal Reproduction), Executing Unit INPA (Research in Animal Production) UBA-CONICET, School of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - G C Dalvit
- Area of Biochemistry, INITRA (Institute of Research and Technology in Animal Reproduction), Executing Unit INPA (Research in Animal Production) UBA-CONICET, School of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - P D Cetica
- Area of Biochemistry, INITRA (Institute of Research and Technology in Animal Reproduction), Executing Unit INPA (Research in Animal Production) UBA-CONICET, School of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Do LTK, Namula Z, Luu VV, Sato Y, Taniguchi M, Isobe T, Kikuchi K, Otoi T. Effect of Sericin Supplementation DuringIn VitroMaturation on the Maturation, Fertilization and Development of Porcine Oocytes. Reprod Domest Anim 2014; 49:e17-20. [DOI: 10.1111/rda.12274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
Affiliation(s)
- LTK Do
- Laboratory of Animal Reproduction; The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - Z Namula
- Laboratory of Animal Reproduction; The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - VV Luu
- Laboratory of Animal Reproduction; The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - Y Sato
- Laboratory of Animal Reproduction; The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - M Taniguchi
- Laboratory of Animal Reproduction; The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - T Isobe
- Cattle Breeding Development Institute; Kagoshima Prefecture; Kagoshima Japan
| | - K Kikuchi
- Genetic Diversity Department; National Institute of Agrobiological Sciences; Tsukuba Japan
| | - T Otoi
- Laboratory of Animal Reproduction; The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| |
Collapse
|
24
|
Morado S, Cetica P, Beconi M, Thompson JG, Dalvit G. Reactive oxygen species production and redox state in parthenogenetic and sperm-mediated bovine oocyte activation. Reproduction 2013; 145:471-8. [DOI: 10.1530/rep-13-0017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The knowledge concerning redox and reactive oxygen species (ROS)-mediated regulation of early embryo development is scarce and remains controversial. The aim of this work was to determine ROS production and redox state during early in vitro embryo development in sperm-mediated and parthenogenetic activation of bovine oocytes. Sperm-mediated oocyte activation was carried out in IVF-modified synthetic oviductal fluid (mSOF) with frozen–thawed semen. Parthenogenetic activation was performed in TALP plus ionomycin and then in IVF-mSOF with 6-dimethylaminopurine plus cytochalasin B. Embryos were cultured in IVF-mSOF. ROS and redox state were determined at each 2-h interval (7–24 h from activation) by 2′,7′-dichlorodihydrofluorescein diacetate and RedoxSensor Red CC-1 fluorochromes respectively. ROS levels and redox state differed between activated and non-activated oocytes (P<0.05 by ANOVA). In sperm-activated oocytes, an increase was observed between 15 and 19 h (P<0.05). Conversely, in parthenogenetically activated oocytes, we observed a decrease at 9 h (P<0.05). In sperm-activated oocytes, ROS fluctuated throughout the 24 h, presenting peaks around 7, 19, and 24 h (P<0.05), while in parthenogenetic activation, peaks were detected at 7, 11, and 17 h (P<0.05). In the present work, we found clear distinctive metabolic patterns between normal and parthenogenetic zygotes. Oxidative activity and ROS production are an integral part of bovine zygote behavior, and defining a temporal pattern of change may be linked with developmental competence.
Collapse
|
25
|
Kang JT, Kwon DK, Park SJ, Kim SJ, Moon JH, Koo OJ, Jang G, Lee BC. Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels. J Vet Sci 2013; 14:15-20. [PMID: 23388446 PMCID: PMC3615227 DOI: 10.4142/jvs.2013.14.1.15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/04/2012] [Indexed: 11/22/2022] Open
Abstract
Quercetin is a plant-derived flavonoid found in fruits or vegetables that has antioxidant properties and acts as a free radical scavenger. We investigated the effects of quercetin on porcine oocyte nuclear maturation and embryonic development after parthenogenetic activation. We then evaluated the antioxidant activities of quercetin by measuring reactive oxygen species (ROS) levels in matured oocytes. Immature oocytes were untreated or treated with 1, 10, and 50 µg/mL quercetin during in vitro maturation (IVM). Quercetin treatment did not improve oocyte nuclear maturation, but significantly higher blastocyst rates (p < 0.05) of parthenogenetically activated oocytes were achieved when the IVM medium was supplemented with an adequate concentration of quercetin (1 µg/mL). However, cleavage rates and blastocyst cell numbers were not affected. Oocytes treated with 1 or 10 µg/mL quercetin had significantly lower (p < 0.05) levels of ROS than the control and group treated with the highest concentration of quercetin (50 µg/mL). Moreover, this highest concentration was detrimental to oocyte nuclear maturation and blastocyst formation. Based on our findings, we concluded that exogenous quercetin reduces ROS levels during oocyte maturation and is beneficial for subsequent embryo development.
Collapse
Affiliation(s)
- Jung-Taek Kang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kere M, Siriboon C, Lo NW, Nguyen NT, Ju JC. Ascorbic acid improves the developmental competence of porcine oocytes after parthenogenetic activation and somatic cell nuclear transplantation. J Reprod Dev 2012; 59:78-84. [PMID: 23154385 PMCID: PMC3943238 DOI: 10.1262/jrd.2012-114] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study, a dose-response assessment was performed to understand the relation
between supplementation of media with L-ascorbic acid or vitamin C and porcine oocyte
maturation and the in vitro development of parthenotes (PA) and handmade
cloned (HMC) embryos. Various concentrations (0, 25, 50 and 100 µg/ml) of vitamin C
supplemented in in vitro maturation (IVM) and culture (IVC) media were
tested. None of these vitamin C additions affected nuclear maturation of oocytes, yet
supplementation at 50 µg/ml led to significantly increased intracellular glutathione (GSH)
levels and reduced reactive oxygen species (ROS). When cultured in IVM- and/or
IVC-supplemented media, the group supplemented with 50 µg/ml of vitamin C showed improved
cleavage rates, blastocyst rates and total cell numbers per blastocyst (P<0.05)
compared with other groups (control, 25 µg/ml and 100 µg/ml). In contrast, supplementation
with 50 µg/ml vitamin C decreased (P<0.05) the apoptosis index as compared with the
groups supplemented with 100 µg/ml. In addition, even with a lower blastocyst rate to
start with (37.6 vs. 50.3%, P<0.05), supplementation of HMC embryos
with vitamin C ameliorated their blastocyst quality to the extent of PA embryos as
indicated by their total cell numbers (61.2 vs. 59.1). Taken together, an
optimized concentration of vitamin C supplementation in the medium not only improves
blastocyst rates and total cell numbers but also reduces apoptotic indices, whereas
overdosages compromise various aspects of the development of parthenotes and cloned
porcine embryos.
Collapse
Affiliation(s)
- Michel Kere
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | | | | | | | | |
Collapse
|
27
|
Endocrine disruptive actions of inhaled benzo(a)pyrene on ovarian function and fetal survival in fisher F-344 adult rats. Reprod Toxicol 2012; 34:635-43. [PMID: 23059060 DOI: 10.1016/j.reprotox.2012.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 09/06/2012] [Accepted: 09/18/2012] [Indexed: 01/06/2023]
Abstract
This study evaluated the effect of inhaled BaP on female reproductive function. Rats were exposed to 50, or 75 or 100 μg BaP/m(3), 4 h a day for 14 days via inhalation. Plasma E(2), P(4), LH and FSH concentrations were determined. Ovarian BaP metabolism and aryl hydrocarbon hydrolase (AHH) activity at proestrus were determined and fertility evaluations were conducted. Ovulation rate and number of pups/litter were reduced in rats exposed to 100 μg BaP/m(3) compared with other treatment and control groups. Plasma concentrations of E(2), and LH were significantly reduced at proestrus in BaP-exposed versus those of controls whereas those of P(4) were significantly reduced at diestrus I. The activity of AHH in ovarian and liver tissues and concentrations of BaP 7,8-diol and BaP 3,6-dione metabolites increased in an exposure concentration-dependent manner. These data suggest that exposure of rats to BaP prior to mating contributes to reduced ovarian function and fetal survival.
Collapse
|
28
|
Hammami S, Morató R, Romaguera R, Roura M, Catalá MG, Paramio MT, Mogas T, Izquierdo D. Developmental competence and embryo quality of small oocytes from pre-pubertal goats cultured in IVM medium supplemented with low level of hormones, insulin-transferrin-selenium and ascorbic acid. Reprod Domest Anim 2012; 48:339-44. [PMID: 22908901 DOI: 10.1111/j.1439-0531.2012.02160.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to test the effect of insulin-transferrin-selenium (ITS) and L-ascorbic acid (AA) supplementation and the hormonal level during in vitro maturation (IVM) of small oocytes from pre-pubertal goat on the blastocyst yield and quality. Concretely, we used four maturation media: conventional IVM medium (CM), growth medium (GM: CM+ITS+AA and low level of hormones), modified CM (mCM: CM with low level of hormones) and modified GM (mGM: CM+ITS+AA and normal level of hormones). Cumulus-oocyte complexes (COCs) were classified into two categories according to oocyte diameter: <125 μm and ≥ 125 μm. Large oocytes were matured 24 h in CM (Treatment A). Small oocytes were matured randomly in six experimental groups: Treatment B: 24 h in CM; Treatment C: 12 h in GM and 12 h in CM; Treatment D: 24 h in mGM; Treatment E: 12 h in mGM and 12 h in CM; Treatment F: 12 h in mCM and 12 h in CM; and Treatment G: 12 h in GM and 12 h in mGM. After IVM, oocytes were fertilized and cultured for 8 days. The blastocyst quality was assessed by the survival following vitrification/warming and the mean cell number. When different maturation media were combined, the blastocyst rate did not improve. The large oocytes produced the highest blastocysts yield. However, the culture of small oocytes in GM (53.3%) enhanced the post-warming survival of blastocysts compared to large oocytes matured in CM (35.7%). In conclusion, IVM of pre-pubertal goat small oocytes in GM would be useful to improve the quality of in vitro-produced blastocysts.
Collapse
Affiliation(s)
- S Hammami
- Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Prieto L, Quesada JF, Cambero O, Pacheco A, Pellicer A, Codoceo R, Garcia-Velasco JA. Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis. Fertil Steril 2012; 98:126-30. [PMID: 22578534 DOI: 10.1016/j.fertnstert.2012.03.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/24/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To study the levels of four markers of oxidative stress in follicular fluid (FF) and plasma of patients with infertility related to endometriosis and controls. DESIGN Experimental study. SETTING University-affiliated hospital and infertility center. PATIENT(S) Ninety-one infertile women were included in the study (23 infertile women with endometriosis and 68 controls including infertile women due to tubal factor, male factor, or healthy egg donors). INTERVENTION(S) Blood was obtained at the time of egg retrieval, and FF from the mature follicles of each ovary was centrifuged and frozen until analysis. MAIN OUTCOME MEASURE(S) Vitamin C and E, malondialdehyde, and superoxide dismutase concentrations in plasma and follicular fluid. RESULT(S) Women with endometriosis showed a lower vitamin C concentration in FF (12.7 ± 5.9 vs. 9.7 ± 6.9 μg/mL) and lower superoxide dismutase concentration in plasma (0.9 ± 1.4 vs. 0.5 ± 0.7 U/mL) compared with controls. Vitamin E plasma levels were significantly higher in women with endometriosis (8.1 ± 3.8 vs. 5.2 ± 3.2 μg/mL). A nonsignificant trend toward a lower plasma concentration of malondialdehyde was found in women with endometriosis. CONCLUSION(S) These findings suggest a lower antioxidant capacity in infertile women with endometriosis. Although a certain level of reactive oxygen species is required under physiological conditions, an altered balance between pro-oxidant and antioxidant activities may have an impact on folliculogenesis and adequate embryo development.
Collapse
Affiliation(s)
- Laura Prieto
- Department of Obstetrics and Gynecology, La Paz Hospital, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Somfai T, Kaneda M, Akagi S, Watanabe S, Haraguchi S, Mizutani E, Dang-Nguyen TQ, Geshi M, Kikuchi K, Nagai T. Enhancement of lipid metabolism with L-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes. Reprod Fertil Dev 2012; 23:912-20. [PMID: 21871210 DOI: 10.1071/rd10339] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/11/2011] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to assess the effects of L-carnitine, an enhancer of lipid metabolism and mitochondrial activity, during in vitro maturation (IVM) on nuclear maturation and in vitro fertilisation of porcine follicular oocytes and subsequent embryo development. Mitochondrial functions, intracellular lipid content and reactive oxygen species (ROS) levels in oocytes were also investigated. L-carnitine supplementation in 0.6-5mgmL(-1) concentration during IVM significantly improved (P<0.05) the rates of metaphase-II (MII) stage oocytes compared with the control; however, fertilisation rates and monospermy were not improved. Although supplementation of IVM medium with L-carnitine significantly increased oocyte cleavage (P<0.05), further development to the blastocyst stage was not improved. The density of active mitochondria was significantly higher and the density of lipid droplets was significantly lower (P<0.05) in L-carnitine-treated oocytes compared with the control. Furthermore, the ROS levels in L-carnitine-treated oocytes were significantly lower than those in the control. In conclusion, enhancing mitochondrial functions by L-carnitine improved oocyte maturation and cleavage underlining the importance of lipid metabolism for nuclear and cytoplasmic maturation of porcine oocytes.
Collapse
Affiliation(s)
- Tamás Somfai
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organisation, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hirao Y, Shimizu M, Iga K, Takenouchi N. Optimization of oxygen concentration for growing bovine oocytes in vitro: constant low and high oxygen concentrations compromise the yield of fully grown oocytes. J Reprod Dev 2012; 58:204-11. [PMID: 22223441 DOI: 10.1262/jrd.11-132m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxygen environment in cell culture has a significant impact on the health and performance of cells. Here, we compared the effects of reduced (5%) and ambient (20%) oxygen concentrations on bovine oocyte-granulosa cell complexes, each containing a growing oocyte 90-102 µm in diameter, cultured for 14 days. Both oxygen concentrations showed some advantages and disadvantages; in 5% oxygen, the survival rate of oocytes was significantly higher than in 20% oxygen, but the resulting oocytes were significantly smaller, which was a serious disadvantage. During the first 4 days of culture, the growth and viability of oocytes were satisfactory using 5% oxygen. This observation led us to examine the effect of changing the oxygen concentration from 5% to 20% on Day 4 in order to minimize the expected disadvantages of constant 5% and 20% oxygen. The largest population of fully grown oocytes was obtained from cultures in which the oxygen concentration was changed in this way, which also led to higher oocyte viability than in constant 20% oxygen. A similar tendency was found in the frequency of oocytes becoming blastocysts after in vitro fertilization. Surviving oocytes eventually became located within an enlarged dome-like structure, and although the 5% oxygen environment may have been appropriate for oocyte growth in the early stages, 20% oxygen may have been necessary for the growth of oocytes in the dome-like structure. These results indicate an effective way of modulating oxygen concentration according to the growth of oocyte-granulosa cell complexes in vitro.
Collapse
Affiliation(s)
- Yuji Hirao
- Livestock and Forage Research Division, Tohoku Agricultural Research Center (TARC), National Agriculture and Food Research Organization (NARO), Morioka, 020-0198, Japan.
| | | | | | | |
Collapse
|
32
|
Dang-Nguyen TQ, Somfai T, Haraguchi S, Kikuchi K, Tajima A, Kanai Y, Nagai T. In vitro production of porcine embryos: current status, future perspectives and alternative applications. Anim Sci J 2011; 82:374-82. [PMID: 21615829 DOI: 10.1111/j.1740-0929.2011.00883.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pig is considered to be a suitable source of cells and organs for xenotransplants, as well as a transgenic animal to produce specific proteins, given the biological similarities it shares with human beings. However, the in vitro embryo production system in pigs is inefficient compared with those in other mammals, such as cattle or mice. Although numerous modifications have been applied to improve the efficiency of in vitro embryo production systems in pigs, not much progress has been made to overcome the problem of polyspermy, and low developmental ability due to insufficient cytoplasmic abilities of in vitro matured oocytes and improper culture conditions for the in vitro produced embryos. Recent achievements, such as the establishment of chemically defined medium and utilization of 'zona hardening' technique, have gained some success. However, further research for the reduction of polyspermy and detrimental effects of the culture systems in pigs is still needed.
Collapse
Affiliation(s)
- Thanh Quang Dang-Nguyen
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Antioxidants rescue stressed embryos at a rate comparable with co-culturing of embryos with human umbilical cord mesenchymal cells. J Assist Reprod Genet 2011; 28:343-9. [PMID: 21207131 DOI: 10.1007/s10815-010-9529-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/20/2010] [Indexed: 12/18/2022] Open
Abstract
PURPOSE During laboratory manipulations, oocytes and embryos are inevitably exposed to suboptimal conditions that interfere with the normal development of embryos. MATERIALS AND METHODS In this study, we examined the effects of antioxidants, feeder cells and a conditioned medium on embryo development and cleavage rate following exposure of the embryos to suboptimal conditions. We exposed mouse two-cell embryos to visible light and divided them into four groups: control (E-ctr), co-culture (Co-c), conditioned medium (Cndm) and antioxidant-plus medium (Aopm). We used human umbilical cord matrix-derived mesenchymal cells for co-culture. A group of embryos was not exposed to visible light and served as the non-exposed control (NE-ctr) group. RESULTS The developmental rate was higher in NE-ctr embryos than in the E-ctr group. Exposed embryos in the various groups showed a comparable developmental rate at different stages. Blastomere number significantly increased (P < 0.05) in the Co-c and Aopm groups compared with the E-ctr and Cndm groups. No significant difference was observed between the Co-c and Aopm groups. CONCLUSIONS Our data indicate that in suboptimal conditions, antioxidants could improve the embryo cleavage rate in the same way as feeder cells. Antioxidants probably improve embryo quality through their ability to scavenge reactive oxygen species.
Collapse
|
34
|
Córdova B, Morató R, Izquierdo D, Paramio T, Mogas T. Effect of the addition of insulin-transferrin-selenium and/or L-ascorbic acid to the in vitro maturation of prepubertal bovine oocytes on cytoplasmic maturation and embryo development. Theriogenology 2010; 74:1341-8. [DOI: 10.1016/j.theriogenology.2010.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/14/2010] [Accepted: 06/02/2010] [Indexed: 11/28/2022]
|
35
|
Eichenlaub-Ritter U, Wieczorek M, Lüke S, Seidel T. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 2010; 11:783-96. [PMID: 20817047 DOI: 10.1016/j.mito.2010.08.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/26/2022]
Abstract
Mammalian oocytes are long-lived cells in the human body. They initiate meiosis already in the embryonic ovary, arrest meiotically for long periods in dictyate stage, and resume meiosis only after extensive growth and a surge of luteinizing hormone which mediates signaling events that overcome meiotic arrest. Few mitochondria are initially present in the primordial germ cells while there are mitogenesis and structural and functional differentiation and stage-specific formation of functionally diverse domains of mitochondria during oogenesis. Mitochondria are most prominent cell organelles in oocytes and their activities appear essential for normal spindle formation and chromosome segregation, and they are one of the most important maternal contributions to early embryogenesis. Dysfunctional mitochondria are discussed as major factor in predisposition to chromosomal nondisjunction during first and second meiotic division and mitotic errors in embryos, and in reduced quality and developmental potential of aged oocytes and embryos. Several lines of evidence suggest that damage by oxidative stress/reactive oxygen species in dependence of age, altered antioxidative defence and/or altered environment and bi-directional signaling between oocyte and the somatic cells in the follicle contribute to reduced quality of oocytes and blocked or aberrant development of embryos after fertilization. The review provides an overview of mitogenesis during oogenesis and some recent data on oxidative defence systems in mammalian oocytes, and on age-related changes as well as novel approaches to study redox regulation in mitochondria and ooplasm. The latter may provide new insights into age-, environment- and cryopreservation-induced stress and mitochondrial dysfunction in oocytes and embryos.
Collapse
Affiliation(s)
- U Eichenlaub-Ritter
- University of Bielefeld, Faculty of Biology, Gene Technology/Microbiology, Bielefeld, Germany.
| | | | | | | |
Collapse
|
36
|
Combelles CMH, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod Biomed Online 2009; 18:864-80. [PMID: 19490793 DOI: 10.1016/s1472-6483(10)60038-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the efforts aimed at improving the quality of in-vitro-matured human oocytes, the dynamic balance and roles of pro-/antioxidants merit further consideration. In-vitro maturation (IVM) is emerging as a popular technology at the forefront of fertility treatment and preservation. However, standard in-vitro culture conditions exert oxidative stress or an imbalance between oxidants and antioxidants. Reactive oxygen species (ROS) are oxygen-derived molecules formed as intermediary products of cellular metabolism. By acting as powerful oxidants, ROS can oxidatively modify any molecule, resulting in structural and functional alterations. ROS are neutralized by an elaborate defence system consisting of enzymatic and nonenzymatic antioxidants. This review captures the inherent and external factors that may modulate the oxidative stress status of oocytes. It discusses the suspected impacts of oxidative stress on the gamut of events associated with IVM, including prematuration arrest, meiotic progression, chromosomal segregation, cytoskeletal architecture and gene expression. In-vivo and in-vitro strategies that may overcome the potential influences of oxidative stress on oocyte IVM are presented. Future studies profiling the oxidative stress status of the oocyte may permit not only the formulation of a superior IVM medium that maintains an adequate pro-/antioxidant balance, but also the identification of predictors of oocyte quality.
Collapse
|
37
|
VIET LINH N, DANG-NGUYEN TQ, NGUYEN BX, MANABE N, NAGAI T. Effects of Cysteine During In Vitro Maturation of Porcine Oocytes Under Low Oxygen Tension on Their Subsequent In Vitro Fertilization and Development. J Reprod Dev 2009; 55:594-8. [DOI: 10.1262/jrd.09-075h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nguyen VIET LINH
- National Institute of Livestock and Grassland Science
- Institute of Biotechnology, Vietnamese Academy of Science and Technology
- Graduate School of Agricultural and Life Sciences, University of Tokyo
| | - Thanh Quang DANG-NGUYEN
- National Institute of Livestock and Grassland Science
- Graduate School of Life and Environmental Science, College of Agro-biological Resource Science, University of Tsukuba
- Institute of Biotechnology, Vietnamese Academy of Science and Technology
| | - Bui Xuan NGUYEN
- Institute of Biotechnology, Vietnamese Academy of Science and Technology
| | - Noboru MANABE
- Graduate School of Agricultural and Life Sciences, University of Tokyo
| | - Takashi NAGAI
- National Institute of Livestock and Grassland Science
| |
Collapse
|
38
|
Saitoh T, Tsuchiya Y, Kinoshita T, Itoh M, Yamashita S. Inhibition of apoptosis by ascorbic and dehydroascorbic acids in Xenopus egg extracts. Reprod Med Biol 2008; 8:3-9. [PMID: 29699301 DOI: 10.1007/s12522-008-0001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022] Open
Abstract
Purpose The viability of mammalian eggs after ovulation is reported to be improved by the presence of ascorbic acid in the culture medium. However, the pro-survival mechanisms of ascorbic acid are poorly understood. The molecular pathways of apoptosis are evolutionarily conserved among animal species, and Xenopus eggs are technically and ethically more suitable for biochemical analyses than mammalian eggs. We used Xenopus egg cytoplasmic extracts to examine the direct intracellular effects of ascorbic acid. Methods Incubation of egg extracts for more than 4 h induces the spontaneous release of cytochrome c from mitochondria. This event triggers the activation of caspases, cleavage of substrate proteins, and execution of apoptosis. Multiple signal transduction pathways including proteolysis and protein phosphorylation are also involved in this process. We examined whether any of these events might be inhibited by the addition of ascorbic acid. Results Ascorbic acid showed no effect against cytochrome c release, but prevented caspase activation and substrate cleavage. Ascorbic acid also blocked the proteolysis of apoptosis inhibitor proteins and the dephosphorylation of p42 MAP kinase. However, dehydroascorbic acid (oxidized form of ascorbic acid) and acetate (unrelated acid) were equally effective, indicating that these effects were primarily due to their acidity. In addition, dehydroascorbic acid inhibited caspase activities directly in vitro. Conclusions The anti-apoptotic effect of ascorbic acid in Xenopus egg extracts is mainly due to cytoplasmic acidification rather than its intracellular antioxidant activity. Instead, oxidative conversion of ascorbic acid into dehydroascorbic acid may inhibit apoptosis through the inhibition of caspases.
Collapse
Affiliation(s)
- Tomohiro Saitoh
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Yuichi Tsuchiya
- Department of Biochemistry Toho University School of Medicine 5-21-16 Omori-nishi Ota-ku 143-8540 Tokyo Japan
| | - Toshihiko Kinoshita
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Motohiro Itoh
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Shigeru Yamashita
- Department of Biochemistry Toho University School of Medicine 5-21-16 Omori-nishi Ota-ku 143-8540 Tokyo Japan
| |
Collapse
|
39
|
Funahashi H, Koike T, Sakai R. Effect of glucose and pyruvate on nuclear and cytoplasmic maturation of porcine oocytes in a chemically defined medium. Theriogenology 2008; 70:1041-7. [DOI: 10.1016/j.theriogenology.2008.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/23/2008] [Accepted: 06/07/2008] [Indexed: 10/21/2022]
|
40
|
Abedelahi A, Salehnia M, Allameh AA. The effects of different concentrations of sodium selenite on the in vitro maturation of preantral follicles in serum-free and serum supplemented media. J Assist Reprod Genet 2008; 25:483-8. [PMID: 18814023 DOI: 10.1007/s10815-008-9252-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/04/2008] [Indexed: 02/04/2023] Open
Abstract
PURPOSE This study was to investigate the effect of sodium selenite (SS) on in vitro maturation of mouse preantral follicles. METHODS The isolated preantral follicles were cultured in TCM 199 medium supplemented with different concentrations (0, 5, 10, 15 ng/ml) of SS and 3 mg/ml bovine serum albumin (BSA) or 5% Fetal Bovine Serum (FBS). The ovulation was induced by addition of 1.5 IU/ml human chorionic gonadotropin. The size and development of follicles and oocytes were assessed by calibrated eyepiece. RESULTS The survival rates of follicles in FBS supplemented groups containing 5 and 10 ng/ml SS (88.23%, 90.83%) were higher than other groups (P < 0.05 and P < 0.001 respectively). The mean diameter of follicles (199.84 +/- 15.58 microm) and the percentage of MII oocyte (33.08%) were higher in FBS supplemented group containing 10 ng/ml SS (P < 0.001). CONCLUSION The sodium selenite and FBS improve the in vitro growth and maturation of mouse preantral follicles.
Collapse
Affiliation(s)
- A Abedelahi
- Department of Anatomy, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | | | | |
Collapse
|
41
|
Preovulatory follicular fluid during in vitro maturation decreases polyspermic fertilization of cumulus-intact porcine oocytes. Theriogenology 2008; 70:715-24. [DOI: 10.1016/j.theriogenology.2008.04.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/02/2008] [Accepted: 04/24/2008] [Indexed: 11/24/2022]
|
42
|
Improvement of the post-thaw qualities of Okinawan native pig spermatozoa frozen in an extender supplemented with ascorbic acid 2-O-α-glucoside. Cryobiology 2008; 57:30-6. [DOI: 10.1016/j.cryobiol.2008.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/22/2008] [Accepted: 05/15/2008] [Indexed: 11/23/2022]
|
43
|
Agarwal A, Gupta S, Sekhon L, Shah R. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1375-403. [PMID: 18402550 DOI: 10.1089/ars.2007.1964] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Physiological levels of reactive oxygen species (ROS) play an important regulatory role through various signaling transduction pathways in folliculogenesis, oocyte maturation, endometrial cycle, luteolysis, implantation, embryogenesis, and pregnancy. Persistent and elevated generation of ROS leads to a disturbance of redox potential that in turn causes oxidative stress (OS). Our literature review captures the role of ROS in modulating a range of physiological functions and pathological processes affecting the female reproductive life span and even thereafter (i.e., menopause). The role of OS in female reproduction is becoming increasingly important, as recent evidence suggest that it plays a part in conditions such as polycystic ovarian disease, endometriosis, spontaneous abortions, preeclampsia, hydatidiform mole, embryopathies, preterm labor, and intrauterine growth retardation. OS has been implicated in different reproductive scenarios and is detrimental to both natural and assisted fertility. Many extrinsic and intrinsic conditions exist in assisted reproduction settings that can be tailored to reduce the toxic effects of ROS. Laboratory personnel should avoid procedures that are known to be deleterious, especially when safer procedures that can prevent OS are available. Although antioxidants such as folate, zinc, and thiols may help enhance fertility, the available data are contentious and must be evaluated in controlled studies with larger populations.
Collapse
Affiliation(s)
- Ashok Agarwal
- Reproductive Research Center, Department of Obstetrics and Gynecology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
44
|
Hou SY, Zhang L, Wu K, Xia L. Thioglycolic acid inhibits mouse oocyte maturation and affects chromosomal arrangement and spindle configuration. Toxicol Ind Health 2008; 24:227-34. [PMID: 19022875 DOI: 10.1177/0748233708095862] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that thioglycolic acid (TGA) leads to potential reproductive toxicology. To clarify the exact effects of this compound on reproduction, mice oocytes were treated with different TGA doses. At the end of the culture period, the nuclear status of mice oocytes was assessed under an inverted microscope. After immunofluorescence staining, the chromosomal arrangement and spindle configuration of oocytes were evaluated. The results indicated that TGA decreases the percentage of first polar body formation but does not influence that of germinal vesicle breakdown. TGA induces abnormal chromosomal arrangement and spindle elongation. In conclusion, TGA inhibits in-vitro maturation of mice oocytes and affects chromosomal arrangement and spindle configuration. Furthermore, it probably interferes with biochemical changes that occur during meiosis, resulting in aberrant development.
Collapse
Affiliation(s)
- SY Hou
- Department of Nutrition and Food Hygiene, Harbin Medical University, Heilongjiang, China
| | - L Zhang
- Department of Nutrition and Food Hygiene, Harbin Medical University, Heilongjiang, China
| | - K Wu
- Department of Nutrition and Food Hygiene, Harbin Medical University, Heilongjiang, China
| | - L Xia
- The First Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
45
|
Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008; 59:2-11. [PMID: 18154591 DOI: 10.1111/j.1600-0897.2007.00559.x] [Citation(s) in RCA: 461] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Male factor has been considered a major contributory factor to infertility. Along with the conventional causes for male infertility such as varicocele, cryptorchidism, infections, obstructive lesions, cystic fibrosis, trauma, and tumors, a new, yet important cause has been identified: oxidative stress. Oxidative stress (OS) is a result of the imbalance between reactive oxygen species (ROS) and antioxidants in the body, which can lead to sperm damage, deformity and eventually male infertility. This involves peroxidative damage to sperm membrane and DNA fragmentation at both nuclear and mitochondrial levels. OS has been implicated as the major etiological factor leading to sperm DNA damage. OS-induced DNA damage can lead to abnormalities in the offspring including childhood cancer and achondroplasia. In this article, we discuss the need of ROS in normal sperm physiology, the mechanism of production of ROS and its pathophysiology in relation to male reproductive system. The benefits of incorporating antioxidants in clinical and experimental settings have been enumerated. We also highlight the emerging concept of utilizing OS as a method of contraception and the potential problems associated with it.
Collapse
Affiliation(s)
- Ashok Agarwal
- Department of Obstetrics-Gynecology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
46
|
Whitaker BD, Knight JW. Mechanisms of oxidative stress in porcine oocytes and the role of anti-oxidants. Reprod Fertil Dev 2008; 20:694-702. [DOI: 10.1071/rd08037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 05/26/2008] [Indexed: 01/21/2023] Open
Abstract
The mechanisms of oxidative stress in in vitro maturing porcine oocytes and the effects of anti-oxidant supplementation of the medium in ameliorating these effects were investigated in the present study. In addition to intracellular reduced glutathione (GSH) concentrations and DNA fragmentation, the present study focused on superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity. The anti-oxidants used were N-acetylcysteine (NAC) and its derivative NAC-amide (NACA). The results indicate that when SOD is inhibited, supplementation of the maturarion medium with 1.5 mm NAC or NACA compensates for the decrease in SOD activity by reducing the degree of DNA fragmentation (P < 0.05). When GPx is inhibited, supplementation of the maturarion medium with 1.5 mm NAC alleviates the effects of no GPx activity, as indicated by a decrease in the degree of DNA fragmentation (P < 0.05). When the maturarion medium was supplemented with 1.5 mm NACA, intracellular GSH concentrations decreased (P < 0.05) and SOD and catalase activities increased (P < 0.05) along with the degree of DNA fragmentation. These results indicate that the mechanisms of alleviating oxidative stress in porcine oocytes are very complex and supplementing maturing oocytes with anti-oxidants may enhance enzyme activities and eliminate free radicals.
Collapse
|
47
|
Kun Z, Shaohua W, Yufang M, Yankun L, Hengxi W, Xiuzhu S, Yonghui Z, Yan L, Yunping D, Lei Z, Ning L. Effects of leptin supplementation in in vitro maturation medium on meiotic maturation of oocytes and preimplantation development of parthenogenetic and cloned embryos in pigs. Anim Reprod Sci 2007; 101:85-96. [PMID: 17161925 DOI: 10.1016/j.anireprosci.2006.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 08/08/2006] [Accepted: 08/17/2006] [Indexed: 10/23/2022]
Abstract
The objective of the present study was to investigate the effects of leptin addition in in vitro maturation (IVM) medium on meiotic maturation of oocytes and preimplantation development of parthenogenetic and cloned embryos in pigs. In experiment 1, oocytes were matured in North Carolina State University 23 (NCSU-23) medium supplemented with various concentrations of leptin: 0, 1, 10 and 100 ng/ml. IVM medium added with 10 or 100 ng/ml leptin significantly increased the rate of oocytes reaching metaphase II compared to the control (76.8% and 73.8% versus 61.7%). In experiment 2, the influence of the timing of leptin addition in IVM medium on meiotic maturation of porcine oocytes was assessed, and maximum maturation rate of oocytes developing to metaphase II was achieved when supplemented during the first half (0-22 h), the latter half (22-44 h) or the entire maturation period (0-44 h) compared to the control (80.5%, 84.7% and 78.1% versus 70.4%). In experiment 3, leptin strikingly increased the blastocyst rate of parthenogenetic embryos at the concentration of 10 ng/ml (37.5% versus 21.7%) and this increase was independent of the addition timing (0-44, 0-22, 22-44 h) compared to the control (32.5%, 34.6% and 31.5% versus 16.2%). Moreover, total cell number per blastocyst of parthenogenetic embryos was obviously increased in the 10 and 100 ng/ml leptin treatments as compared with the control (36, 38 versus 28). In experiment 4, 10 ng/ml leptin treatment significantly increased the rate of cleavage (72% versus 56%) of cloned embryos. Meanwhile, the rate of blastocyst formation was also improved although no significant difference was found (12.8% versus 7.1%). Collectively, our results indicate that leptin supplementation in IVM medium may be beneficial not only for developmental potential of oocytes but for subsequent developmental competence of embryos produced by parthenogenetic activation and the cleavage of embryos derived by somatic cell nuclear transfer (SCNT).
Collapse
Affiliation(s)
- Zhang Kun
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Haidian, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wongsrikeao P, Nagai T, Agung B, Taniguchi M, Kunishi M, Suto S, Otoi T. Improvement of transgenic cloning efficiencies by culturing recipient oocytes and donor cells with antioxidant vitamins in cattle. Mol Reprod Dev 2007; 74:694-702. [PMID: 17154297 DOI: 10.1002/mrd.20640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study was conducted to investigate effects of antioxidants during maturation culture of recipient oocytes and/or culture of gene-transfected donor cells on the meiotic competence of recipient oocytes, and the developmental competence and quality of the reconstructed embryos after nuclear transfer (NT) in cattle. Gene-transfected donor cells had negative effects on the proportions of blastocyst formation, total cell numbers, and DNA fragmentation indices of reconstructed embryos. Supplementation of either vitamin E (alpha-tocopherol: 100 microM) or vitamin C (ascorbic acid: 100 microM) during maturation culture significantly enhanced the cytoplasmic maturation of oocytes and subsequent development of embryos reconstructed with the oocytes and gene-transfected donor cells, but did not have synergistic effects. The supplementation of vitamin E during maturation culture of recipient oocytes increased the proportions of fusion and blastocyst formation of gene-transfected NT embryos, in which the proportions were similar to those of nontransfected NT embryos. When the gene-transfected donor cells that had been cultured with 0, 50, or 100 microM of vitamin E were transferred into recipient oocytes matured with vitamin E (100 microM), 50 microM of vitamin E increased the proportion of blastocyst formation and reduced the index of DNA fragmentation of blastocysts. In conclusion, gene-transfected donor cells have negatively influenced the NT outcome. Supplementation of vitamin E during both recipient oocyte maturation and donor cell culture enhanced the blastocyst formation and efficiently blocked DNA damage in transgenic NT embryos.
Collapse
Affiliation(s)
- Pimprapar Wongsrikeao
- Laboratory of Animal Reproduction, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Desai N, Kattal N, AbdelHafez FF, Szeptycki-Lawson J, Goldfarb J. Granulocyte-macrophage colony stimulating factor (GM-CSF) and co-culture can affect post-thaw development and apoptosis in cryopreserved embryos. J Assist Reprod Genet 2007; 24:215-22. [PMID: 17486438 PMCID: PMC3454968 DOI: 10.1007/s10815-007-9119-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/20/2007] [Indexed: 01/08/2023] Open
Abstract
PURPOSE The objective of this study was to evaluate the effects of growth factor supplementation and Vero cell co-culture on apoptosis and development of frozen thawed one-cell mouse embryos. METHODS The following treatment regimens were assessed: (a) control medium (b) Vero cell co-culture and (c) growth factor supplemented medium. The individual growth factors tested were: GM-CSF, IGF-I, IGF-II, TNF-alpha, FGF-4, LIF, TGF-alpha, TGF-beta, IL-6, PDGF and EGF. Blastocyst development and differentiation were monitored. At termination of the experiments, overall blastomere number and apoptosis were assessed using the TUNEL assay. RESULTS No differences were observed in blastulation and hatching rates. ICM differentiation in thawed embryos was notably improved with either co-culture or growth factor supplementation. The only growth factor significantly modulating apoptosis in thawed embryos was granulocyte-macrophage colony stimulating factor (GM-CSF). GM-CSF enhanced continued cell survival and prevented apoptosis but did not influence overall cell number in developing blastocysts. Vero cell co-culture significantly increased cell number in blastocysts (124+/-42 vs 100+/-44 in control; P<0.05). Embryonic apoptosis was higher in the co-cultured embryos. The increased presence of apoptotic cells in blastocysts of high cell number may reflect the regulatory role of apoptosis in balancing ICM: TE ratios. CONCLUSION These data indicate that culture conditions can modulate post-thaw embryonic development and apoptosis.
Collapse
Affiliation(s)
- Nina Desai
- The Cleveland Clinic Fertility Center, 26900 Cedar Road, Beachwood, OH 44122, USA.
| | | | | | | | | |
Collapse
|
50
|
Krisher RL, Brad AM, Herrick JR, Sparman ML, Swain JE. A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim Reprod Sci 2007; 98:72-96. [PMID: 17110061 DOI: 10.1016/j.anireprosci.2006.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The importance of oocyte quality cannot be overstated, because it impacts all subsequent events during development of the embryo, the fetus and even the resulting offspring. Oocyte metabolism plays a critical role in supporting developmental competence via multiple mechanisms. It is beginning to be understood that metabolic pathways not only affect cytoplasmic maturation but may control nuclear maturation as well. A complete understanding of the precise roles that metabolism plays in determining oocyte quality is crucial for developing efficient in vitro maturation systems to support acquisition of oocyte competence. To date, this pursuit has not been entirely successful. Work in our laboratory on porcine oocyte metabolism has elucidated some of the intricate control mechanisms at work within the oocyte, not only for energy production, but also encompassing progression of nuclear maturation, mitochondrial activity and distribution, and oxidative and ionic stresses. We hypothesize that by utilizing oocyte metabolic data, we can develop more appropriate in vitro maturation systems that result in increased oocyte and embryo developmental competence.
Collapse
Affiliation(s)
- R L Krisher
- Department of Animal Sciences, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA.
| | | | | | | | | |
Collapse
|