1
|
Placental Lactogen as a Marker of Maternal Obesity, Diabetes, and Fetal Growth Abnormalities: Current Knowledge and Clinical Perspectives. J Clin Med 2020; 9:jcm9041142. [PMID: 32316284 PMCID: PMC7230810 DOI: 10.3390/jcm9041142] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Placental lactogen (PL) is a peptide hormone secreted throughout pregnancy by both animal and human specialized endocrine cells. PL plays an important role in the regulation of insulin secretion in pancreatic β-cells, stimulating their proliferation and promoting the expression of anti-apoptotic proteins. Cases of pregnancy affected by metabolic conditions, including obesity and diabetes, are related to alterations in the PL secretion pattern. Whereas obesity is most often associated with lower PL serum concentrations, diabetes results in increased PL blood levels. Disruptions in PL secretion are thought to be associated with an increased prevalence of gestational complications, such as placental dysfunction, diabetic retinopathy, and abnormalities in fetal growth. PL is believed to be positively correlated with birth weight. The impaired regulation of PL secretion could contribute to an increased incidence of both growth retardation and fetal macrosomia. Moreover, the dysregulation of PL production during the intrauterine period could affect the metabolic status in adulthood. PL concentration measurement could be useful in the prediction of fetal macrosomia in women with normal oral glucose tolerance test (OGTT) results or in evaluating the risk of fetal growth restriction, but its application in standard clinical practice seems to be limited in the era of ultrasonography.
Collapse
|
2
|
Velegrakis A, Sfakiotaki M, Sifakis S. Human placental growth hormone in normal and abnormal fetal growth. Biomed Rep 2017; 7:115-122. [PMID: 28804622 PMCID: PMC5526045 DOI: 10.3892/br.2017.930] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/31/2017] [Indexed: 01/05/2023] Open
Abstract
Human placental growth hormone (PGH), encoded by the growth hormone (GH) variant gene on chromosome 17, is expressed in the syncytiotrophoblast and extravillous cytotrophoblast layers of the human placenta. Its maternal serum levels increase throughout pregnancy, and gradually replaces the pulsatile secreted pituitary GH. PGH is also detectable in cord blood and in the amniotic fluid. This placental-origin hormone stimulates glyconeogenesis, lipolysis and anabolism in maternal organs, and influences fetal growth, placental development and maternal adaptation to pregnancy. The majority of these actions are performed indirectly by regulating maternal insulin-like growth factor-I levels, while the extravillous trophoblast involvement indicates a direct effect on placental development, as it stimulates trophoblast invasiveness and function via a potential combination of autocrine and paracrine mechanisms. The current review focuses on the role of PGH in fetal growth. In addition, the association of PGH alterations in maternal circulation and placental expression in pregnancy complications associated with abnormal fetal growth is briefly reviewed.
Collapse
Affiliation(s)
- Alexandros Velegrakis
- Department of Obstetrics and Gynecology, Venizelion General Hospital, Heraklion 71409, Greece
| | - Maria Sfakiotaki
- Department of Endocrinology, University Hospital of Heraklion, Heraklion 71201, Greece
| | - Stavros Sifakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, Heraklion 71201, Greece
| |
Collapse
|
3
|
Kim SH, Lee EY, Cho KH. Incorporation of human growth hormone-2 into proteoliposome enhances tissue regeneration with anti-oxidant and anti-senescence activities. Rejuvenation Res 2016; 18:20-9. [PMID: 25400020 DOI: 10.1089/rej.2014.1594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human growth hormone-2 (GH-2) is a 191-amino-acid protein also known as human placental hormone. During pregnancy, continuous secretion of GH-2 appears to have important implications for physiological adjustment to gestation, especially in controlling levels of maternal insulin-like growth factor 1. To compare the physiological activity of GH-2 between lipid-free and lipid-bound states, GH-2 was expressed and incorporated into proteoliposome. GH-2 was expressed and purified using a pET28(a)-GH-2 vector in an Escherichia coli system. Purified GH-2 was then characterized and synthesized into reconstituted high-density lipoprotein (rHDL). The expression yield of GH-2 was 20-30 mg by BL21 (DE3) cells in 1 liter of Luria-Bertani broth. Purified GH-2 of at least 98% purity (23 kDa) was incorporated into rHDL with human apolipoprotein A-I (ApoA-I) and palmitoyloleoyl phosphatidylcholine (POPC) at a 1:1:95 (GH-2:ApoA-I:POPC) molar ratio. Structural analysis revealed that GH-2 had a 44% α-helix content and a wavelength maximum fluorescence (WMF) of 349 nm in a lipid-free state. In a lipid-bound state, the WMF of GH-2 was ∼4 nm blue-shifted (345 nm), with 50% of α-helix content. The lipid-bound GH-2 showed enhanced anti-atherosclerotic activity and anti-senescence activity with inhibition of fructose-mediated glycation. A fin regeneration experiment using zebrafish (17 weeks old, n=9) showed that lipid-bound GH-2 enhanced regeneration efficiency by 44% compared to native GH-2 (in the lipid-free state) without any notable side effects. GH-2 has anti-oxidant activity to enhance tissue regeneration as well as to exert anti-diabetic activity. Incorporation of GH-2 into rHDL can enhance structural stability and tissue regeneration efficiency in vertebrate models, indicating a synergetic effect between GH-2 and ApoA-I in rHDL.
Collapse
Affiliation(s)
- So-Hee Kim
- 1 School of Biotechnology, Yeungnam University , Gyeongsan, Republic of Korea
| | | | | |
Collapse
|
4
|
Braun T, Meng W, Shang H, Li S, Sloboda DM, Ehrlich L, Lange K, Xu H, Henrich W, Dudenhausen JW, Plagemann A, Newnham JP, Challis JRG. Early dexamethasone treatment induces placental apoptosis in sheep. Reprod Sci 2014; 22:47-59. [PMID: 25063551 DOI: 10.1177/1933719114542028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glucocorticoid treatment given in late pregnancy in sheep resulted in altered placental development and function. An imbalance of placental survival and apoptotic factors resulting in an increased rate of apoptosis may be involved. We have now investigated the effects of dexamethasone (DEX) in early pregnancy on binucleate cells (BNCs), placental apoptosis, and fetal sex as a determinant of these responses. Pregnant ewes carrying singleton fetuses (n = 105) were randomized to control (n = 56, 2 mL saline/ewe) or DEX treatment (n = 49, intramuscular injections of 0.14 mg/kg ewe weight per 12 hours over 48 hours) at 40 to 41 days of gestation (dG). Placentomes were collected at 50, 100, 125, and 140 dG. At 100 dG, DEX in females reduced BNC numbers, placental antiapoptotic (proliferating cell nuclear antigen), and increased proapoptotic factors (Bax, p53), associated with a temporarily decrease in fetal growth. At 125 dG, BNC numbers and apoptotic markers were restored to normal. In males, ovine placental lactogen-protein levels after DEX were increased at 50 dG, but at 100 and 140 dG significantly decreased compared to controls. In contrast to females, these changes were independent of altered BNC numbers or apoptotic markers. Early DEX was associated with sex-specific, transient alterations in BNC numbers, which may contribute to changes in placental and fetal development. Furthermore, in females, altered placental apoptosis markers may be involved.
Collapse
Affiliation(s)
- Thorsten Braun
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Wenbin Meng
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Hongkai Shang
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany Department of Obstetrics and Gynecology, Hangzhou First People's Hospital, Zhejiang, China
| | - Shaofu Li
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, Crawley, Western Australia, Australia
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Loreen Ehrlich
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Karolin Lange
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Huaisheng Xu
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany Department of Obstetrics and Gynecology, Linyi People's Hospital, Lanshan, China
| | - Wolfgang Henrich
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Joachim W Dudenhausen
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Andreas Plagemann
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - John P Newnham
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, Crawley, Western Australia, Australia
| | - John R G Challis
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, Crawley, Western Australia, Australia Department of Physiology Obstetrics and Gynecology, at the University of Toronto, Toronto, Canada Faculty of Health Sciences, Simon Fraser University Vancouver, Vancouver, Canada
| |
Collapse
|
5
|
Nonoshita A, Nishi Y, Takushima S, Oshima M, Hosoda H, Kangawa K, Kojima M, Mifune H, Tanaka E, Hori D, Kamura T. Dynamics of placental ghrelin production and its receptor expression in a Dahl salt-sensitive rat model of intrauterine growth restriction. Placenta 2010; 31:358-64. [DOI: 10.1016/j.placenta.2010.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 02/05/2010] [Accepted: 02/20/2010] [Indexed: 12/01/2022]
|
6
|
Gheorghe CP, Goyal R, Mittal A, Longo LD. Gene expression in the placenta: maternal stress and epigenetic responses. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:507-23. [PMID: 19876832 PMCID: PMC2830734 DOI: 10.1387/ijdb.082770cg] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Successful placental development is crucial for optimal growth, development, maturation and survival of the embryo/fetus into adulthood. Numerous epidemiologic and experimental studies have demonstrated the profound influence of intrauterine environment on life, and the diseases to which one is subject as an adult. For the most part, these invidious influences, whether maternal hypoxia, protein or caloric deficiency or excess, and others, represent types of maternal stress. In the present review, we examine certain aspects of gene expression in the placenta as a consequence of maternal stressors. To examine these issues in a controlled manner, and in a species in which the genome has been sequenced, most of these reported studies have been performed in the mouse. Although each individual maternal stress is characterized by up- or down-regulation of specific genes in the placenta, functional analysis reveals some patterns of gene expression common to the several forms of stress. Of critical importance, these genes include those involved in DNA methylation and histone modification, cell cycle regulation, and related global pathways of great relevance to epigenesis and the developmental origins of adult health and disease.
Collapse
Affiliation(s)
- Ciprian P Gheorghe
- Center for Perinatal Biology, Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | | |
Collapse
|
7
|
Mittal P, Hassan SS, Espinoza J, Kusanovic JP, Edwin S, Gotsch F, Erez O, Than NG, Mazaki-Tovi S, Romero R. The effect of gestational age and labor on placental growth hormone in amniotic fluid. Growth Horm IGF Res 2008; 18:174-179. [PMID: 17910928 PMCID: PMC2756214 DOI: 10.1016/j.ghir.2007.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 08/13/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Placental growth hormone (PGH) is produced by trophoblast. This hormone becomes detectable in maternal serum during the first trimester of pregnancy. Its concentration increases as term approaches and becomes undetectable within one hour of delivery. PGH has important biological properties, including somatogenic (growth promotion), lactogenic, and lipolytic activity. Recently, PGH has been detected in amniotic fluid (AF) of midtrimester pregnancies. The purpose of this study was to determine whether PGH concentrations in AF change with advancing gestational age and in labor at term. DESIGN AF was assayed for PGH concentrations in samples obtained from patients undergoing genetic amniocentesis between 14 and 18 weeks of gestation (n=67), normal patients at term not in labor (n=24), and pregnant women at term in labor (n=51). PGH concentrations were determined by ELISA. Non-parametric statistics were used for analysis. RESULTS (1) PGH was detected in all AF samples; (2) patients in the midtrimester had a higher median concentration of PGH in AF than those at term (midtrimester: median: 3140.5 pg/ml; range: 1124.2-13886.5 vs. term: median: 2021.1pg/ml; range: 181.6-8640.8; p<0.01); (3) there was no difference in the median concentration of PGH between women at term, not in labor, and those in labor (term not in labor: median: 2113.4pg/ml; range: 449.3-8640.8 vs. term in labor: median: 2004.1pg/ml; range: 181.6-8531.5; p=0.73). CONCLUSIONS (1) PGH is detectable in AF at both mid- and third trimesters; (2) the median AF concentration of PGH is significantly lower at term when compared to the second trimester; (3) labor at term is not associated with changes in the AF concentration of PGH. The role of this unique placental hormone now found in the fetal compartment requires further investigation.
Collapse
Affiliation(s)
- P Mittal
- Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mittal P, Espinoza J, Hassan SS, Kusanovic JP, Edwin SS, Nien JK, Gotsch F, Than NG, Erez O, Mazaki-Tovi S, Romero R. Placental growth hormone is increased in the maternal and fetal serum of patients with preeclampsia. J Matern Fetal Neonatal Med 2008; 20:651-9. [PMID: 17701665 PMCID: PMC2276338 DOI: 10.1080/14767050701463571] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Placental growth hormone (PGH) is a pregnancy-specific protein produced by syncytiotrophoblast and extravillous cytotrophoblast. No other cells have been reported to synthesize PGH Maternal. PGH Serum concentration increases with advancing gestational age, while quickly decreasing after delivery of the placenta. The biological properties of PGH include somatogenic, lactogenic, and lipolytic functions. The purpose of this study was to determine whether the maternal serum concentrations of PGH change in women with preeclampsia (PE), women with PE who deliver a small for gestational age neonate (PE + SGA), and those with SGA alone. STUDY DESIGN This cross-sectional study included maternal serum from normal pregnant women (n = 61), patients with severe PE (n = 48), PE + SGA (n = 30), and SGA alone (n = 41). Fetal cord blood from uncomplicated pregnancies (n = 16) and PE (n = 16) was also analyzed. PGH concentrations were measured by ELISA. Non-parametric statistics were used for analysis. RESULTS (1) Women with severe PE had a median serum concentration of PGH higher than normal pregnant women (PE: median 23,076 pg/mL (3473-94 256) vs. normal pregnancy: median 12 157 pg/mL (2617-34 016); p < 0.05), pregnant women who delivered an SGA neonate (SGA: median 10 206 pg/mL (1816-34 705); p < 0.05), as well as pregnant patients with PE and SGA (PE + SGA: median 11 027 pg/mL (1232-61 702); p < 0.05). (2) No significant differences were observed in the median maternal serum concentration of PGH among pregnant women with PE and SGA, SGA alone, and normal pregnancy (p > 0.05). (3) Compared to those of the control group, the median umbilical serum concentration of PGH was significantly higher in newborns of preeclamptic women (PE: median 356.1 pg/mL (72.6-20 946), normal pregnancy: median 128.5 pg/mL (21.6-255.9); p < 0.01). (4) PGH was detected in all samples of cord blood. CONCLUSIONS (1) PE is associated with higher median concentrations of PGH in both the maternal and fetal circulation compared to normal pregnancy. (2) Patients with PE + SGA had lower maternal serum concentrations of PGH than preeclamptic patients without SGA. (3) Contrary to previous findings, PGH was detectable in the fetal circulation. The observations reported herein are novel and suggest that PGH may play a role in the mechanisms of disease in preeclampsia and fetal growth restriction.
Collapse
Affiliation(s)
- Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jimmy Espinoza
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Samuel S. Edwin
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Jyh Kae Nien
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
9
|
Lea RG, Wooding P, Stewart I, Hannah LT, Morton S, Wallace K, Aitken RP, Milne JS, Regnault TR, Anthony RV, Wallace JM. The expression of ovine placental lactogen, StAR and progesterone-associated steroidogenic enzymes in placentae of overnourished growing adolescent ewes. Reproduction 2007; 133:785-96. [PMID: 17504922 DOI: 10.1530/rep-06-0294] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overnourishing pregnant adolescent sheep promotes maternal growth but reduces placental mass, lamb birth weight and circulating progesterone. This study aimed to determine whether altered progesterone reflected transcript abundance for StAR (cholesterol transporter) and the steroidogenic enzymes (Cyp11A1, Hsd3b and Cyp17). Circulating and placental expression of ovine placental lactogen (oPL) was also investigated. Adolescent ewes with singleton pregnancies were fed high (H) or moderate (M) nutrient intake diets to restrict or support placental growth. Experiment 1: peripheral progesterone and oPL concentrations were measured in H (n=7) and M (n=6) animals across gestation (days 7-140). Experiment 2: progesterone was measured to mid- (day 81; M: n=11, H: n=13) or late gestation (day 130; M: n=21, H: n=22), placental oPL, StAR and steroidogenic enzymes were measured by qPCR and oPL protein by immunohistochemistry. Experiment 1: in H vs M animals, term placental (P<0.05), total cotyledon (P<0.01) and foetal size (P<0.05) were reduced. Circulating oPL and progesterone were reduced at mid- (P<0.001, P<0.01) and late gestation (P<0.01, P<0.05) and oPL detection was delayed (P<0.01). Experiment 2: placental oPL was not altered by nutrition. In day 81 H animals, progesterone levels were reduced (P<0.001) but not related to placental or foetal size. Moreover, placental steroidogenic enzymes were unaffected. Day 130 progesterone (P<0.001) and Cyp11A1 (P<0.05) were reduced in H animals with intrauterine growth restriction (H+IUGR). Reduced mid-gestation peripheral oPL and progesterone may reflect altered placental differentiation and/or increased hepatic clearance respectively. Restricted placental growth and reduced biosynthesis may account for reduced progesterone in day 130 H+IUGR ewes.
Collapse
Affiliation(s)
- Richard G Lea
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gheorghe C, Mohan S, Longo LD. Gene expression patterns in the developing murine placenta. ACTA ACUST UNITED AC 2006; 13:256-62. [PMID: 16697941 DOI: 10.1016/j.jsgi.2006.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Successful placental development is crucial for optimal growth, maturation, and survival of the embryo/fetus. To examine genetic aspects of placental development, we investigated gene expression patterns in the murine placenta at embryonic day 10.5 (E10.5), E12.5, E15.5, and E17.5. METHODS By use of the Affymetrix MU74A array (Affymetrix, Santa Clara, CA), we measured expression levels for 12,473 probe sets. Using pairwise analysis we selected 622 probe sets, corresponding to 599 genes, that were up- or down-regulated by more than fourfold between time points E10.5 and E12.5, E12.5 and E15.5, E15.5 and E17.5. We analyzed and functionally annotated those genes regulated during development. RESULTS In comparing E10.5 to E12.5 we found that angiogenesis and fatty acid metabolism and transport related genes were up-regulated at E10.5, while genes involved in hormonal control and ribosomal proteins were up-regulated at E12.5. When comparing E12.5 to E15.5 we noted that genes involved in the cell cycle and RNA metabolism were strongly up-regulated at E12.5, while genes involved in cellular transport were up-regulated at E15.5. Finally, when comparing E15.5 to E17.5, we found genes related to cell cycle control, genes expressed in the nucleus and involved in RNA metabolism were up-regulated at E17.5. CONCLUSION Microarray analysis has allowed us to describe gene expression patterns and profiles in the developing mouse placenta. Further analysis has demonstrated that several functional classes are up- and down-regulated at specific time points in placental development. These changes may have significant implications for placental development in the human.
Collapse
Affiliation(s)
- Ciprian Gheorghe
- Center for Perinatal Biology, Department of Physiology, Loma Linda University, Loma Linda, California 92350, USA
| | | | | |
Collapse
|
11
|
Abstract
Placental growth hormone (PGH) has been known for 20 years. Nevertheless, its physiology is far from understood. In this review, basal aspects of PGH physiology are summarised and put in relation to the highly homologous pituitary growth hormone (GH). During normal pregnancy, PGH progressively replaces GH and reach maximum serum concentrations in the third trimester. A close relationship to insulin-like growth factor (IGF)-I and -II levels is observed. Furthermore, PGH levels are positively associated to fetal growth. The potential importance of growth hormone receptors and binding protein for PGH effects is discussed. Finally, the review outlines current knowledge of PGH in pathological pregnancies.
Collapse
Affiliation(s)
- Jens Fuglsang
- Gynaecological/Obstetrical Research Laboratory Y, Aarhus University Hospital, Skejby Sygehus, DK-8200 Aarhus N, Denmark.
| | | |
Collapse
|
12
|
Abstract
Production of growth promoting substances by the placenta is regulated differently from the way production of similar compounds is regulated by maternal organs in various cases. Gene duplication is one of the mechanisms that facilitated the evolution of placental specific endocrine activity. Cattle, sheep and goats, although evolutionarily related, differ significantly from each other in the way their placental growth hormone (GH) and prolactin (PRL)-like hormones have evolved. Cattle carry one copy of the GH gene and there is no evidence yet for expression of that single GH gene copy in the placenta. On the other hand, the ovine GH gene has been duplicated and both oGH copies are expressed in the placenta during early stages of gestation. Prolactin gene duplication in ruminants resulted in the formation of specific placental-expressed prolactin-related genes including the placental lactogen (PL) gene. In homologous state, ovine PL manifests PRL activity, but antagonizes GH activity. Ovine PL activity which can be mediated by PRL receptors or by hetero-dimerization of GH and PRL receptors, provide a novel regulatory mechanism for somatogenic activity dependent on the coexistence of both GH and PRL receptors in the same cells. Another mechanism for specific placental endocrine activity is silencing of the alleles through genetic imprinting. Disruption of genetic imprinting of placental genes has been proposed as one of the explanations for the loss of cloned fetuses generated by somatic cell nuclear transfer.
Collapse
Affiliation(s)
- E Gootwine
- Institute of Animal Science, ARO, The Volcani Center, POB 6, Bet Dagan 50250, Israel.
| |
Collapse
|