1
|
Arai Y, Sakase M, Fukushima M, Harayama H. Identification of isoforms of calyculin A-sensitive protein phosphatases which suppress full-type hyperactivation in bull ejaculated spermatozoa. Theriogenology 2019; 129:46-53. [PMID: 30798082 DOI: 10.1016/j.theriogenology.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/04/2019] [Accepted: 02/10/2019] [Indexed: 01/04/2023]
Abstract
In bull spermatozoa, extracellular Ca2+-dependent full-type hyperactivation, which is characterized by the asymmetrical beating in whole parts of the middle/principal pieces, is suppressed by calyculin A-sensitive protein phosphatases. The aim of this study was to identify isoforms of these protein phosphatases. Ejaculated spermatozoa were used for the investigation on effects of protein phosphatase inhibitors (calyculin A with high specificity for both of protein phosphatases 1 and 2A, and okadaic acid with relatively higher specificity for protein phosphatase 2A than protein phosphatase 1) on the induction of extracellular Ca2+-dependent full-type hyperactivation by incubation with CaCl2 and cAMP analog (cBiMPS). They were also used for the immunodetection of protein phosphatases 1α, 1β, 1γ, 2Aα and 2Aβ. Percentages of full-type hyperactivated spermatozoa significantly increased after incubation with calyculin A (10 nM) in a concentration-dependent manner of CaCl2 (0-3.42 mM), though only minor increases in the percentages of full-type hyperactivated spermatozoa were observed after incubation with okadaic acid (10 nM). Moreover, the immunodetection of protein phosphatase isoforms showed sperm connecting piece and flagellum included protein phosphatases 1α and 1γ, but did not do the other isoforms. These results suggest that calyculin A-sensitive and okadaic acid-less sensitive protein phosphatases (1α and 1γ) are suppressors for the extracellular Ca2+-dependent full-type hyperactivation in bull ejaculated spermatozoa.
Collapse
Affiliation(s)
- Yuka Arai
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Japan
| | - Mitsuhiro Sakase
- Hokubu Agricultural Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Japan
| | - Moriyuki Fukushima
- Hokubu Agricultural Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Japan
| | - Hiroshi Harayama
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Japan.
| |
Collapse
|
2
|
Cui J, Xie X. Non-coding RNAs: emerging regulatory factors in the derivation and differentiation of mammalian parthenogenetic embryonic stem cells. Cell Biol Int 2017; 41:476-483. [PMID: 28220611 DOI: 10.1002/cbin.10751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023]
Abstract
Parthenogenetic embryonic stem cells (PESCs) are ESCs derived from early parthenogenetic embryos. Haploid PESCs, containing haploid DNA, originate from a single sperm or occyte, while, diploid PESCs originate from two fused occytes. Most PESC lines used so far are diploid. PESCs exhibit representative pluripotent stem cell features, such as the capacity for self-renewal and the pariticular molecular signatures. Whereas, PESCs display distinctive properties, such as differential regulation of X-chromosome inactivation (XCI) and divergent monitor of genes involved in multiple biological processes. PESCs are considered promising in the regeneration medicine and developmental biology. Non-coding RNAs (ncRNAs), especially miRNAs and lncRNAs, have garnered increasing attention over the past 2 decades. They are now known to be involved in almost all cellular processes due to their full-range regulation of gene expression. Numerous studies have indicated that embryonic stem cells (ESCs) displayed distinct signatures of ncRNA genes, which play key roles in the pluripotency and self renewal of ESCs. However, the expression pattern of ncRNAs in PESCs and their roles in the derivation and differentiation of PESCs were rarely reported. In this paper, we reviewed recent research on the derivation and differentiation of PESCs and describe the emerging role of ncRNAs in these processes.
Collapse
Affiliation(s)
- Jihong Cui
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, China.,College of Life Science, Northwest University, Xi'an, 710069, China.,Institute for Integrated Medical Information (IIMI), Xi'an, 710018, China
| |
Collapse
|
3
|
Demirtas E, Holzer H, Son WY, Elizur S, Levin D, Chian RC, Tan SL. Willin vitromaturation ever be used in all IVF patients? ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.3.5.627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Chebotareva T, Taylor J, Mullins JJ, Wilmut I. Rat eggs cannot wait: Spontaneous exit from meiotic metaphase-II arrest. Mol Reprod Dev 2011; 78:795-807. [PMID: 21910153 DOI: 10.1002/mrd.21385] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 11/06/2022]
Abstract
Mammalian eggs await fertilisation while arrested at the second metaphase stage of meiotic division. A network of signalling pathways enables the establishment and maintenance of this metaphase-II arrest. In the absence of fertilisation, mammalian eggs can spontaneously exit metaphase II when parthenogenetically stimulated, or sometimes without any obvious stimulation. Ovulated rat eggs abortively release from metaphase-II arrest once removed from egg donors. Spontaneously activated rat eggs extrude the second polar body and proceed to the so-called metaphase III-'like' stage, with clumps of condensed chromatin scattered in the egg cytoplasm. It is still unclear what makes rat eggs susceptible to spontaneous activation; however, a vague picture of the signalling pathways involved in the process of spontaneous activation is beginning to emerge. Such cell cycle instability is one of the major reasons why it is more difficult to establish nuclear transfer in the rat. This review examines the known predisposing factors and biochemical mechanisms involved in spontaneous activation. The strategies used to prevent spontaneous metaphase-II release in rat eggs will also be discussed.
Collapse
Affiliation(s)
- Tatiana Chebotareva
- MRC Centre for Regenerative Medicine, Edinburgh University, Edinburgh, Scotland, UK.
| | | | | | | |
Collapse
|
5
|
Zheng LP, Huang J, Zhang DL, Xu LQ, Li F, Wu L, Liu ZY, Zheng YH. c-erbB2 and c-myb induce mouse oocyte maturation involving activation of maturation promoting factor. DNA Cell Biol 2011; 31:164-70. [PMID: 21793718 DOI: 10.1089/dna.2011.1219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proto-oncogenes are involved in cell growth, proliferation, and differentiation. In the present study, we investigated the roles and mediating pathways of proto-oncogenes c-erbB(2) and c-myb in mouse oocyte maturation by RT-PCR, real-time quantitative PCR, western blot, and recombinant proto-oncogene protein microinjection. Results showed that both c-erbB(2) and c-myb antisense oligodeoxynucleotides (c-erbB(2) ASODN and c-myb ASODN) inhibited germinal vesicle breakdown and the first polar body extrusion in a dose-dependent manner. However, microinjection of recombinant c-erbB(2) or c-myb protein into germinal vesicle stage oocytes stimulated oocyte meiotic maturation. In addition, the expression of c-erbB(2) and c-myb mRNA was detected in oocytes; and c-erbB(2) ASODN and c-myb ASODN inhibited c-erbB(2) mRNA and c-myb mRNA expression, respectively. Maturation promoting factor (MPF) inhibitor roscovitine did not affect the expression of c-erbB(2) mRNA and c-myb mRNA, but blocked the effects of recombinant c-erbB(2) and c-myb protein-induced oocyte maturation. Further, cyclin B1 protein expression in oocytes was remarkably inhibited by c-erbB(2) ASODN, c-myb ASODN, and roscovitine. Nonsense tat ODN had no effect on the expression of c-erbB(2), c-myb, and cyclin B1. These results suggest that c-erbB(2) and c-myb may induce oocyte maturation through mediating a pathway involving the activation of MPF.
Collapse
Affiliation(s)
- Li-Ping Zheng
- Medical Experimental Teaching Department, Nanchang University, Nanchang, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mondadori RG, Neves JP, Gonçalves PBD. Protein kinase C (PKC) role in bovine oocyte maturation and early embryo development. Anim Reprod Sci 2008; 107:20-9. [PMID: 17646065 DOI: 10.1016/j.anireprosci.2007.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Accepted: 06/11/2007] [Indexed: 11/29/2022]
Abstract
The aims of the present study were to determine the role of protein kinase C (PKC) on meiotic resumption and its effects on pronuclear formation and cleavage in the bovine. Oocytes were matured in the presence of 0, 1, 10 and 100 nM of phorbol 12-myristate 13-acetate (PMA), to evaluate the percentage of germinal vesicle breakdown. To study pronuclear formation and cleavage, oocytes were randomly distributed in four groups and matured in modified TCM-199 with LH and FSH (negative control); 10% of estrous cow serum (positive control); 100 nM of PMA (treatment); 100 nM of 4alpha-PDD (phorbol ester control). Oocytes were also matured in positive control medium, fertilized and transferred to KSOM with increasing concentrations of a PKC inhibitor. The protein profile and the presence of PKC at the end of maturation period were determined by SDS-PAGE followed by Silver Stain and Western blot, respectively. PMA stimulated meiotic resumption in a concentration-dependent manner. PKC stimulation during oocyte maturation caused an increase in pronuclear formation and did not cause parthenogenetic activation. Inhibitor of PKC (MyrPKC) inhibited cleavage in a dose-dependent and irreversible manner. A protein band around 74 kDa was not detected in PMA-treated oocytes and PKC was not detected by Western blot at the end of the maturation period. In conclusion, meiotic resumption was accelerated and the rate of oocytes with two pronuclei was increased when PKC was activated during oocyte maturation. Moreover, cleavage was inhibited in the presence of PMA.
Collapse
Affiliation(s)
- R G Mondadori
- Animal Reproduction Laboratory, Department of Veterinary Medicine, UPIS-Faculdades Integradas, SEPS 712/912, Brasilia, DF 70390-125, Brazil.
| | | | | |
Collapse
|
7
|
Nasreen N, Mohammed KA, Lai Y, Antony VB. Receptor EphA2 activation with ephrinA1 suppresses growth of malignant mesothelioma (MM). Cancer Lett 2007; 258:215-22. [PMID: 17949899 DOI: 10.1016/j.canlet.2007.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 11/30/2022]
Abstract
The objective of this study was to understand the possible mechanisms of activation of receptor EphA2 by its ligand ephrinA1 in malignant mesothelioma cell (MMC) growth. Activation of receptor EphA2 by its ligand ephrinA1 triggered the phosphorylation of EphA2. Ligand activation of EphA2 also induced phosphorylation of ERK1/2 and significantly decreased MMC proliferation. Ligand activated and ephrinA1 vector (pcDNA/EFNA1) transfected MMC demonstrated decreased clonal growth in 3-D matrigels when compared to resting MMC. These studies suggest that EphA2 activation by its ligand ephrinA1 transmits intracellular signals from cell membrane to nucleus via ERK1/2 signaling cascade and inhibits MM growth.
Collapse
Affiliation(s)
- Najmunnisa Nasreen
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Florida, P.O. Box 100225, Gainesville, FL, USA
| | | | | | | |
Collapse
|
8
|
Sirard MA, Desrosier S, Assidi M. In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology 2007; 68 Suppl 1:S71-6. [PMID: 17588652 DOI: 10.1016/j.theriogenology.2007.05.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is increasing evidence demonstrating that oocyte quality depends on the events that occur before germinal vesicle breakdown (GVBD), suggesting that the oocyte must accumulate the appropriate information for meiotic resumption fertilization and early embryonic development before chromosome condensation. This situation seems to prevail in large mammals and particularly in the bovine where we have more information than in other species. Signaling events at two different levels controls the changes that must take place for follicular growth and attainment of oocyte developmental competence. The first signaling event comes from the proper differentiation of the follicle as it normally occurs in the dominant follicle in preparation for ovulation. The second signaling event occurs as the process of follicle differentiation signals directly to the oocyte, possibly through the cumulus cells, that conditions are suitable for further embryo development. The first signal, follicular differentiation, becomes possible though a rise and fall of FSH in the circulation, while the second signal might be mimicked partially by the same hormone acting on the cumulus cells. Although FSH is likely involved in these two signaling events, the processes involved are quite different and analysis of gene expression in granulosa, cumulus and oocyte is starting to reveal the complexity of this system. The next challenge is to combine these two pathways into a functional signaling cascade. To be successful and obtain meaningful information, these genomic analyses must be developed and performed in precisely defined conditions of follicular growth and differentiation or culture conditions. Functional genomics already started with the study of function of several genes and genes families in the regulation of follicular growth and follicle-oocyte co-differentiation (i.e. IGF and BMP genes families, EGF).
Collapse
Affiliation(s)
- M-A Sirard
- Centre de Recherche en Biologie de la Reproduction, Department of Animal Sciences, Laval University, Pav. Comtois, Sainte-Foy, Québec, Canada G1K 7P4.
| | | | | |
Collapse
|
9
|
Tan X, Wang YC, Sun QY, Peng A, Chen DY, Tang YZ. Effects of MAP kinase pathway and other factors on meiosis ofUrechis unicinctus eggs. Mol Reprod Dev 2005; 71:67-76. [PMID: 15736126 DOI: 10.1002/mrd.20232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eggs of Urechis unicinctus Von Drasche, an echiuroid, are arrested at P-I stage in meiosis. The meiosis is reinitiated by fertilization. Immunoblotting analysis using anti-ERK2 and anti-phospho-MAPK antibodies revealed a 44 kDa MAP kinase species that was constantly expressed in U. unicinctus eggs, quickly phosphorylated after fertilization, and dephosphorylated slowly before the completion of meiosis I. Phosphorylation of the protein was not depressed by protein synthesis inhibitor Cycloheximide (CHX), but was depressed by the MEK1 inhibitor PD98059. Under PD98059 treatment, polar body extrusion was suppressed and the function of centrosome and spindle was abnormal though GVBD was not affected, indicating that MAP kinase cascade was important for meiotic division of U. unicinctus eggs. Other discovery includes: A23187 and OA could parthenogenetically activate U. unicinctus eggs and phosphorylated 44 kDa MAP kinase species, indicating that the effect of fertilization on reinitiating meiosis and phosphorylation of 44 kDa MAP kinase specie is mediated by raising intracellular free calcium and by phosphorylation of some proteins, and that phosphotase(s) sensitive to OA is responsible for arresting U. unicinctus eggs in prophase I. diC8, an activator of PKC, accelerated the process of U. unicinctus egg meiotic division after fertilization and accelerated the dephosphorylation of 44 kDa MAP kinase specie, which implied that the acceleration effect of PKC on meiotic division was mediated by inactivation of MAP kinase cascade. Elevating cAMP/PKA level in U. unicinctus eggs had no effect on meiotic division of the eggs.
Collapse
Affiliation(s)
- Xin Tan
- College of Life Sciences, Beijing Normal University, Beijing, P.R. China
| | | | | | | | | | | |
Collapse
|
10
|
Jiang JY, Tsang BK. Optimal Conditions for Successful In Vitro Fertilization and Subsequent Embryonic Development in Sprague-Dawley Rats1. Biol Reprod 2004; 71:1974-9. [PMID: 15317689 DOI: 10.1095/biolreprod.104.032839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present study was conducted to determine the optimal conditions for successful in vitro fertilization (IVF) in Sprague-Dawley (SD) rats. The IVF of oocytes from SD and Wistar rats was compared in different fertilization media (mR1ECM, IVF-20, and modified Krebs-Ringer bicarbonate solution [mKRB]), and IVF conditions were then optimized for oocytes of the SD strain. Results showed that in mR1ECM medium, fertilization rates were markedly lower in SD rats (15%) than in the Wistar strain (73%), although this response was significantly improved by increasing the NaCl concentration. In addition, fertilization rates in SD rats were higher in modified IVF-20 (73%) than in IVF-20 (18%) and mKRB (53%). In contrast, fertilization rates in Wistar rats were higher in IVF-20 and modified IVF-20 than in mKRB (78%, 74%, and 36%, respectively). Further investigation concerning the effects of the NaCl supplementation (10- 40 mM) in IVF-20 on the fertilization of oocytes in the SD strain indicated that significantly higher percentages of oocytes were fertilized in IVF-20 supplemented with 30 mM NaCl (66%) and developed to the blastocyst stage (47%) in vitro. After transfer, embryos derived from this IVF system developed to term at a percentage comparable to that of in vivo-fertilized controls. In conclusion, differences exist in optimal IVF conditions between rat strains, and a modified culture medium has been successfully developed for assessment of the developmental competence of oocytes in SD rats.
Collapse
Affiliation(s)
- Jin-Yi Jiang
- Reproductive Biology Unit and Division of Reproductive Medicine, Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, University of Ottawa, Ontario, Canada K1Y 4E9
| | | |
Collapse
|
11
|
Fan HY, Sun QY. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Reprod 2003; 70:535-47. [PMID: 14613897 DOI: 10.1095/biolreprod.103.022830] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases that are widely distributed in eukaryotic cells. Studies in the last decade revealed that MAPK cascade plays pivotal roles in regulating the meiotic cell cycle progression of oocytes. In mammalian species, activation of MAPK in cumulus cells is necessary for gonadotropin-induced meiotic resumption of oocytes, while MAPK activation is not required for spontaneous meiotic resumption. After germinal vesicle breakdown (GVBD), MAPK is involved in the regulation of microtubule organization and meiotic spindle assembly. The activation of this kinase is essential for the maintenance of metaphase II arrest, while its inactivation is a prerequisite for pronuclear formation after fertilization or parthenogenetic activation. MAPK cascade interacts extensively with other protein kinases such as maturation-promoting factor, protein kinase A, protein kinase C, and calmodulin-dependent protein kinase II, as well as with protein phosphatases in oocyte meiotic cell cycle regulation. The cross talk between MAPK cascade and other protein kinases is discussed. The review also addresses unsolved problems and discusses future directions.
Collapse
Affiliation(s)
- Heng-Yu Fan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | | |
Collapse
|
12
|
Ito J, Shimada M, Terada T. Effect of protein kinase C activator on mitogen-activated protein kinase and p34(cdc2) kinase activity during parthenogenetic activation of porcine oocytes by calcium ionophore. Biol Reprod 2003; 69:1675-82. [PMID: 12890733 DOI: 10.1095/biolreprod.103.018036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of this study was to elucidate the role of a [Ca2+]i rise and protein kinase C (PKC) activation on decreases of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase activity during parthenogenetic activation of porcine oocytes. In oocytes treated with 50 microM Ca2+ ionophore, degradations of both p34(cdc2) kinase and MAP kinase activity were observed and half of these oocytes formed pronuclei. However, a supplement of PKC inhibitor, calphostin C, after 50 microM Ca2+ ionophore treatment, was sufficient to inhibit the inactivation of MAP kinase and pronuclear formation in the oocytes. These results showed that PKC played an important role in Ca2+-induced oocyte activation. On the other hand, 10 microM Ca2+ ionophore treatment could not affect the MAP kinase activity but induced a transient decrease of p34(cdc2) kinase activity, which resulted in recovery of p34(cdc2) kinase activity and progression to meiotic metaphase III stage. To investigate the effects of PKC activator on oocytes treated with 10 microM Ca2+ ionophore, matured oocytes were cultured with phorbol 12-myriatate 13-acetate (PMA), after 10 microM Ca2+ ionophore treatment. The additional treatment suppressed the recovery of p34(cdc2) kinase activity and rapidly induced a decrease of MAP kinase activity, and these low activities were maintained until 12-h cultivation. As a result, a significantly higher percentage of these oocytes (67%) had pronuclei at 12-h cultivation. Moreover, PMA treatment without Ca2+ ionophore treatment effectively led to a decrease of MAP kinase activity in a dose-dependent manner but not p34(cdc2) kinase activity in matured porcine oocytes. In conclusion, the parthenogenetic activation of porcine oocytes was mediated by the inactivation of p34(cdc2) kinase via a calcium-dependent pathway and thereafter by the inactivation of MAP kinase via a PKC-dependent pathway.
Collapse
Affiliation(s)
- Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | | | | |
Collapse
|
13
|
Fan HY, Huo LJ, Meng XQ, Zhong ZS, Hou Y, Chen DY, Sun QY. Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes. Biol Reprod 2003; 69:1552-64. [PMID: 12826587 DOI: 10.1095/biolreprod.103.015685] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Calcium signal is important for the regulation of meiotic cell cycle in oocytes, but its downstream mechanism is not well known. The functional roles of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes were studied by drug treatment, Western blot analysis, kinase activity assay, indirect immunostaining, and confocal microscopy. The results indicated that meiotic resumption of both cumulus-enclosed and denuded oocytes was prevented by CaMKII inhibitor KN-93, Ant-AIP-II, or CaM antagonist W7 in a dose-dependent manner, but only germinal vesicle breakdown (GVBD) of denuded oocytes was inhibited by membrane permeable Ca2+ chelator BAPTA-AM. When the oocytes were treated with KN-93, W7, or BAPTA-AM after GVBD, the first polar body emission was inhibited. A quick elevation of CaMKII activity was detected after electrical activation of mature pig oocytes, which could be prevented by the pretreatment of CaMKII inhibitors. Treatment of oocytes with KN-93 or W7 resulted in the inhibition of pronuclear formation. The possible regulation of CaMKII on maturation promoting factor (MPF), mitogen-activated protein kinase (MAPK), and ribosome S6 protein kinase (p90rsk) during meiotic cell cycles of pig oocytes was also studied. KN-93 and W7 prevented the accumulation of cyclin B and the full phosphorylation of MAPK and p90rsk during meiotic maturation. When CaMKII activity was inhibited during parthenogenetic activation, cyclin B, the regulatory subunit of MPF, failed to be degraded, but MAPK and p90rsk were quickly dephosphorylated and degraded. Confocal microscopy revealed that CaM and CaMKII were localized to the nucleus and the periphery of the GV stage oocytes. Both proteins were concentrated to the condensed chromosomes after GVBD. In oocytes at the meiotic metaphase MI or MII stage, CaM distributed on the whole spindle, but CaMKII was localized only on the spindle poles. After transition into anaphase, both proteins were translocated to the area between separating chromosomes. All these results suggest that CaMKII is a multifunctional regulator of meiotic cell cycle and spindle assembly and that it may exert its effect via regulation of MPF and MAPK/p90rsk activity during the meiotic maturation and activation of pig oocytes.
Collapse
Affiliation(s)
- Heng-Yu Fan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | |
Collapse
|
14
|
|