1
|
García-García VA, Alameda JP, Fernández-Aceñero MJ, Navarro M, García-Escudero R, Page A, Mateo-Gallego R, Paramio JM, Ramírez Á, García-Fernández RA, Bravo A, Casanova ML. Nuclear versus cytoplasmic IKKα signaling in keratinocytes leads to opposite skin phenotypes and inflammatory responses, and a different predisposition to cancer. Oncogene 2024:10.1038/s41388-024-03203-0. [PMID: 39511409 DOI: 10.1038/s41388-024-03203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
IKKα is known as an essential protein for skin homeostasis. However, the lack of suitable models to investigate its functions in the skin has led to IKKα being mistakenly considered as a suppressor of non-melanoma skin cancer (NMSC) development. In this study, using our previously generated transgenic mouse models expressing exogenous IKKα in the cytoplasm (C-IKKα mice) or in the nucleus (N-IKKα mice) of basal keratinocytes, we demonstrate that at each subcellular localization, IKKα differently regulates signaling pathways important for maintaining the balance between keratinocyte proliferation and differentiation, and for the cutaneous inflammatory response. In addition, each type of IKKα-transgenic mice shows different predisposition to the development of spontaneous NMSC. Specifically, N-IKKα mice display an atrophic epidermis with exacerbated terminal differentiation, signs of premature skin aging, premalignant lesions, and develop squamous cell carcinomas (SCCs). Conversely, C-IKKα mice, whose keratinocytes are nearly devoid of endogenous nuclear IKKα, do not develop skin SCCs, although they exhibit hyperplastic skin with deficiencies in terminal epidermal differentiation, chronic cutaneous inflammation, and constitutive activation of STAT-3 and NF-κB signaling pathways. Altogether, our data demonstrate that alterations in the localization of IKKα in the nucleus or cytoplasm of keratinocytes cause opposite skin changes and differentially predispose to the growth of skin SCCs.
Collapse
Affiliation(s)
- Verónica A García-García
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
| | - Josefa P Alameda
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | | | - Manuel Navarro
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Ramón García-Escudero
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Angustias Page
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Raúl Mateo-Gallego
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Ángel Ramírez
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Rosa A García-Fernández
- Department of Animal Medicine and Surgery, Facultad de Veterinaria, UCM, 28040, Madrid, Spain
| | - Ana Bravo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - M Llanos Casanova
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain.
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
2
|
Liyanage SD, Bowleg JL, Gwaltney SR. Computational modeling to understand the interaction of TMPyP4 with a G-quadruplex. J Biomol Struct Dyn 2024:1-7. [PMID: 39439381 DOI: 10.1080/07391102.2024.2417378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/01/2024] [Indexed: 10/25/2024]
Abstract
The potential of small molecules to bind to G-quadruplex-forming sequences in oncogene promoter regions, thereby regulating their structural equilibrium, has been explored as a promising strategy for cancer chemotherapy. The model drug 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4) has been shown to have an affinity toward G-quadruplex DNA. However, the precise sites and modes of TMPyP4 binding to G-quadruplex DNA remain a subject of debate. In this study, we focus on identifying potential binding sites on a mutant c-MYC sequence known to fold into a single 1:2:1 loop isomer quadruplex. Our findings provide insights into the 4:1 stoichiometry reported for TMPyP4 binding to this G-quadruplex. Binding enthalpy and free energy calculations show that intercalation of a TMPyP4 molecule between the quadruplexes is thermodynamically favorable. Our calculations suggest that two of the binding sites are located at the top and bottom of the quadruplex, respectively, while the remaining two are likely intercalations.
Collapse
Affiliation(s)
- Senal D Liyanage
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA
- Center for Computational Sciences, Mississippi State University, Mississippi State, MS, USA
| | | | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA
- Center for Computational Sciences, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
3
|
Pak TF, Pitt-Francis J, Baker RE. A mathematical framework for the emergence of winners and losers in cell competition. J Theor Biol 2024; 577:111666. [PMID: 37956955 DOI: 10.1016/j.jtbi.2023.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Cell competition is a process in multicellular organisms where cells interact with their neighbours to determine a "winner" or "loser" status. The loser cells are eliminated through programmed cell death, leaving only the winner cells to populate the tissue. Cell competition is context-dependent; the same cell type can win or lose depending on the cell type it is competing against. Hence, winner/loser status is an emergent property. A key question in cell competition is: how do cells acquire their winner/loser status? In this paper, we propose a mathematical framework for studying the emergence of winner/loser status based on a set of quantitative criteria that distinguishes competitive from non-competitive outcomes. We apply this framework in a cell-based modelling context, to both highlight the crucial role of active cell death in cell competition and identify the factors that drive cell competition.
Collapse
Affiliation(s)
- Thomas F Pak
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
| | - Joe Pitt-Francis
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
4
|
Lim Y. Transcription factors in microcephaly. Front Neurosci 2023; 17:1302033. [PMID: 38094004 PMCID: PMC10716367 DOI: 10.3389/fnins.2023.1302033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024] Open
Abstract
Higher cognition in humans, compared to other primates, is often attributed to an increased brain size, especially forebrain cortical surface area. Brain size is determined through highly orchestrated developmental processes, including neural stem cell proliferation, differentiation, migration, lamination, arborization, and apoptosis. Disruption in these processes often results in either a small (microcephaly) or large (megalencephaly) brain. One of the key mechanisms controlling these developmental processes is the spatial and temporal transcriptional regulation of critical genes. In humans, microcephaly is defined as a condition with a significantly smaller head circumference compared to the average head size of a given age and sex group. A growing number of genes are identified as associated with microcephaly, and among them are those involved in transcriptional regulation. In this review, a subset of genes encoding transcription factors (e.g., homeobox-, basic helix-loop-helix-, forkhead box-, high mobility group box-, and zinc finger domain-containing transcription factors), whose functions are important for cortical development and implicated in microcephaly, are discussed.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Science Education, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
5
|
Sharma P, Sweta Jha N. Enhanced antioxidant and cytotoxic activity of ferrocenyl-substituted curcumin via stabilization of promoter c-MYC silencer element. J Biomol Struct Dyn 2023; 41:9539-9550. [PMID: 36345790 DOI: 10.1080/07391102.2022.2143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
We are reporting a successful attachment of ferrocenyl moiety at the active methylene carbon atom of β-diketone of curcumin via Knoevenagel condensation reaction, to utilize the optimum selectivity toward biological targets. The formation of ferrocenyl curcumin (i.e., Fc-cur) has been confirmed by 1H NMR, 13C NMR, and FT-IR spectra analysis. Further, circular dichroism (CD) spectroscopy, thermal denaturation, absorption, and fluorescence spectroscopy have been used to understand the association of ligand (i.e., Fc-cur) with G-quadruplex. Based on these analysis, the binding mechanism of the ligand i.e., Fc-cur to the parallel and hybrid topology present in different G-quadruplex has been proposed. Further, the binding and modes of the interaction of Fc-cur with Pu27 c-MYC silencer element and H-telo G-quadruplex have unravelled selective and stronger binding via intercalation with the parallel topology of c-MYC G-quadruplex rather than the hybrid topology of H-telo quadruplex. The manifestation of better antioxidant activity of Fc-cur has been demonstrated by showing a stronger radical scavenging capability than pristine curcumin. The cytotoxicity analysis of the proposed ligand i.e., Fc-cur against Vero and HeLa cells have clearly reflected the nontoxicity toward Vero cells and quite effective against the HeLa cells which reduces the cancer cells more effectively than the already reported for curcumin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Chemistry, National Institute of Technology, Patna, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, Patna, India
| |
Collapse
|
6
|
Sharma P, Jha NS. Mechanistic aspects of binding of telomeric over parallel G-quadruplex with novel synthesized Knoevenagel condensate 4-nitrobenzylidene curcumin. J Mol Recognit 2023; 36:e3041. [PMID: 37210661 DOI: 10.1002/jmr.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
The introduction of small ligands to stabilise G-quadruplex DNA structures is a promising method for developing anti-cancer drugs. It is challenging to stabilise the G-quadruplex structure, which can take on a variety of topologies and is known to inhibit specific biological processes. To achieve this, 4-nitrobenzylidene curcumin (NBC), the Knoevenagel condensate of curcumin, was synthesized and characterized. The interaction of 4-nitrobenzylidene curcumin with parallel (c-MYC) and hybrid (H-telo) G-quadruplex structures was studied by circular dichroism (CD) spectroscopy, UV-thermal melting, differential scanning calorimetry (DSC), absorption spectroscopy, fluorescence spectroscopy and docking studies. The outcome demonstrates that, in a K+ -rich solution, the ligand NBC can stabilise the parallel c-MYC and hybrid H-telo G-quadruplex structures by 5°C. The absorption and fluorescence studies show that the ligand NBC binds to c-MYC and H-telo with affinities of 0.3 × 106 M-1 and 0.6 × 106 M-1 , respectively. The ligand interacts with the terminal G-quartet of the quadruplex structure via intercalation and the groove mode of binding, well supported by docking studies as well. NBC has more potent antioxidant activity as compared to the curcumin and 4-nitro benzaldehyde. It was also found to have higher cytotoxic activity towards cell line such as HeLa and MCF-7, while less cytotoxic for healthy Vero cells. Overall, the results show that the Knoevenagel product of curcumin can work better as a G-quadruplex binder and could be used as a possible treatment.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Chemistry, National Institute of Technology, Patna, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, Patna, India
| |
Collapse
|
7
|
Alekseyenko AA, Zee BM, Dhoondia Z, Kang H, Makofske JL, Kuroda MI. Cell state-dependent chromatin targeting in NUT carcinoma. Genetics 2023; 224:iyad083. [PMID: 37119804 PMCID: PMC10691748 DOI: 10.1093/genetics/iyad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Aberrant transcriptional programming and chromatin dysregulation are common to most cancers. Whether by deranged cell signaling or environmental insult, the resulting oncogenic phenotype is typically manifested in transcriptional changes characteristic of undifferentiated cell growth. Here we analyze targeting of an oncogenic fusion protein, BRD4-NUT, composed of 2 normally independent chromatin regulators. The fusion causes the formation of large hyperacetylated genomic regions or megadomains, mis-regulation of c-MYC, and an aggressive carcinoma of squamous cell origin. Our previous work revealed largely distinct megadomain locations in different NUT carcinoma patient cell lines. To assess whether this was due to variations in individual genome sequences or epigenetic cell state, we expressed BRD4-NUT in a human stem cell model and found that megadomains formed in dissimilar patterns when comparing cells in the pluripotent state with the same cell line following induction along a mesodermal lineage. Thus, our work implicates initial cell state as the critical factor in the locations of BRD4-NUT megadomains. These results, together with our analysis of c-MYC protein-protein interactions in a patient cell line, are consistent with a cascade of chromatin misregulation underlying NUT carcinoma.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Disease Biology Department, Triana Biomedicine, Lexington, MA 02421, USA
| | - Barry M Zee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Proteomics Department, Cell Signaling Technology, Danvers, MA 01923, USA
| | - Zuzer Dhoondia
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica L Makofske
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Oncology Department, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Alekseyenko AA, Zee BM, Dhoondia Z, Kang H, Makofske JL, Kuroda MI. Cell state-dependent chromatin targeting in NUT carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537367. [PMID: 37131839 PMCID: PMC10153199 DOI: 10.1101/2023.04.18.537367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aberrant transcriptional programming and chromatin dysregulation are common to most cancers. Whether by deranged cell signaling or environmental insult, the resulting oncogenic phenotype is typically manifested in transcriptional changes characteristic of undifferentiated cell growth. Here we analyze targeting of an oncogenic fusion protein, BRD4-NUT, composed of two normally independent chromatin regulators. The fusion causes the formation of large hyperacetylated genomic regions or megadomains, mis-regulation of c-MYC , and an aggressive carcinoma of squamous cell origin. Our previous work revealed largely distinct megadomain locations in different NUT carcinoma patient cell lines. To assess whether this was due to variations in individual genome sequences or epigenetic cell state, we expressed BRD4-NUT in a human stem cell model and found that megadomains formed in dissimilar patterns when comparing cells in the pluripotent state with the same cell line following induction along a mesodermal lineage. Thus, our work implicates initial cell state as the critical factor in the locations of BRD4-NUT megadomains. These results, together with our analysis of c-MYC protein-protein interactions in a patient cell line, are consistent with a cascade of chromatin misregulation underlying NUT carcinoma.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
- Triana Biomedicine, Lexington, MA
| | - Barry M Zee
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
- Cell Signaling Technology, Danvers, MA
| | - Zuzer Dhoondia
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
| | - Hyuckjoon Kang
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
| | - Jessica L Makofske
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
- Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Mitzi I Kuroda
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Bajpai S, Jin HR, Mucha B, Diehl JA. Ubiquitylation of unphosphorylated c-myc by novel E3 ligase SCF Fbxl8. Cancer Biol Ther 2022; 23:348-357. [PMID: 35438057 PMCID: PMC9037475 DOI: 10.1080/15384047.2022.2061279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Overexpression of c-myc via increased transcription or decreased protein degradation is common to many cancer etiologies. c-myc protein degradation is mediated by ubiquitin-dependent degradation, and this ubiquitylation is regulated by several E3 ligases. The primary regulator is Fbxw7, which binds to a phospho-degron within c-myc. Here, we identify a new E3 ligase for c-myc, Fbxl8 (F-box and Leucine Rich Repeat Protein 8), as an adaptor component of the SCF (Skp1-Cullin1-F-box protein) ubiquitin ligase complex, for selective c-myc degradation. SCFFbxl8 binds and ubiquitylates c-myc, independent of phosphorylation, revealing that it regulates a pool of c-myc distinct from SCFFbxw7. Loss of Fbxl8 increases c-myc protein levels, protein stability, and cell division, while overexpression of Fbxl8 reduces c-myc protein levels. Concurrent loss of Fbxl8 and Fbxw7 triggers a robust increase in c-myc protein levels consistent with targeting distinct pools of c-myc. This work highlights new mechanisms regulating c-myc degradation.
Collapse
Affiliation(s)
- Sagar Bajpai
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Hong Ri Jin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bartosz Mucha
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - J. Alan Diehl
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
STIL Promotes Tumorigenesis of Bladder Cancer by Activating PI3K/AKT/mTOR Signaling Pathway and Targeting C-Myc. Cancers (Basel) 2022; 14:cancers14235777. [PMID: 36497260 PMCID: PMC9739707 DOI: 10.3390/cancers14235777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
SCL/TAL1 interrupting locus (STIL) regulates centriole replication and causes chromosome instability, which is closely related to malignant tumors. The purpose of our study was to investigate the role of STIL in bladder cancer (BC) tumorigenesis for the first time. The public database indicated that STIL is highly expressed and correlated with the cell cycle in BC. Immunohistochemistry staining showed that STIL expression is significantly elevated in BC tissues compared with paracancer tissues. CRISPR-Cas9 gene editing technology was used to induce BC cells to express STIL-specific sgRNA, revealing a significantly delayed growth rate in STIL knockout BC cells. Moreover, cell cycle arrest in the G0/G1 phase was triggered by decreasing STIL, which led to delayed BC cell growth in vitro and in vivo. Mechanically, STIL knockout inhibited the PI3K/AKT/mTOR pathway and down-regulated the expression of c-myc. Furthermore, SC79 (AKT activating agent) partially reversed the inhibitory effects of STIL knockout on the proliferation and migration of BC cells. In conclusion, STIL enhanced the PI3K/AKT/mTOR pathway, resulting in increased expression of c-myc, ultimately promoting BC occurrence and progression. These results indicate that STIL might be a potential target for BC patients.
Collapse
|
11
|
Schütz S, Bergsdorf C, Goretzki B, Lingel A, Renatus M, Gossert AD, Jahnke W. The disordered MAX N-terminus modulates DNA binding of the transcription factor MYC:MAX. J Mol Biol 2022; 434:167833. [PMID: 36174765 DOI: 10.1016/j.jmb.2022.167833] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/15/2022]
Abstract
The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using Nuclear Magnetic resonance (NMR) spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Benedikt Goretzki
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| |
Collapse
|
12
|
Zhang J, Zhu M, Li Q, Tang T, Wen L, Zhong J, Zhang R, Yu XQ, Lu Y. Genome-wide identification and characterization of basic helix-loop-helix transcription factors in Spodoptera litura upon pathogen infection. INSECT SCIENCE 2022; 29:977-992. [PMID: 34687267 DOI: 10.1111/1744-7917.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors play an important role in a wide range of metabolic and developmental processes in eukaryotes, and bHLH proteins also participate in immune responses, especially in plants. However, their roles in insects upon entomopathogen infection are unknown. In this study, 54 bHLH genes in 41 families were identified in a polyphagous pest, Spodoptera litura, including a new bHLH gene in group B, which is specifically present in Lepidoptera and was thus named Lep. The conserved amino acids in the bHLH domain, structural architecture, and chromosomal distribution of bHLH genes in S. litura were analyzed. The bHLH genes in Plutella xylostella and Apis mellifera were also updated, and genome-wide comparison and phylogenetic analysis of bHLH members in 5 holometabolous insects were performed. The expression profiles of S. litura bHLH (SlbHLH) genes in 3 tissues at different developmental stages and their responses to S. litura nucleopolyhedrovirus (SpltNPV), Nomuraea rileyi (Nr), and Bacillus thuringiensis (Bt) infection were investigated. More SlbHLHs in group B were expressed and differentially expressed during pathogen infections, and SlbHLHs tended to be downregulated in the midgut of S. litura larvae after B. thuringiensis treatment. Our study provides an overview of bHLH family members in S. litura and their responses to different pathogens used for pest biocontrol. These findings on bHLH members may contribute to uncovering the mechanism of host-pathogen interaction.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mengyao Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jielai Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Boija A, Klein IA, Young RA. Biomolecular Condensates and Cancer. Cancer Cell 2021; 39:174-192. [PMID: 33417833 PMCID: PMC8721577 DOI: 10.1016/j.ccell.2020.12.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Malignant transformation is characterized by dysregulation of diverse cellular processes that have been the subject of detailed genetic, biochemical, and structural studies, but only recently has evidence emerged that many of these processes occur in the context of biomolecular condensates. Condensates are membrane-less bodies, often formed by liquid-liquid phase separation, that compartmentalize protein and RNA molecules with related functions. New insights from condensate studies portend a profound transformation in our understanding of cellular dysregulation in cancer. Here we summarize key features of biomolecular condensates, note where they have been implicated-or will likely be implicated-in oncogenesis, describe evidence that the pharmacodynamics of cancer therapeutics can be greatly influenced by condensates, and discuss some of the questions that must be addressed to further advance our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Jana J, Weisz K. A Thermodynamic Perspective on Potential G-Quadruplex Structures as Silencer Elements in the MYC Promoter. Chemistry 2020; 26:17242-17251. [PMID: 32761687 PMCID: PMC7839732 DOI: 10.1002/chem.202002985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Indexed: 01/10/2023]
Abstract
Multiple G‐tracts within the promoter region of the c‐myc oncogene may fold into various G‐quadruplexes with the recruitment of different tracts and guanosine residues for the G‐core assembly. Thermodynamic profiles for the folding of wild‐type and representative truncated as well as mutated sequences were extracted by comprehensive DSC experiments. The unique G‐quadruplex involving consecutive G‐tracts II–V with formation of two one‐nucleotide and one central two‐nucleotide propeller loop, previously proposed to be the biologically most relevant species, was found to be the most stable fold in terms of its Gibbs free energy of formation at ambient temperatures. Its stability derives from its short propeller loops but also from the favorable type of loop residues. Whereas quadruplex folds with long propeller loops are significantly disfavored, a snap‐back loop structure formed by incorporating a 3’‐terminal guanosine into the empty position of a tetrad seems highly competitive based on its thermodynamic stability. However, its destabilization by extending the 3’‐terminus questions the significance of such a species under in vivo conditions.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
15
|
Salimi A, Jamali Z, Atashbar S, Khezri S, Ghorbanpour AM, Etefaghi N. Pathogenic Mechanisms and Therapeutic Implication in Nickel-Induced Cell Damage. Endocr Metab Immune Disord Drug Targets 2020; 20:968-984. [DOI: 10.2174/1871530320666200214123118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Nickel (Ni) is mostly applied in a number of industrial areas such as printing
inks, welding, alloys, electronics and electrical professions. Occupational or environmental exposure to
nickel may lead to cancer, allergy reaction, nephrotoxicity, hepatotoxicity, neurotoxicity, as well as
cell damage, apoptosis and oxidative stress.
Methods:
In here, we focused on published studies about cell death, carcinogenicity, allergy reactions
and neurotoxicity, and promising agents for the prevention and treatment of the toxicity by Ni.
Results:
Our review showed that in the last few years, more researches have focused on reactive oxygen
species formation, oxidative stress, DNA damages, apoptosis, interaction with involving receptors
in allergy and mitochondrial damages in neuron induced by Ni.
Conclusion:
The collected data in this paper provide useful information about the main toxicities induced
by Ni, also, their fundamental mechanisms, and how to discover new ameliorative agents for
prevention and treatment by reviewing agents with protective and therapeutic consequences on Ni
induced toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir M. Ghorbanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nahid Etefaghi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
16
|
Oon ML, Hoppe MM, Fan S, Phyu T, Phuong HM, Tan SY, Hue SSS, Wang S, Poon LM, Chan HLE, Lee J, Chee YL, Chng WJ, de Mel S, Liu X, Jeyasekharan AD, Ng SB. The contribution of MYC and PLK1 expression to proliferative capacity in diffuse large B-cell lymphoma. Leuk Lymphoma 2019; 60:3214-3224. [PMID: 31259656 DOI: 10.1080/10428194.2019.1633629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Polo-like kinase-1 (PLK1) regulates the MYC-dependent kinome in aggressive B-cell lymphoma. However, the role of PLK1 and MYC toward proliferation in diffuse large B-cell lymphoma (DLBCL) is unknown. We use multiplexed fluorescent immunohistochemistry (fIHC) to evaluate the co-localization of MYC, PLK1 and Ki67 to study their association with proliferation in DLBCL. The majority (98%, 95% CI 95-100%) of MYC/PLK1-double positive tumor cells expressed Ki67, underscoring the key role of the MYC/PLK1 circuit in proliferation. However, only 38% (95% CI 23-40%) and 51% (95% CI 46-51%) of Ki67-positive cells expressed MYC and PLK1, respectively. Notably, 40% (95% CI 26-43%) of Ki67-positive cells are MYC- and PLK-negative. A stronger correlation exists between PLK1 and Ki67 expression (R = 0.74, p < .001) than with MYC and Ki67 expression (R = 0.52, p < .001). Overall, the results indicate that PLK1 has a higher association than MYC in DLBCL proliferation and there are mechanisms besides MYC and PLK1 influencing DLBCL proliferation.
Collapse
Affiliation(s)
- Ming Liang Oon
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
| | - Michal M Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - The Phyu
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hoang M Phuong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo-Yong Tan
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- A*STAR, Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
- A*STAR, Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
| | - Li M Poon
- Department of Hematology-Oncology, National University Cancer Institute Singapore, National University Hospital, National University Health System, Singapore, Singapore
| | - Hian L E Chan
- Department of Hematology-Oncology, National University Cancer Institute Singapore, National University Hospital, National University Health System, Singapore, Singapore
| | - Joanne Lee
- Department of Hematology-Oncology, National University Cancer Institute Singapore, National University Hospital, National University Health System, Singapore, Singapore
| | - Yen L Chee
- Department of Hematology-Oncology, National University Cancer Institute Singapore, National University Hospital, National University Health System, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute Singapore, National University Hospital, National University Health System, Singapore, Singapore
| | - Sanjay de Mel
- Department of Hematology-Oncology, National University Cancer Institute Singapore, National University Hospital, National University Health System, Singapore, Singapore
| | - Xin Liu
- Department of Hematology-Oncology, National University Cancer Institute Singapore, National University Hospital, National University Health System, Singapore, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute Singapore, National University Hospital, National University Health System, Singapore, Singapore
| | - Siok-Bian Ng
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Molecular switch from MYC to MYCN expression in MYC protein negative Burkitt lymphoma cases. Blood Cancer J 2019; 9:91. [PMID: 31748534 PMCID: PMC6868231 DOI: 10.1038/s41408-019-0252-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
MYC is the most altered oncogene in human cancer, and belongs to a large family of genes, including MYCN and MYCL. Recently, while assessing the degree of correlation between MYC gene rearrangement and MYC protein expression in aggressive B-cell lymphomas, we observed few Burkitt lymphoma (BL) cases lacking MYC protein expression despite the translocation involving the MYC gene. Therefore, in the present study we aimed to better characterize such cases. Our results identified two sub-groups of MYC protein negative BL: one lacking detectable MYC protein expression but presenting MYCN mRNA and protein expression; the second characterized by the lack of both MYC and MYCN proteins but showing MYC mRNA. Interestingly, the two sub-groups presented a different pattern of SNVs affecting MYC gene family members that may induce the switch from MYC to MYCN. Particulary, MYCN-expressing cases show MYCN SNVs at interaction interface that stabilize the protein associated with loss-of-function of MYC. This finding highlights MYCN as a reliable diagnostic marker in such cases. Nevertheless, due to the overlapping clinic, morphology and immunohistochemistry (apart for MYC versus MYCN protein expression) of both sub-groups, the described cases represent bona fide BL according to the current criteria of the World Health Organization.
Collapse
|
18
|
Li Y, Li X, Pu J, Yang Q, Guan H, Ji M, Shi B, Chen M, Hou P. c-Myc Is a Major Determinant for Antitumor Activity of Aurora A Kinase Inhibitor MLN8237 in Thyroid Cancer. Thyroid 2018; 28:1642-1654. [PMID: 30226440 DOI: 10.1089/thy.2018.0183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: c-Myc is overexpressed in different types of cancer, including thyroid cancer, and has been considered undruggable. There is evidence showing that MLN8237, a type of aurora A kinase (AURKA) inhibitor, destabilizes c-Myc proteins in liver cancer cells through disruption of the c-Myc/AURKA complex. However, the role of MLN8237 in thyroid cancer remains largely unclear. The aims of this study were to test the therapeutic potential of MLN8237 in thyroid cancer, and to analyze determinant factors affecting the response of thyroid cancer cells to MLN8237 and clarify the corresponding mechanism. Methods: The phenotypic effects of MLN8237 in thyroid cancer cells were evaluated through a series of in vitro and in vivo experiments, and the mechanism of c-Myc affecting MLN8237 response were explored using Western blot, ubiquitination, and cycloheximide chase assays. Results: The data show that the levels of c-Myc protein were strongly associated with MLN8237 cellular response in thyroid cancer cells. Only the cells with high c-Myc expression exhibited growth inhibition upon MLN8237 treatment. However, MLN8237 barely affected the growth of those with low c-Myc expression. Mechanistically, MLN8237 dramatically promoted proteasomal degradation of c-Myc proteins through disruption of the c-Myc/AURKA complex in the cells with high c-Myc expression. A similar antitumor activity of MLN8237 was also found in xenograft tumor models. Conclusions: The data demonstrate that c-Myc is a major determinant for MLN8237 responsiveness in thyroid cancer cells. Thus, indirectly targeting c-Myc by MLN8237 may be an effective strategy for thyroid cancer overexpressing c-Myc.
Collapse
Affiliation(s)
- Yiqi Li
- Department of Endocrinology; Xi'an, P.R. China
- Department of Respiratory and Critical Care Medicine; Xi'an, P.R. China
| | - Xinru Li
- Department of Endocrinology; Xi'an, P.R. China
| | - Jun Pu
- Department of Endocrinology; Xi'an, P.R. China
| | - Qi Yang
- Department of Endocrinology; Xi'an, P.R. China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Meiju Ji
- Center for Translational Medicine; Xi'an, P.R. China
| | - Bingyin Shi
- Department of Endocrinology; Xi'an, P.R. China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine; Xi'an, P.R. China
| | - Peng Hou
- Department of Endocrinology; Xi'an, P.R. China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
19
|
Yao F, Yin L, Feng S, Wang X, Zhang A, Zhou H. Functional characterization of grass carp runt-related transcription factor 3: Involvement in TGF-β1-mediated c-Myc transcription in fish cells. FISH & SHELLFISH IMMUNOLOGY 2018; 82:130-135. [PMID: 30099141 DOI: 10.1016/j.fsi.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
In mammals, both runt-related transcription factor 3 (RUNX3) and c-Myc are the downstream effectors of transforming growth factor-β1 (TGF-β1) signaling to mediate various cellular responses. However, information of their interaction especially in fish is lacking. In the present study, grass carp (Ctenopharyngodon idella) runx3 (gcrunx3) cDNA was cloned and identified. Interestingly, opposing effects of recombinant grass carp TGF-β1 (rgcTGF-β1) on c-myc and runx3 mRNA expression were observed in grass carp periphery blood lymphocytes (PBLs). Parallelly, Runx3 protein levels were enhanced by rgcTGF-β1 in the cells. These findings prompted us to examine whether Runx3 can mediate the inhibition of TGF-β1 on c-myc expression in fish cells. In line with this, overexpression of grass carp Runx3 and Runx3 DN (a dominant-negative form of Runx3) in grass carp kidney cell line (CIK) cells decreased and increased c-myc transcript levels, respectively. Particularly, the regulation of Runx3 and Runx3 DN on c-myc mRNA expression was direct since they were presented in the nucleus without any stimulation. In addition, rgcTGF-β1 alone suppressed c-myc mRNA expression in CIK cells as in PBLs. Moreover, this inhibitory effect was also observed when grass carp Runx3 and Runx3 DN were overexpressed. These results strengthened the role of TGF-β1 signaling in controlling c-myc transcription. Taken together, TGF-β1-mediated c-myc expression was affected at least in part by Runx3, thereby firstly exploring the functional role of Runx3 in TGF-β1 down-regulation on c-myc mRNA expression in fish.
Collapse
Affiliation(s)
- Fuli Yao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Department of Biochemistry and Molecular Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
20
|
Jhan JR, Andrechek ER. Stat3 accelerates Myc induced tumor formation while reducing growth rate in a mouse model of breast cancer. Oncotarget 2018; 7:65797-65807. [PMID: 27589562 PMCID: PMC5323193 DOI: 10.18632/oncotarget.11667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
Elevated Myc expression has been noted in basal breast cancer but therapies targeting Myc directly are lacking. It is therefore critical to characterize the interaction of Myc with other genes and pathways to uncover future potential therapeutic strategies. In this study, we bioinformatically predicted a role for Stat3 in Myc induced mammary tumors and tested it using mouse models. During normal mammary function, loss of Stat3 in Myc transgenic dams resulted in lethality of pups due to lactation deficiencies. We also observed that deletion of Stat3 in the mammary glands of MMTV-Myc mice unexpectedly resulted in increased and earlier hyperplasia and expedited tumorigenesis. However, despite arising earlier, Myc tumors lacking Stat3 grew more slowly with alterations in the resulting histological subtypes, including a dramatic increase in EMT-like tumors. We also observed that these tumors had impaired angiogenesis and a slight decrease in lung metastases. This metastatic finding is distinct from previously published findings in both MMTV-Neu and MMTV-PyMT mouse models. Together, the literature and our current research demonstrate that Stat3 can function as an oncogene or as a tumor repressor depending on the oncogenic driver and developmental context.
Collapse
Affiliation(s)
- Jing-Ru Jhan
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Pourteimoor V, Paryan M, Mohammadi‐Yeganeh S. microRNA as a systemic intervention in the specific breast cancer subtypes with C‐MYC impacts; introducing subtype‐based appraisal tool. J Cell Physiol 2018; 233:5655-5669. [DOI: 10.1002/jcp.26399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Affiliation(s)
| | - Mahdi Paryan
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Samira Mohammadi‐Yeganeh
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
22
|
Shah NG, Trivedi TI, Tankshali RA, Goswami JA, Shah JS, Jetly DH, Kobawala TP, Patel KC, Shukla SN, Shah PM, Verma RJ. Molecular Alterations in Oral Carcinogenesis: Significant Risk Predictors in Malignant Transformation and Tumor Progression. Int J Biol Markers 2018; 22:132-43. [PMID: 17549669 DOI: 10.1177/172460080702200207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study an attempt was made to establish the significance of a battery of molecular alterations and thereby identify risk predictors in oral carcinogenesis. For this purpose, EGFR, Stat3, H-ras, c-myc, p53, cyclin D1, p16, Rb, Ki-67 and Bcl-2 were localized immunohistochemically in normal mucosa (n=12), hyperplasia (n=35), dysplasia (n=25), early stage carcinoma (n=65) and advanced stage carcinoma (n=70). Deregulation occurred at an early stage and the number of alterations increased with disease progression. Using multivariate logistic regression analysis, the significant risk predictor for hyperplasia from normal mucosa was Ki-67 (OR=5.75, p=0.021); the significant risk predictors for dysplasia from hyperplasia were EGFR (OR=12.96, p=0.002), Stat3 (OR=17.16, p=0.0001), p16 (OR=5.50, p=0.039) and c-myc (OR=5.99, p=0.052); the significant risk predictors for early stage carcinoma from dysplasia were p53 (OR=6.63, p=0.0001) and Rb (OR=3.81, p=0.056); and the significant risk predictors for further progression were EGFR (OR=5.50, p=0.0001), Stat3 (OR=4.49, p=0.0001), H-ras (OR=4.05, p=0.001) and c-myc (OR=2.99, p=0.015). Cyclin D1 holds a key position linking upstream signaling pathways to cell cycle regulation. Gene products of the mitogenic signaling pathway play an equally significant role as cell cycle regulatory proteins in the hyperplasia-dysplasia-early-advanced-carcinoma sequence and together may provide a reference panel of markers for use in defining premalignant lesions and predicting the risk of malignant transformation and tumor progression.
Collapse
Affiliation(s)
- N G Shah
- Division of Molecular Endocrinology, Gujarat Cancer and Research Institute, Ahmedabad, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stenfelt S, Blixt MKE, All-Ericsson C, Hallböök F, Boije H. Heterogeneity in retinoblastoma: a tale of molecules and models. Clin Transl Med 2017; 6:42. [PMID: 29124525 PMCID: PMC5680409 DOI: 10.1186/s40169-017-0173-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma, an intraocular pediatric cancer, develops in the embryonic retina following biallelic loss of RB1. However, there is a wide range of genetic and epigenetic changes that can affect RB1 resulting in different clinical outcomes. In addition, other transformations, such as MYCN amplification, generate particularly aggressive tumors, which may or may not be RB1 independent. Recognizing the cellular characteristics required for tumor development, by identifying the elusive cell-of-origin for retinoblastoma, would help us understand the development of these tumors. In this review we summarize the heterogeneity reported in retinoblastoma on a molecular, cellular and tissue level. We also discuss the challenging heterogeneity in current retinoblastoma models and suggest future platforms that could contribute to improved understanding of tumor initiation, progression and metastasis in retinoblastoma, which may ultimately lead to more patient-specific treatments.
Collapse
Affiliation(s)
- Sonya Stenfelt
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Maria K E Blixt
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Henrik Boije
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
24
|
Bhat J, Mondal S, Sengupta P, Chatterjee S. In Silico Screening and Binding Characterization of Small Molecules toward a G-Quadruplex Structure Formed in the Promoter Region of c-MYC Oncogene. ACS OMEGA 2017; 2:4382-4397. [PMID: 30023722 PMCID: PMC6044917 DOI: 10.1021/acsomega.6b00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/20/2017] [Indexed: 06/08/2023]
Abstract
Overexpression of c-MYC oncogene is associated with cancer pathology. Expression of c-MYC is regulated by the G-quadruplex structure formed in the G-rich segment of nuclease hypersensitive element (NHE III1), that is, "Pu27", which is localized in the promoter region. Ligand-induced stabilization of the Pu27 structure has been identified as a novel target for cancer therapeutics. Here, we have explored the library of synthetic compounds against the predefined binding site of Pu27. Three compounds were selected based on the docking analyses; they were further scrutinized using all atom molecular dynamics simulations in an explicit water model. Simulated trajectories were scrutinized for conformational stability and ligand binding free energy estimation; essential dynamic behavior was determined using principal component analysis. One of the molecules, "TPP (1-(3-(4-(1,2,3-thiadiazol-4-yl)phenoxy)-2-hydroxypropyl)-4-carbamoylpiperidinium)", with the best results was considered for further evaluation. The theoretical observations are supported well by biophysical analysis using circular dichroism, isothermal titration calorimetry, and high-resolution NMR spectroscopy indicating association of TPP with Pu27. The in vitro studies were then translated into c-MYC overexpression in the T47D breast cancer cell line. Biological evaluation through the MTT assay, flow cytometric assay, RT-PCR, and reporter luciferase assay suggests that TPP downregulates the expression of c-MYC oncogene by arresting its promoter region. In silico and in vitro observations cumulatively suggest that the novel skeleton of TPP could be a potential anticancer agent by stabilizing the G-quadruplex formed in the Pu27 and consequently downregulating the expression of c-MYC oncogene. Derivation of new molecules on its skeleton may confer anticancer therapeutics for the next generation.
Collapse
|
25
|
Zhou Q, Sun E, Ling L, Liu X, Zhang M, Yin H, Lu C. Bioinformatic analysis of computational identified differentially expressed genes in tumor stoma of pregnancy‑associated breast cancer. Mol Med Rep 2017; 16:3345-3350. [PMID: 28713995 DOI: 10.3892/mmr.2017.6947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/09/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to screen the differentially expressed genes (DEGs) in tumor‑associated stroma of pregnancy‑associated breast cancer (PABC). By analyzing Affymetrix microarray data (GSE31192) from the Gene Expression Omnibus database, DEGs between tumor asso-ciated stromal cells and normal stromal cells in PABC were identified. Gene Ontology (GO) function and pathway enrichment analyses for the DEGs were then performed, followed by construction of a protein‑protein interaction (PPI) network. A total of 94 upregulated and 386 downregulated DEGs were identified between tumor associated stromal cells and normal stromal cells in patients with PABC. The upregulated DEGs were primarily enriched in the cytokine‑cytokine receptor interaction pathway and GO terms associated with the immune response, which included the DEGs of interleukin 18 (IL18) and cluster of differentiation 274 (CD274). The downregulated DEGs were primarily involved in GO terms associated with cell surface receptor linked signal transduction and pathways of focal adhesion and pathways in cancer. In the PPI network, nodes of jun proto‑oncogene (JUN), FBJ murine osteosarcoma viral oncogene homolog (FOS), V‑myc avian myelocytomatosis viral oncogene homolog (MYC), and alpha‑smooth muscle actin (ACTA2) had higher degrees. The hub genes of JUN, FOS, MYC and ACTA2, as well as the DEGs IL18 and CD274 that were associated with the immune response in GO terms may exert important functions in the molecular mechanisms of PABC. These genes may be used as new molecular targets in the treatment of this disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Erhu Sun
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Lijun Ling
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaofeng Liu
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Min Zhang
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Hong Yin
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Cheng Lu
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|
26
|
Xiao J, Li X, Chen L, Han X, Zhao W, Li L, Chen JG. Apobec1 Promotes Neurotoxicity-Induced Dedifferentiation of Müller Glial Cells. Neurochem Res 2017; 42:1151-1164. [DOI: 10.1007/s11064-016-2151-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/10/2016] [Accepted: 12/19/2016] [Indexed: 01/16/2023]
|
27
|
Piao JY, Lee HG, Kim SJ, Kim DH, Han HJ, Ngo HKC, Park SA, Woo JH, Lee JS, Na HK, Cha YN, Surh YJ. Helicobacter pylori Activates IL-6-STAT3 Signaling in Human Gastric Cancer Cells: Potential Roles for Reactive Oxygen Species. Helicobacter 2016; 21:405-16. [PMID: 26910614 DOI: 10.1111/hel.12298] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have shown that Helicobacter pylori (H. pylori) activates signal transducer and activator of transcription 3 (STAT3) that plays an important role in gastric carcinogenesis. However, the molecular mechanism underlying H. pylori-mediated STAT3 activation is still not fully understood. In this study, we investigated H. pylori-induced activation of STAT3 signaling in AGS human gastric cancer cells and the underlying mechanism. MATERIALS AND METHODS AGS cells were cocultured with H. pylori, and STAT3 activation was assessed by Western blot analysis, electrophoretic mobility shift assay and immunocytochemistry. To demonstrate the involvement of reactive oxygen species (ROS) in H. pylori-activated STAT3 signaling, the antioxidant N-acetylcysteine was utilized. The expression and production of interleukin-6 (IL-6) were measured by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA), respectively. The interaction between IL-6 and IL-6 receptor (IL-6R) was determined by the immunoprecipitation assay. RESULTS H. pylori activates STAT3 as evidenced by increases in phosphorylation on Tyr(705) , nuclear localization, DNA binding and transcriptional activity of this transcription factor. The nuclear translocation of STAT3 was also observed in H. pylori-inoculated mouse stomach. In the subsequent study, we found that H. pylori-induced STAT3 phosphorylation was dependent on IL-6. Notably, the increased IL-6 expression and the IL-6 and IL-6R binding were mediated by ROS produced as a consequence of H. pylori infection. CONCLUSIONS H. pylori-induced STAT3 activation is mediated, at least in part, through ROS-induced upregulation of IL-6 expression. These findings provide a novel molecular mechanism responsible for H. pylori-induced gastritis and gastric carcinogenesis.
Collapse
Affiliation(s)
- Juan-Yu Piao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hee Geum Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyeong-Jun Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hoang-Kieu-Chi Ngo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sin-Aye Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jeong-Hwa Woo
- Department of Food and Nutrition, Sungshin Women's University, Seoul, South Korea
| | - Jeong-Sang Lee
- Department of Health and Functional Food, College of Medicine and Science, Jeonju University, Jeonju, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, Sungshin Women's University, Seoul, South Korea
| | - Young-Nam Cha
- College of Medicine, Inha University, Incheon, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea. .,Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
28
|
Zheng C, Liu Y, Liu Y, Qin X, Zhou Y, Liu J. Dinuclear ruthenium complexes display loop isomer selectivity to c-MYC DNA G-quadriplex and exhibit anti-tumour activity. J Inorg Biochem 2016; 156:122-32. [DOI: 10.1016/j.jinorgbio.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022]
|
29
|
Choi SP, Choi CY, Park K, Kim N, Moon HS, Lee D, Chun T. Glabretal-type triterpenoid from the root bark of Dictamnus dasycarpus ameliorates collagen-induced arthritis by inhibiting Erk-dependent lymphocyte proliferation. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:13-16. [PMID: 26656538 DOI: 10.1016/j.jep.2015.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root bark of Dictamnus dasycarpus Turcz. (Rutaceae) has been used as a traditional herbal medicine to treat various inflammatory diseases in East Asia. We have showed previously that a glabretal type triterpenoid (dictabretol A) from D. dasycarpus root bark has immunosuppressive activity. AIM OF THE STUDY This study was conducted to define the molecular mechanism of how dictabretol A inhibits lymphocyte proliferation and to evaluate the therapeutic efficacy of dictabretol A in an animal model of rheumatoid arthritis. MATERIALS AND METHODS Various murine immune cells (T cells, B cells, and macrophages) and splenocytes were used to study the anti-proliferative effect of dictabretol A in vitro. A collagen-induced arthritis model was also used to examine the therapeutic effect of dictabretol A in vivo. RESULTS Dictabretol A specifically inhibited lymphocyte proliferation by blocking the cell cycle transition from the G1 to the S phase. This effect was achieved by blocking Erk1/2, nuclear factor kappa B, and the C-myc axis of cell cycle progression. Further dictabretol A treatment alleviated the severity of collagen-induced arthritis. CONCLUSION Our results reveal the molecular mechanism for the anti-lymphoproliferative effect of dictabretol A and show the therapeutic efficacy of dictabretol A for rheumatoid arthritis.
Collapse
Affiliation(s)
- Sang-Pil Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Chang-Yong Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Kyungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Nahyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hyun-Seuk Moon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Dongho Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
30
|
Westhoff MA, Marschall N, Debatin KM. Novel Approaches to Apoptosis-Inducing Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:173-204. [PMID: 27558822 DOI: 10.1007/978-3-319-39406-0_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Induction of apoptotic programmed cell death is one of the underlying principles of most current cancer therapies. In this review, we discuss the limitations and drawbacks of this approach and identify three distinct, but overlapping strategies to avoid these difficulties and further enhance the efficacy of apoptosis-inducing therapies. We postulate that the application of multi-targeted small molecule inhibitor cocktails will reduce the risk of the cancer cell populations developing resistance towards therapy. Following from these considerations regarding population genetics and ecology, we advocate the reconsideration of therapeutic end points to maximise the benefits, in terms of quantity and quality of life, for the patients. Finally, combining both previous points, we also suggest an altered focus on the cellular and molecular targets of therapy, i.e. targeting the (cancer cells') interaction with the tumour microenvironment.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Nicolas Marschall
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany.
| |
Collapse
|
31
|
Bhat J, Chatterjee S. Skeleton selectivity in complexation of chelerythrine and chelerythrine-like natural plant alkaloids with the G-quadruplex formed at the promoter of c-MYC oncogene: in silico exploration. RSC Adv 2016. [DOI: 10.1039/c6ra04671a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chelerythrine binds at the 5′ end and arrests the G-quadruplex formed in the promoter region ofc-MYConcogene thus restrict thec-MYCexpression. Position of methoxy group over the core skeleton of chelerythrine determines the binding pattern of ligand.
Collapse
Affiliation(s)
- Jyotsna Bhat
- Department of Biophysics
- Bose Institute
- Kolkata
- India
| | | |
Collapse
|
32
|
Ang DL, Harper BWJ, Cubo L, Mendoza O, Vilar R, Aldrich-Wright J. Quadruplex DNA-Stabilising Dinuclear Platinum(II) Terpyridine Complexes with Flexible Linkers. Chemistry 2015; 22:2317-25. [PMID: 26670391 DOI: 10.1002/chem.201503663] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Indexed: 12/19/2022]
Abstract
Four dinuclear terpyridineplatinum(II) (Pt-terpy) complexes were investigated for interactions with G-quadruplex DNA (QDNA) and duplex DNA (dsDNA) by synchrotron radiation circular dichroism (SRCD), fluorescent intercalator displacement (FID) assays and fluorescence resonance energy transfer (FRET) melting studies. Additionally, computational docking studies were undertaken to provide insight into potential binding modes for these complexes. The complexes demonstrated the ability to increase the melting temperature of various QDNA motifs by up to 17 °C and maintain this in up to a 600-fold excess of dsDNA. This study demonstrates that dinuclear Pt-terpy complexes stabilise QDNA and have a high degree of selectivity for QDNA over dsDNA.
Collapse
Affiliation(s)
- Dale L Ang
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Benjamin W J Harper
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Leticia Cubo
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Oscar Mendoza
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, London, SW7 2AZ, UK
| | - Janice Aldrich-Wright
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
33
|
Prodinger J, Loacker LJ, Schmidt RLJ, Ratzinger F, Greiner G, Witzeneder N, Hoermann G, Jutz S, Pickl WF, Steinberger P, Marculescu R, Schmetterer KG. The tryptophan metabolite picolinic acid suppresses proliferation and metabolic activity of CD4+ T cells and inhibits c-Myc activation. J Leukoc Biol 2015; 99:583-94. [PMID: 26497245 DOI: 10.1189/jlb.3a0315-135r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
Tryptophan metabolites, including kynurenine, 3-hydroxyanthranilic acid, and picolinic acid, are key mediators of immunosuppression by cells expressing the tryptophan-catabolizing enzyme indoleamine2,3-dioxygenase. In this study, we assessed the influence of picolinic acid on cell viability and effector functions of CD4(+)T cells following in vitro activation with agonistic anti-CD3/anti-CD28 antibodies. In contrast to kynurenine and 3-hydroxyanthranilic acid, exposure of T cells with picolinic acid did not affect cell viability, whereas proliferation and metabolic activity were suppressed in a dose-dependent manner. On the other hand, cytokine secretion and up-regulation of cell surface activation markers were not or only weakly inhibited by picolinic acid. Picolinic acid exposure induced a state of deep anergy that could not be overcome by the addition of exogenous IL-2 and inhibited Th cell polarization. On the molecular level, important upstream signaling molecules, such as the MAPKs ERK and p38 and the mammalian target of rapamycin target protein S6 ribosomal protein, were not affected by picolinic acid. Likewise, NFAT, NF-κB, and AP-1 promoter activity in Jurkat T cells was not influenced by exposure to picolinic acid. Whereas transcriptional levels of v-myc avian myelocytomatosis viral oncogene homolog were not affected by picolinic acid, phosphorylation at Ser62 was strongly reduced in picolinic acid-exposed T cells following activation. In conclusion, picolinic acid mediates a unique immunosuppressive program in T cells, mainly inhibiting cell cycle and metabolic activity, while leaving other effector functions intact. These functional features are accompanied by reduced phosphorylation of v-myc avian myelocytomatosis viral oncogene homolog. It remains to be determined whether this effect is mediated by direct inhibition of ERK activity or whether indirect mechanisms apply.
Collapse
Affiliation(s)
- Johanna Prodinger
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa J Loacker
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ralf L J Schmidt
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Franz Ratzinger
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg Greiner
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadine Witzeneder
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Klaus G Schmetterer
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Rangarajan N, Fox Z, Singh A, Kulkarni P, Rangarajan G. Disorder, oscillatory dynamics and state switching: the role of c-Myc. J Theor Biol 2015; 386:105-14. [PMID: 26408335 DOI: 10.1016/j.jtbi.2015.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022]
Abstract
In this paper, using the intrinsically disordered oncoprotein Myc as an example, we present a mathematical model to help explain how protein oscillatory dynamics can influence state switching. Earlier studies have demonstrated that, while Myc overexpression can facilitate state switching and transform a normal cell into a cancer phenotype, its downregulation can reverse state-switching. A fundamental aspect of the model is that a Myc threshold determines cell fate in cells expressing p53. We demonstrate that a non-cooperative positive feedback loop coupled with Myc sequestration at multiple binding sites can generate bistable Myc levels. Normal quiescent cells with Myc levels below the threshold can respond to mitogenic signals to activate the cyclin/cdk oscillator for limited cell divisions but the p53/Mdm2 oscillator remains nonfunctional. In response to stress, the p53/Mdm2 oscillator is activated in pulses that are critical to DNA repair. But if stress causes Myc levels to cross the threshold, Myc inactivates the p53/Mdm2 oscillator, abrogates p53 pulses, and pushes the cyclin/cdk oscillator into overdrive sustaining unchecked proliferation seen in cancer. However, if Myc is downregulated, the cyclin/cdk oscillator is inactivated and the p53/Mdm2 oscillator is reset and the cancer phenotype is reversed.
Collapse
Affiliation(s)
| | - Zach Fox
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Abhyudai Singh
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Prakash Kulkarni
- Department of Urology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore, India; Centre for Neuroscience, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
35
|
Investigating actinomycin D binding to G-quadruplex, i-motif and double-stranded DNA in 27-nt segment of c-MYC gene promoter. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:1188-93. [PMID: 26478420 DOI: 10.1016/j.msec.2015.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/13/2015] [Accepted: 09/18/2015] [Indexed: 01/03/2023]
Abstract
c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Around 90% of c-MYC transcription is controlled by NHE III1, whose 27-nt purine-rich strand has the ability to form G-quadruplex structure. In this investigation, interaction of ActD with 27-nt G-rich strand (G/c-MYC) and its equimolar mixture with the complementary sequence, (GC/c-MYC) as well as related C-rich oligonucleotide (C/c-MYC) was evaluated. Molecular dynamic simulations showed that phenoxazine and lactone rings of ActD come close to the outer G-tetrad nucleotides indicating that ActD binds through end-stacking to the quadruplex DNA. RMSD and RMSF revealed that fluctuation of the quadruplex DNA increases upon interaction with the drug. The results of spectrophotometry and spectrofluorometry indicated that ActD most probably binds to the c-MYC quadruplex and duplex DNA via end-stacking and intercalation, respectively and polarity of ActD environment decreases due to the interaction. It was also found that binding of ActD to the GC-rich DNA is stronger than the two other forms of DNA. Circular dichroism results showed that the type of the three forms of DNA structures doesn't change, but their compactness alters due to their interaction with ActD. Finally, it can be concluded that ActD binds differently to double stranded DNA, quadruplex DNA and i-motif.
Collapse
|
36
|
Babitha KC, Vemanna RS, Nataraja KN, Udayakumar M. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress. PLoS One 2015; 10:e0137098. [PMID: 26366726 PMCID: PMC4569372 DOI: 10.1371/journal.pone.0137098] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/12/2015] [Indexed: 02/01/2023] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.
Collapse
Affiliation(s)
- K. C. Babitha
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Ramu S. Vemanna
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - M. Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| |
Collapse
|
37
|
Banudevi S, Swaminathan S, Maheswari KU. Pleiotropic Role of Dietary Phytochemicals in Cancer: Emerging Perspectives for Combinational Therapy. Nutr Cancer 2015; 67:1021-48. [PMID: 26359767 DOI: 10.1080/01635581.2015.1073762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is considered a complicated health issue worldwide. The mean cancer survival through standard therapeutic strategies has not been significantly improved over the past few decades. Hence, alternate remedies are needed to treat or prevent this dreadful disease being explored. Currently, it has been recognized that repeated treatment with chemotherapeutic agents has been largely ineffective due to multidrug resistance and further conventional treatment possesses limited drug accessibility to cancerous tissues, which in turn necessitates a higher dose resulting in increased cytotoxicity. Drug combinations have been practiced to address the problems associated with conventional single drug treatment. Recently, natural dietary agents have attracted much attention in cancer therapy because of their synergistic effects with anticancer drugs against different types of cancer. Natural phytochemicals may execute their anticancer activity through targeting diverse cancer cell signaling pathways, promoting cell cycle arrest and apoptosis, regulating antioxidant status and detoxification. This review focuses mainly on the anticancer efficacy of dietary phytochemicals in combination with standard therapeutic drugs reported from various in vitro and in vivo experimental studies apart from clinical trials. This review adds knowledge to the field of intervention studies using combinational modalities that opens a new window for cancer treatment/chemoprevention.
Collapse
Affiliation(s)
- Sivanantham Banudevi
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University , Tamil Nadu , India
| | - Sethuraman Swaminathan
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University , Tamil Nadu , India
| | - Krishnan Uma Maheswari
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University , Tamil Nadu , India
| |
Collapse
|
38
|
PIWIL2 induces c-Myc expression by interacting with NME2 and regulates c-Myc-mediated tumor cell proliferation. Oncotarget 2015; 5:8466-77. [PMID: 25193865 PMCID: PMC4226697 DOI: 10.18632/oncotarget.2327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
c-Myc serves as a crucial regulator in multiple cellular events. Cumulative evidences demonstrate that anomalous c-Myc overexpression correlates with proliferation, invasion and metastasis in various human tumors. However, the transcriptionally activating mechanisms responsible for c-Myc overexpression are complex and continue to be intangible. Here we showed that Piwi-Like RNA-Mediated Gene Silencing 2 (PIWIL2) can upregulate c-Myc via binding with NME/NM23 nucleoside diphosphate kinase 2 (NME2). PIWIL2 promotes c-Myc transcription by interacting with and facilitating NME2 to bind to G4-motif region within c-Myc promoter. Interestingly, in a c-Myc-mediated manner, PIWIL2 upregulates RhoA, which in turn induces filamentary F-actin. Deficiency of PIWIL2 results in obstacle for c-Myc expression, cell cycle progress and cell proliferation. Taken together, our present work demonstrates that PIWIL2 modulates tumor cell proliferation and F-actin filaments via promoting c-Myc expression.
Collapse
|
39
|
Niu Z, Liu H, Zhou M, Wang H, Liu Y, Li X, Xiong W, Ma J, Li X, Li G. Knockdown of c-Myc inhibits cell proliferation by negatively regulating the Cdk/Rb/E2F pathway in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2015; 47:183-91. [PMID: 25630654 DOI: 10.1093/abbs/gmu129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proto-oncogene c-Myc encodes a transcription factor that is involved in the regulation of cellular proliferation, differentiation, and apoptosis. Several studies indicate that the over-expression of c-Myc is a frequent genetic abnormality in nasopharyngeal carcinoma (NPC). Therefore, specifically reducing its level by genetic means in established NPC cell lines helps to better understand its role in the pathogenesis of NPC. In this study, for the first time, we successfully established and characterized NPC 5-8F cell line with stably suppressed c-Myc expression by employing a DNA-based RNA interference approach. The suppression of c-Myc resulted in reduced cell growth, colony formation, and cell cycle progression in 5-8F cells. In vivo tumor formation assays revealed that the knockdown of c-Myc reduced the tumorigenic potential of 5-8F cells in nude mice. At the molecular level, we found that the knockdown of c-Myc could decrease the expression of several critical molecules involved in the Cdk/Rb/E2F pathway, including CDK4, cyclin D1, CDK2, pRb, E2F3, and DP2, and significantly reduced the promoter activity of cyclin D1. Taken together, these findings provide valuable mechanistic insights into the role of c-Myc in nasopharyngeal carcinogenesis and suggest that the knockdown of c-Myc may be a potential therapeutic approach for the treatment of NPC.
Collapse
Affiliation(s)
- Zhaoxia Niu
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China Henan Medical College, Zhengzhou 451191, China
| | - Huaying Liu
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Ming Zhou
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Heran Wang
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Yukun Liu
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Xiayu Li
- The Third Xiang-Ya Hospital, Central South University, Changsha 410013, China
| | - Wei Xiong
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Xiaoling Li
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| |
Collapse
|
40
|
Sun H, Fan HJ, Ling HQ. Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics 2015; 16:9. [PMID: 25612924 PMCID: PMC4312455 DOI: 10.1186/s12864-014-1209-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/30/2014] [Indexed: 01/21/2023] Open
Abstract
Background The basic helix-loop-helix (bHLH) proteins are a large superfamily of transcription factors, and play a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. Tomato is an important vegetable crop, and its genome sequence has been published recently. However, the bHLH gene family of tomato has not been systematically identified and characterized yet. Results In this study, we identified 159 bHLH protein-encoding genes (SlbHLH) in tomato genome and analyzed their structures. Although bHLH domains were conserved among the bHLH proteins between tomato and Arabidopsis, the intron sequences and distribution of tomato bHLH genes were extremely different compared with Arabidopsis. The gene duplication analysis showed that 58.5% and 6.3% of SlbHLH genes belonged to low-stringency and high-stringency duplication, respectively, indicating that the SlbHLH genes are mainly generated via short low-stringency region duplication in tomato. Subsequently, we classified the SlbHLH genes into 21 subfamilies by phylogenetic tree analysis, and predicted their possible functions by comparison with their homologous genes of Arabidopsis. Moreover, the expression profile analysis of SlbHLH genes from 10 different tissues showed that 21 SlbHLH genes exhibited tissue-specific expression. Further, we identified that 11 SlbHLH genes were associated with fruit development and ripening (eight of them associated with young fruit development and three with fruit ripening). The evolutionary analysis revealed that 92% SlbHLH genes might be evolved from ancestor(s) originated from early land plant, and 8% from algae. Conclusions In this work, we systematically identified SlbHLHs by analyzing the tomato genome sequence using a set of bioinformatics approaches, and characterized their chromosomal distribution, gene structures, duplication, phylogenetic relationship and expression profiles, as well predicted their possible biological functions via comparative analysis with bHLHs of Arabidopsis. The results and information provide a good basis for further investigation of the biological functions and evolution of tomato bHLH genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1209-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| | - Hua-Jie Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
41
|
Riva B, Ferreira R, Musso L, Artali R, Scaglioni L, Mazzini S. Molecular recognition in naphthoquinone derivatives - G-quadruplex complexes by NMR. Biochim Biophys Acta Gen Subj 2014; 1850:673-80. [PMID: 25497213 DOI: 10.1016/j.bbagen.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/04/2014] [Accepted: 12/02/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND G-quadruplexes have become important drug-design targets for the treatment of various human disorders such as cancer, diabetes and cardiovascular diseases. Recently, G-quadruplex structures have been visualized in the DNA of human cells and appeared to be dynamically sensitive to the cell cycle and stabilized by small molecule ligands. A small library of isoxazolo naphthoquinones (1a-h), which exhibited a strong antiproliferative activity on different cancer cell lines, was studied as potential ligands of G-quadruplex DNA. METHODS The DNA binding properties of a series of the selected compounds have been analyzed by fluorescence assays. NMR/modeling studies were performed to describe the complexes between G-quadruplex DNA sequences and two selected compounds 1a and 1b. RESULTS 1a and 1b in the presence of G-quadruplexes, d(T(2)AG(3)T)(4), d(TAG(3)T(2)A)(4) and d(T(2)G(3)T(2))(4), showed good ability of intercalation and the formation of complexes with 2:1 stoichiometry. 1a showed an important interaction with the sequence Pu22 belonging to the promoter of oncogenes c-myc. CONCLUSIONS The ligands directly interact with the external G-tetrads of the G-quadruplexes, without alterations in the structure of the G-quadruplex core. The role of the adenine moieties over the G-tetrads in the stabilization of the complexes was discussed. GENERAL SIGNIFICANCE The results obtained suggested that the strong antiproliferative activity of isoxazolo naphthoquinones is not due to the Hsp90 inhibition, but mainly to the interaction at the level of telomeres and/or at the level of gene promoter. These findings can be used as a basis for the rational drug design of new anticancer agents.
Collapse
Affiliation(s)
- Benedetta Riva
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della scienza 3, 20126 Milan, Italy.
| | - Ruben Ferreira
- Department of Chemical and Biological Engineering, Chalmers University of Technology SE-412 96 Göteborg, Sweden.
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | | | - Leonardo Scaglioni
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
42
|
Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers. Biochem J 2014; 462:397-413. [PMID: 25145439 DOI: 10.1042/bj20140400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate.
Collapse
|
43
|
Muyal JP, Kotnala S, Bhardwaj H, Tyagi A. Effect of recombinant human keratinocyte growth factor in inducing Ras-Raf-Erk pathway-mediated cell proliferation in emphysematous mice lung. Inhal Toxicol 2014; 26:761-71. [PMID: 25296878 DOI: 10.3109/08958378.2014.957426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Pulmonary emphysema is resulted due to destruction of the structure of the alveoli. Recently, exogenous recombinant human Keratinocyte growth factor (rHuKGF) has been reported to induce the regeneration of gas exchange structures. However, the molecular mechanisms governing this process are so far unknown. OBJECTIVE The objective of this study was to investigate the effect of rHuKGF in the lungs of emphysema-challenged mice on Ras-Raf-Erk (Erk, extracellular signal-regulated kinase) mediated signaling pathway that regulates alveolar epithelial cell proliferation. METHODS Three experimental groups (i.e. emphysema, therapy and control group) were prepared. Lungs of mice were therapeutically treated at three occasions by oropharyngeal instillation of 10 mg rHuKGF per kg body weight after induction of emphysema by porcine pancreatic elastase (PPE). Subsequently, lung tissues from each mouse were collected for histopathology and molecular biology studies. RESULTS AND DISCUSSION Histopathology photomicrographs and Destructive Index analysis have shown that elastase induced airspace enlargement and loss of alveoli were recovered in therapy group. Moreover, proliferating cell nuclear antigen (PCNA) at mRNA and protein expression level was markedly increased in therapy group than emphysema group. Upon validation at mRNA level, expressions of FGF-7, FGF-R, Ras, c-Raf, Erk-1, Erk-2, c-Myc and were significantly increased, whereas Elk-1 was notably decreased in therapy group when compared with emphysema group and were well comparable with the control group. CONCLUSION Therapeutic supplementation of rHuKGF rectifies the deregulated Ras-Raf-Erk pathway in emphysema condition, resulting in alveolar epithelium regeneration. Hence, rHuKGF may prove to be a potential drug in the treatment of emphysema.
Collapse
Affiliation(s)
- Jai Prakash Muyal
- School of Biotechnology, Gautam Buddha University , Greater Noida, Uttar Pradesh , India and
| | | | | | | |
Collapse
|
44
|
Hassani L, Fazeli Z, Safaei E, Rastegar H, Akbari M. A spectroscopic investigation of the interaction between c-MYC DNA and tetrapyridinoporphyrazinatozinc(II). J Biol Phys 2014; 40:275-83. [PMID: 24824526 DOI: 10.1007/s10867-014-9348-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/13/2014] [Indexed: 10/25/2022] Open
Abstract
The c-MYC gene plays an important role in the regulation of cell proliferation and growth and it is overexpressed in a wide variety of human cancers. Around 90% of c-MYC transcription is controlled by the nuclease-hypersensitive element III1 (NHE III1), whose 27-nt purine-rich strand has the ability to form a G-quadruplex structure under physiological conditions. Therefore, c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Here, the interaction of water-soluble tetrapyridinoporphyrazinatozinc(II) with 27-nt G-rich strand (G/c-MYC), its equimolar mixture with the complementary sequence (GC/c-MYC) and related C-rich oligonucleotide (C/c-MYC) is investigated. Circular dichroism (CD) measurements of the G-rich 27-mer oligonucleotide in 150 mM KCl, pH 7 demonstrate a spectral signature consistent with parallel G-quadruplex DNA. Furthermore, the CD spectrum of the GC rich oligonucleotide shows characteristics of both duplex and quadruplex structures. Absorption spectroscopy implies that the complex binding of G/c-MYC and GC/c-MYC is a two-step process; in the first step, a very small red shift and hypochromicity and in the second step, a large red shift and hyperchromicity are observed in the Q band. Emission spectra of zinc porphyrazine are quenched upon addition of three types of DNA. According to the results of spectroscopy, it can be concluded the dominant binding mode is probably, outside binding and end stacking.
Collapse
Affiliation(s)
- Leila Hassani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45195-1159, Iran,
| | | | | | | | | |
Collapse
|
45
|
Wittmann W, Schimmang T, Gunhaga L. Progressive effects of N-myc deficiency on proliferation, neurogenesis, and morphogenesis in the olfactory epithelium. Dev Neurobiol 2014; 74:643-56. [PMID: 24376126 PMCID: PMC4237195 DOI: 10.1002/dneu.22162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/27/2013] [Accepted: 12/18/2013] [Indexed: 12/03/2022]
Abstract
N-myc belongs to the myc proto-oncogene family, which is
involved in numerous cellular processes such as proliferation, growth, apoptosis, and
differentiation. Conditional deletion of N-myc in the mouse nervous system
disrupted brain development, indicating that N-myc plays an essential role during
neural development. How the development of the olfactory epithelium and neurogenesis within are
affected by the loss of N-myc has, however, not been determined. To address these
issues, we examined an N-mycFoxg1Cre conditional mouse line, in which
N-myc is depleted in the olfactory epithelium. First changes in
N-myc mutants were detected at E11.5, with reduced proliferation and neurogenesis
in a slightly smaller olfactory epithelium. The phenotype was more pronounced at E13.5, with a
complete lack of Hes5-positive progenitor cells, decreased proliferation, and
neurogenesis. In addition, stereological analyses revealed reduced cell size of post-mitotic neurons
in the olfactory epithelium, which contributed to a smaller olfactory pit. Furthermore, we observed
diminished proliferation and neurogenesis also in the vomeronasal organ, which likewise was reduced
in size. In addition, the generation of gonadotropin-releasing hormone neurons was severely reduced
in N-myc mutants. Thus, diminished neurogenesis and proliferation in combination
with smaller neurons might explain the morphological defects in the N-myc depleted
olfactory structures. Moreover, our results suggest an important role for N-myc in
regulating ongoing neurogenesis, in part by maintaining the Hes5-positive
progenitor pool. In summary, our results provide evidence that N-myc deficiency in
the olfactory epithelium progressively diminishes proliferation and neurogenesis with negative
consequences at structural and cellular levels. © 2013 The Authors. Developmental
Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 74: 643–656, 2014
Collapse
Affiliation(s)
- Walter Wittmann
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | | | | |
Collapse
|
46
|
Fang BA, Kovačević Ž, Park KC, Kalinowski DS, Jansson PJ, Lane DJR, Sahni S, Richardson DR. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1845:1-19. [PMID: 24269900 DOI: 10.1016/j.bbcan.2013.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.
Collapse
Affiliation(s)
- Bernard A Fang
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Žaklina Kovačević
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
47
|
TIAN YUAN, HUANG CHANGJUN, ZHANG HAI, NI QINGFENG, HAN SHENG, WANG DONG, HAN ZEGUANG, LI XIANGCHENG. CDCA7L promotes hepatocellular carcinoma progression by regulating the cell cycle. Int J Oncol 2013; 43:2082-90. [DOI: 10.3892/ijo.2013.2142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/30/2013] [Indexed: 11/05/2022] Open
|
48
|
Liu W, Wang J, Chen C, Zhou F, Zhou Y, Zhang F. The effects of Batroxobin on the intimal hyperplasia of graft veins. Am J Surg 2013; 206:594-8. [DOI: 10.1016/j.amjsurg.2012.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 11/14/2012] [Accepted: 12/12/2012] [Indexed: 11/30/2022]
|
49
|
Transcriptional activation of Odf2/Cenexin by cell cycle arrest and the stress activated signaling pathway (JNK pathway). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1338-46. [PMID: 23458833 DOI: 10.1016/j.bbamcr.2013.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/01/2013] [Accepted: 02/21/2013] [Indexed: 01/28/2023]
Abstract
The centrosome/basal body protein ODF2/Cenexin is necessary for the formation of the primary cilium. Primary cilia are essential organelles that sense and transduce environmental signals. Primary cilia are therefore critical for embryonic and postnatal development as well as for tissue homeostasis in adulthood. Impaired function of primary cilia causes severe human diseases. ODF2 deficiency prevents formation of the primary cilium and is embryonically lethal. To explore the regulation of primary cilia formation we analyzed the promoter region of Odf2 and its transcriptional activity. In cycling cells, Odf2 transcription is depressed but becomes up-regulated in quiescent cells. Low transcriptional activity is mediated by sequences located upstream from the basal promoter, and neither transcription factors with predicted binding sites in the Odf2 promoter nor Rfx3 or Foxj, which are known to control ciliary gene expression, could activate Odf2 transcription. However, co-expression of either C/EBPα, c-Jun or c-Jun and its regulator MEKK1 enhances Odf2 transcription in cycling cells. Our results provide the first analysis of transcriptional regulation of a ciliary gene. Furthermore, we suggest that transcription of even more ciliary genes is largely inhibited in cycling cells but could be activated by cell cycle arrest and by the stress signaling JNK pathway.
Collapse
|
50
|
Ke Q, Yang RN, Ye F, Wang YJ, Wu Q, Li L, Bu H. Impairment of liver regeneration by the histone deacetylase inhibitor valproic acid in mice. J Zhejiang Univ Sci B 2013; 13:695-706. [PMID: 22949360 DOI: 10.1631/jzus.b1100362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Liver regeneration is a complex process regulated by a group of genetic and epigenetic factors. A variety of genetic factors have been reported, whereas few investigations have focused on epigenetic regulation during liver regeneration. In the present study, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was used to investigate the effect of HDAC on liver regeneration. METHODS VPA was administered via intraperitoneal injection to 2/3 partially hepatectomized mice to detect hepatocyte proliferation during liver regeneration. The mice were sacrificed, and their liver tissues were harvested at sequential time points from 0 to 168 h after treatment. DNA synthesis was detected via a BrdU assay, and cell proliferation was tested using Ki-67. The expressions of cyclin D1, cyclin E, cyclin dependent kinase 2 (CDK2), and CDK4 were detected by Western blot analysis. Chromatin immunoprecipitation (ChIP) assay was used to examine the recruitment of HDACs to the target promoter regions and the expression of the target gene was detected by Western blot. RESULTS Immunohistochemical analysis showed that cells positive for BrdU and Ki-67 decreased, and the peak of BrdU was delayed in the VPA-administered mice. Consistently, cyclin D1 expression was also delayed. We identified B-myc as a target gene of HDACs by complementary DNA (cDNA) microarray. The expression of B-myc increased in the VPA-administered mice after hepatectomy (PH). The ChIP assay confirmed the presence of HDACs at the B-myc promoter. CONCLUSIONS HDAC activities are essential for liver regeneration. Inhibiting HDAC activities delays liver regeneration and induces liver cell cycle arrest, thereby causing an anti-proliferative effect on liver regeneration.
Collapse
Affiliation(s)
- Qi Ke
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | |
Collapse
|