1
|
Ruscito A, McConnell EM, Koudrina A, Velu R, Mattice C, Hunt V, McKeague M, DeRosa MC. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target. ACTA ACUST UNITED AC 2017; 9:233-268. [PMID: 29241295 DOI: 10.1002/cpch.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Erin M McConnell
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Anna Koudrina
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Ranganathan Velu
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | | | - Vernon Hunt
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Maureen McKeague
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Maria C DeRosa
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Kim T, Chitteni-Pattu S, Cox BL, Wood EA, Sandler SJ, Cox MM. Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination. PLoS Genet 2015; 11:e1005278. [PMID: 26047498 PMCID: PMC4457935 DOI: 10.1371/journal.pgen.1005278] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary balance between the positive and potentially deleterious effects of recombination. We have perturbed that balance, generating RecA variants exhibiting improved recombination functionality via random mutagenesis followed by directed evolution for enhanced function in conjugation. A recA gene segment encoding a 59 residue segment of the protein (Val79-Ala137), encompassing an extensive subunit-subunit interface region, was subjected to degenerate oligonucleotide-mediated mutagenesis. An iterative selection process generated at least 18 recA gene variants capable of producing a higher yield of transconjugants. Three of the variant proteins, RecA I102L, RecA V79L and RecA E86G/C90G were characterized based on their prominence. Relative to wild type RecA, the selected RecA variants exhibited faster rates of ATP hydrolysis, more rapid displacement of SSB, decreased inhibition by the RecX regulator protein, and in general displayed a greater persistence on DNA. The enhancement in conjugational function comes at the price of a measurable RecA-mediated cellular growth deficiency. Persistent DNA binding represents a barrier to other processes of DNA metabolism in vivo. The growth deficiency is alleviated by expression of the functionally robust RecX protein from Neisseria gonorrhoeae. RecA filaments can be a barrier to processes like replication and transcription. RecA regulation by RecX protein is important in maintaining an optimal balance between recombination and other aspects of DNA metabolism. The genetic recombination systems of bacteria have not evolved for optimal enzymatic function. As recombination and recombination systems can have deleterious effects, these systems have evolved sufficient function to repair a level of DNA double strand breaks typically encountered during replication and cell division. However, maintenance of genome stability requires a proper balance between all aspects of DNA metabolism. A substantial increase in recombinase function is possible, but it comes with a cellular cost. Here, we use a kind of directed evolution to generate variants of the Escherichia coli RecA protein with an enhanced capacity to promote conjugational recombination. The mutations all occur within a targeted 59 amino acid segment of the protein, encompassing a significant part of the subunit-subunit interface. The RecA variants exhibit a range of altered activities. In general, the mutations appear to increase RecA protein persistence as filaments formed on DNA creating barriers to DNA replication and/or transcription. The barriers can be eliminated via expression of more robust forms of a RecA regulator, the RecX protein. The results elucidate an evolutionary compromise between the beneficial and deleterious effects of recombination.
Collapse
Affiliation(s)
- Taejin Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin L. Cox
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Steven J. Sandler
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
3
|
Seo YJ, Nilsen-Hamilton M, Levine HA. A computational study of alternate SELEX. Bull Math Biol 2014; 76:1455-521. [PMID: 24878869 DOI: 10.1007/s11538-014-9954-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 03/27/2014] [Indexed: 02/01/2023]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is a procedure for identifying nucleic acid (NA) molecules with affinities for specific target species, such as proteins, peptides, or small organic molecules. Here, we extend the work in Seo et al. (Bull Math Biol 72:1623-1665, 2010) (multiple-target SELEX or positive SELEX) and examine an alternate SELEX process with multiple targets by incorporating negative selection into a positive SELEX protocol. The alternate SELEX process is done iteratively by alternating several positive selection rounds with several negative selection rounds. At the end of each positive selection round, NAs are eluted from the bound product and amplified by polymerase chain reaction (PCR) to increase the size of the pool of NA species that bind preferentially to the given positive target vector. The enriched population of NAs is then exposed to the negative targets (undesired targets). The free NA species (instead of the bound NA species being eluted) are retained and amplified by PCR (negative selection). The goal is to minimize an enrichment of nonspecifically binding NAs against multiple targets. While positive selection alone results in a pool of NAs that bind tightly to a given target vector, negative selection results in the subset of the NAs that bind best to the nontarget vectors that are also present. By alternating the two processes, we eventually obtain a refined population of nucleic acids that bind to the desired target(s) with high "selectivity" and "specificity." In the present paper, we give formulations of the negative and alternate selection processes and define their efficiencies in a meaningful way. We study the asymptotic behavior of alternate SELEX system as a discrete-time dynamical system. To do this, we use the chemical potential to examine how alternate SELEX leads to the selection of NAs with more specific interactions when the ratio of the number of positive selection rounds to the number of negative selection rounds is fixed. Alternate SELEX is said to be globally asymptotically stable if, given the initial target vector and a fixed ratio, the distribution of the limiting NA fractions does not depend on the relative concentrations of the NAs in the initial pool (provided that all of the NA species are initially present in the initial pool). We state conditions on the matrix of NA-target affinities that determine when the alternate SELEX process is globally asymptotically stable in this sense and illustrate these results computationally.
Collapse
Affiliation(s)
- Yeon-Jung Seo
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA,
| | | | | |
Collapse
|
4
|
Singh TS, Rao BJ, Krishnamoorthy G. GTP binding leads to narrowing of the conformer population while preserving the structure of the RNA aptamer: a site-specific time-resolved fluorescence dynamics study. Biochemistry 2012; 51:9260-9. [PMID: 23110669 DOI: 10.1021/bi301110u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we employed a combination of steady-state and time-resolved fluorescence spectroscopy and studied the site-specific dynamics in a GTP aptamer using 2-aminopurine as a fluorescent probe. We compared the dynamics of the GTP-bound aptamer with that of the free aptamer as well as when it is denatured. GTP binding leads to an overall compaction of structure in the aptamer. The general pattern of fluorescence lifetimes and correlation times scanned across several locations in the aptamer does not seem to change following GTP binding. However, a remarkable narrowing of the lifetime distribution of the aptamer ensues following its compaction by GTP binding. Interestingly, such a "conformational narrowing" is evident from the lifetime readouts of the nucleotide belonging to the stem as well as the "bulge" part of the aptamer, independent of whether it is directly interacting with GTP. Taken together, these results underscore the importance of an overall intrinsic structure associated with the free aptamer that is further modulated following GTP binding. This work provides strong support for the "conformational selection" hypothesis of ligand binding.
Collapse
Affiliation(s)
- T Sanjoy Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | | | |
Collapse
|
5
|
First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule toxin. Toxicon 2012; 61:30-7. [PMID: 23142073 DOI: 10.1016/j.toxicon.2012.10.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/05/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023]
Abstract
Saxitoxin (STX) is a low molecular weight neurotoxin mainly produced by certain marine dinoflagellates that, along with its family of similarly related paralytic shellfish toxins, may cause the potentially fatal intoxication known as paralytic shellfish poisoning. Illness and fatality rates are low due to the effective monitoring programs that determine when toxins exceed the established regulatory action level and effectuate shellfish harvesting closures accordingly. Such monitoring programs rely on the ability to rapidly screen large volumes of samples. Many of the screening assays currently available employ antibodies or live animals. This research focused on developing an analytical recognition element that would eliminate the challenges associated with the limited availability of antibodies and the use of animals. Here we report the discovery of a DNA aptamer that targets STX. Concentration-dependent and selective binding of the aptamer to STX was determined using a surface plasmon resonance sensor. Not only does this work represent the first reported aptamer to STX, but also the first aptamer to any marine biotoxin. A novel strategy of using a toxin-protein conjugate for DNA aptamer selection was successfully implemented to overcome the challenges associated with aptamer selection to small molecules. Taking advantage of such an approach could lead to increased diversity and accessibility of aptamers to low molecular weight toxins, which could then be incorporated as analytical recognition elements in diagnostic assays for foodborne toxin detection. The selected STX aptamer sequence is provided here, making it available to any investigator for use in assay development for the detection of STX.
Collapse
|
6
|
Harnessing aptamers for electrochemical detection of endotoxin. Anal Biochem 2012; 424:12-20. [PMID: 22370280 DOI: 10.1016/j.ab.2012.02.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharide (LPS), also known as endotoxin, triggers a fatal septic shock; therefore, fast and accurate detection of LPS from a complex milieu is of primary importance. Several LPS affinity binders have been reported so far but few of them have proved their efficacy in developing electrochemical sensors capable of selectively detecting LPS from crude biological liquors. In this study, we identified 10 different single-stranded DNA aptamers showing specific affinity to LPS with dissociation constants (K(d)) in the nanomolar range using a NECEEM-based non-SELEX method. Based on the sequence and secondary structure analysis of the LPS binding aptamers, an aptamer exhibiting the highest affinity to LPS (i.e., B2) was selected to construct an impedance biosensor on a gold surface. The developed electrochemical aptasensor showed excellent sensitivity and specificity in the linear detection range from 0.01 to 1 ng/mL of LPS with significantly reduced detection time compared with the traditional Limulus amoebocyte lysate (LAL) assay.
Collapse
|
7
|
Abstract
Systematic Evolution of Ligands by EXponential enrichment (SELEX) is an experimental procedure that allows extraction, from an initially random pool of oligonucleotides, of the oligomers with a high binding affinity for a given molecular target. The highest affinity binding sequences isolated through SELEX can have numerous research, diagnostic, and therapeutic applications. Recently, important new modifications of the SELEX protocol have been proposed. In particular, a suitably modified SELEX experiment, together with an appropriate computational procedure, allows inference of protein-DNA interaction parameters with up to now unprecedented accuracy. Such inference is possible even when there is no a priori information on transcription factor binding specificity, which allows accurate predictions of binding sites for any transcription factor of interest. In this chapter we discuss how to accurately determine protein-DNA interaction parameters from SELEX experiments. The chapter addresses experimental and computational procedure needed to generate and analyze appropriate data.
Collapse
|
8
|
Rabhi M, Rahmouni AR, Boudvillain M. Transcription Termination Factor Rho: A Ring-Shaped RNA Helicase from Bacteria. RNA HELICASES 2010. [DOI: 10.1039/9781849732215-00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Makhlouf Rabhi
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
- Ecole doctorale Sciences et Technologies, Université d’Orléans France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
| |
Collapse
|
9
|
Ding JL, Gan ST, Ho B. Single-stranded DNA oligoaptamers: molecular recognition and LPS antagonism are length- and secondary structure-dependent. J Innate Immun 2008; 1:46-58. [PMID: 20375565 DOI: 10.1159/000145542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 05/13/2008] [Indexed: 11/19/2022] Open
Abstract
In Gram-negative bacterial infection, lipopolysaccharide (LPS) readily overwhelms the host innate immune system, which could result in inflammation and sepsis in severe cases. Therefore, developing anti-LPS molecules would confer an efficient antibacterial strategy. We used SELEX (Systemic Evolution of Ligands by EXponential enrichment) to isolate single-stranded DNA (ssDNA) aptamers. By immobilizing and exposing different orientations of the LPS molecule on hydrophobic and hydrophilic surfaces, two populations of aptamers were captured from a library of 10(14-15) ssDNA oligonucleotides. Progressive SELEX enriched the aptamers towards thymidine residues. The more hydrophobic aptamers with T-rich loops showed strong molecular recognition for the lipid A moiety of LPS, binding at affinity of up to K(D) of 10(-9)M, and eliciting 95% neutralization of endotoxicity. The longer ssDNAs exhibited greater avidity for LPS and conferred more efficacious antagonism against LPS. The nucleotide composition imposes subtle influence on the aptamer folding and affinity for LPS.
Collapse
Affiliation(s)
- J L Ding
- Department of Biological Sciences, National University of Singapore, Singapore.
| | | | | |
Collapse
|
10
|
Vant-Hull B, Gold L, Zichi DA. Theoretical principles of in vitro selection using combinatorial nucleic acid libraries. ACTA ACUST UNITED AC 2008; Chapter 9:Unit 9.1. [PMID: 18428805 DOI: 10.1002/0471142700.nc0901s00] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new paradigm for drug discovery and biological research has developed from technologies that integrate combinatorial chemistry with rounds of selection and amplification, a technique called in vitro selection or systematic evolution of ligands by exponential enrichment (SELEX). This overview unit discusses nucleic acid libraries that can be used, affinity probability distributions, an equilibrium model for SELEX, and optimal conditions including concentrations and signal-to-noise ratios.
Collapse
Affiliation(s)
- B Vant-Hull
- NeXstar Pharmaceuticals, Boulder, Colorado, USA
| | | | | |
Collapse
|
11
|
Berezovski MV, Musheev MU, Drabovich AP, Jitkova JV, Krylov SN. Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nat Protoc 2007; 1:1359-69. [PMID: 17406423 DOI: 10.1038/nprot.2006.200] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aptamers are typically selected from libraries of random DNA (or RNA) sequences through systematic evolution of ligands by exponential enrichment (SELEX), which involves several rounds of alternating steps of partitioning of candidate oligonucleotides and their PCR amplification. Here we describe a protocol for non-SELEX selection of aptamers--a process that involves repetitive steps of partitioning with no amplification between them. Non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), which is a highly efficient affinity method, is used for partitioning. NECEEM also facilitates monitoring of bulk affinity of enriched libraries at every step of partitioning and screening of individual clones for their affinity to the target. NECEEM allows all clones to be screened prior to sequencing, so that only clones with suitable binding parameters are sequenced. The entire protocol can be completed in 1 wk, whereas conventional SELEX protocols take several weeks even in a specialized industrial facility.
Collapse
Affiliation(s)
- Maxim V Berezovski
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | |
Collapse
|
12
|
Stoltenburg R, Reinemann C, Strehlitz B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. ACTA ACUST UNITED AC 2007; 24:381-403. [PMID: 17627883 DOI: 10.1016/j.bioeng.2007.06.001] [Citation(s) in RCA: 937] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 02/07/2023]
Abstract
SELEX stands for systematic evolution of ligands by exponential enrichment. This method, described primarily in 1990 [Ellington, A.D., Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822; Tuerk, C., Gold, L., 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510] aims at the development of aptamers, which are oligonucleotides (RNA or ssDNA) binding to their target with high selectivity and sensitivity because of their three-dimensional shape. Aptamers are all new ligands with a high affinity for considerably differing molecules ranging from large targets as proteins over peptides, complex molecules to drugs and organic small molecules or even metal ions. Aptamers are widely used, including medical and pharmaceutical basic research, drug development, diagnosis, and therapy. Analytical and separation tools bearing aptamers as molecular recognition and binding elements are another big field of application. Moreover, aptamers are used for the investigation of binding phenomena in proteomics. The SELEX method was modified over the years in different ways to become more efficient and less time consuming, to reach higher affinities of the aptamers selected and for automation of the process. This review is focused on the development of aptamers by use of SELEX and gives an overview about technologies, advantages, limitations, and applications of aptamers.
Collapse
Affiliation(s)
- Regina Stoltenburg
- UFZ, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | |
Collapse
|
13
|
Djordjevic M. SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. ACTA ACUST UNITED AC 2007; 24:179-89. [PMID: 17428731 DOI: 10.1016/j.bioeng.2007.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Systematic Evolution of Ligands by EXponential enrichment (SELEX) is an experimental procedure that allows extraction, from an initially random pool of oligonucleotides, of the oligomers with a desired binding affinity for a given molecular target. The procedure can be used to infer the strongest binders for a given DNA or RNA binding protein, and the highest affinity binding sequences isolated through SELEX can have numerous research, diagnostic and therapeutic applications. Recently, important new modifications of the SELEX protocol have been proposed. In particular, a modification of the standard SELEX procedure allows generating a dataset from which protein-DNA interaction parameters can be determined with unprecedented accuracy. Another variant of SELEX allows investigating interactions of a protein with nucleic-acid fragments derived from the entire genome of an organism. We review here different SELEX-based methods, with particular emphasis on the experimental design and on the applications aimed at inferring protein-DNA interactions. In addition to the experimental issues, we also review relevant methods of data analysis, as well as theoretical modeling of SELEX.
Collapse
Affiliation(s)
- Marko Djordjevic
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Abstract
Rho-dependent transcription terminators participate in sophisticated genetic regulatory mechanisms, in both bacteria and phages; they occur in regulatory regions preceding the coding sequences of genes and within coding sequences, as well as at the end of transcriptional units, to prevent readthrough transcription. Most Rho-dependent terminators have been found in enteric bacteria, but they also occur in Gram-positive bacteria and may be widespread among bacteria. Rho-dependent termination requires both cis-acting elements, on the mRNA, and trans-acting factors. The only cis-acting element common to Rho-dependent terminators is richness in rC residues. Additional sequence elements have been observed at different Rho termination sites. These 'auxiliary elements' may assist in the termination process; they differ among terminators, their occurrence possibly depending on the function and sequence context of the terminator. Specific nucleotides required for termination have also been identified at Rho sites. Rho is the main factor required for termination; it is a ring-shaped hexameric protein with ATPase and helicase activities. NusG, NusA and NusB are additional factors participating in the termination process. Rho-dependent termination occurs by binding of Rho to ribosome-free mRNA, C-rich sites being good candidates for binding. Rho's ATPase is activated by Rho-mRNA binding, and provides the energy for Rho translocation along the mRNA; translocation requires sliding of the message into the central hole of the hexamer. When a polymerase pause site is encountered, the actual termination occurs, and the transcript is released by Rho's helicase activity. Many aspects of this process are still being studied. The isolation of mutants suppressing termination, site-directed mutagenesis of cis-acting elements in Rho-dependent termination, and biochemistry, are and will be contributing to unravelling the still undefined aspects of the Rho termination machinery. Analysis of the more sophisticated regulatory mechanisms relying on Rho-dependent termination may be crucial in identifying new essential elements for termination.
Collapse
Affiliation(s)
- M Sofia Ciampi
- Dipartimento di Genetica e Microbiologia, Università di Bari, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
15
|
Musheev MU, Krylov SN. Selection of aptamers by systematic evolution of ligands by exponential enrichment: Addressing the polymerase chain reaction issue. Anal Chim Acta 2006; 564:91-6. [PMID: 17723366 DOI: 10.1016/j.aca.2005.09.069] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/26/2005] [Accepted: 09/29/2005] [Indexed: 11/22/2022]
Abstract
Aptamers are DNA oligonucleotides capable of binding different classes of targets with high affinity and selectivity. They are particularly attractive as affinity probes in multiplexed quantitative analysis of proteins. Aptamers are typically selected from large libraries of random DNA sequences in a general approach termed systematic evolution of ligands by exponential enrichment (SELEX). SELEX involves repetitive rounds of two processes: (i) partitioning of aptamers from non-aptamers by an affinity method and (ii) amplification of aptamers by the polymerase chain reaction (PCR). New partitioning methods, which are characterized by exceptionally high efficiency of partitioning, have been recently introduced. For the overall SELEX procedure to be efficient, the high efficiency of new partitioning methods has to be matched by high efficiency of PCR. Here we present the first detailed study of PCR amplification of random DNA libraries used in aptamer selection. With capillary electrophoresis as an analytical tool, we found fundamental differences between PCR amplification of homogeneous DNA templates and that of large libraries of random DNA sequences. Product formation for a homogeneous DNA template proceeds until primers are exhausted. For a random DNA library as a template, product accumulation stops when PCR primers are still in excess of the products. The products then rapidly convert to by-products and virtually disappear after only 5 additional cycles of PCR. The yield of the products decreases with the increasing length of DNA molecules in the library. We also proved that the initial number of DNA molecules in PCR mixture has no effect on the by-products formation. While the increase of the Taq DNA polymerase concentration in PCR mixture selectively increases the yield of PCR products. Our findings suggest that standard procedures of PCR amplification of homogeneous DNA samples cannot be transferred to PCR amplification of random DNA libraries: to ensure efficient SELEX, PCR has to be optimized for the amplification of random DNA libraries.
Collapse
Affiliation(s)
- Michael U Musheev
- Department of Chemistry, York University, Toronto, Ont., Canada M3J 1P3
| | | |
Collapse
|
16
|
Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, Krylov SN. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc 2005; 127:3165-71. [PMID: 15740156 DOI: 10.1021/ja042394q] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aptamers are DNA (or RNA) ligands selected from large libraries of random DNA sequences and capable of binding different classes of targets with high affinity and selectivity. Both the chances for the aptamer to be selected and the quality of the selected aptamer are largely dependent on the method of selection. Here we introduce selection of aptamers by nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM). The new method has a number of advantages over conventional approaches. First, NECEEM-based selection has exceptionally high efficiency, which allows aptamer development with fewer rounds of selection. Second, NECEEM can be equally used for selecting aptamers and finding their binding parameters. Finally, due to its comprehensive kinetic capabilities, the new method can potentially facilitate selection of aptamers with predefined K(d), k(off), and k(on) of the aptamer-target interaction. In this proof-of-principle work, we describe the theoretical bases of the method and demonstrate its application to a one-step selection of DNA aptamers with nanomolar affinity for protein farnesyltransferase.
Collapse
Affiliation(s)
- Maxim Berezovski
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Walmacq C, Rahmouni AR, Boudvillain M. Influence of substrate composition on the helicase activity of transcription termination factor Rho: reduced processivity of Rho hexamers during unwinding of RNA-DNA hybrid regions. J Mol Biol 2004; 342:403-20. [PMID: 15327943 DOI: 10.1016/j.jmb.2004.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/09/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Transcription termination factor Rho forms ring-shaped hexameric structures that load onto segments of the nascent RNA transcript that are C-rich and mostly single-stranded. This interaction converts Rho hexamers into active molecular motors that use the energy resulting from their ATP hydrolase activity to move towards the transcript 3'-end. Upon translocation along the RNA chain, Rho can displace physical roadblocks, such as those formed by RNA-DNA helices, a feature that is likely central to the transcription termination mechanism. To study this "translocase" (helicase) activity, we have designed a collection of Rho substrate chimeras containing an RNA-DNA helix located at various positions with respect to a short (47 nucleotides) artificial loading site. We show that these synthetic constructs represent interesting model substrates able to engage in a productive interaction with Rho and to direct NTP-dependent [5'-->3']-translocation of the hexamers. Using both single and multiple-cycle experimental set-ups, we have also found that Rho helicase activity is strongly dependent on the substrate composition and reaction conditions. For this reason, the rate-limiting step of the helicase reaction could not be identified unambiguously. Yet, the linear dependence of the reaction rate on the hybrid length suggests that helicase action on the RNA-DNA region could be controlled by a unique slow step such as Rho activation, conformational rearrangement, or DNA release. Moreover, removal of the DNA strand occurred at a significant cost for the Rho enzyme, inducing, on average, dissociation from the substrate for every 60-80 base-pairs of hybrid unwound. These results are discussed in relation to the known requirements for Rho substrates, general features of hexameric helicases, and current models for Rho-dependent transcription termination.
Collapse
Affiliation(s)
- Céline Walmacq
- Centre de Biophysique Moléculaire (UPR4301), CNRS, rue Charles Sadron, 45071 Orléans cedex 2, France
| | | | | |
Collapse
|
18
|
Abstract
Following the age of genomics having sequenced the human genome, interest is shifted towards the function of genes. This new age of proteomics brings about a change of methods to study the properties of gene products on a large scale. Protein separation technologies are now applied to allow high-throughput purification and characterisation of proteins. Two-dimensional-gel electrophoresis (2DE) and mass spectrometry (MS) have become widely used tools in the field of proteomics. At the same time, protein and antibody microarrays have been developed as successor of DNA microarrays to soon allow the proteome-wide screening of protein function in parallel. This review is aimed to introduce this new technology and to highlight its current prospects and limitations.
Collapse
Affiliation(s)
- Jörn Glökler
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | |
Collapse
|
19
|
Vo NV, Oh JW, Lai MMC. Identification of RNA ligands that bind hepatitis C virus polymerase selectively and inhibit its RNA synthesis from the natural viral RNA templates. Virology 2003; 307:301-16. [PMID: 12667800 DOI: 10.1016/s0042-6822(02)00095-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To identify the potential RNA inhibitors of HCV polymerase, we have isolated high-affinity RNA ligands specific to hepatitis C virus (HCV) NS5B protein from a combinatorial RNA library using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) procedure. Thirty-seven selected ligands were classified into eight groups on the basis of their sequence homologies. Most (60%) of the ligands carry the conserved YGUAGR hexamer (Y = pyrimidine, R = purine) at the 5' end of the 40-nt randomized region, and 74% of the ligands end in (A/C)U at the 3'end. However, strong binding to NS5B required the whole RNA ligand including the flanking conserved nucleotides at both ends. The binding of the selected ligands to NS5B is highly specific and strong, as reflected in their low dissociation rate constants (k(d) approximately 10(-4) s(-1)). Analysis of secondary structure by computer program and RNase footprints of the two different aptamers from two most conserved groups revealed RNA structures containing three stem loops with internal bulges. NS5B bound these RNA at a region between the two stem loops from the 5' -end. Some of these RNA aptamers could serve as a template for the HCV polymerase, but some interfered with the activity of the viral enzyme. These RNA ligands will be useful for further characterization of NS5B-binding properties and, with further modifications, may have potential therapeutic value.
Collapse
Affiliation(s)
- Nam Viet Vo
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033-1054, USA
| | | | | |
Collapse
|
20
|
Nguyen DH, DeFina SC, Fink WH, Dieckmann T. Binding to an RNA aptamer changes the charge distribution and conformation of malachite green. J Am Chem Soc 2002; 124:15081-4. [PMID: 12475353 DOI: 10.1021/ja027635d] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA plays a central role in many biological processes and is therefore an important target for drug development. In recent years an increasing wealth of structural and functional information about RNA-ligand complexes has been obtained using in vitro selected RNAs (aptamers). However, all those studies focused on structure and changes of the nucleic acid and mostly considered the ligand as a rigid target. To develop a detailed picture of ligand structure and dynamics in RNA-small molecule complexes, the malachite green binding aptamer was studied. Isotopically labeled ligand in complex with RNA was analyzed by NMR spectroscopy in solution. The surprisingly asymmetric changes in the (13)C chemical shift of the ligand methyl groups indicate that the dye undergoes changes in its conformation and charge distribution upon binding. The role of the RNA electrostatic field in this interaction was explored using ab initio calculations of the ligand structure and charge distribution. The results indicate that the uneven charge distribution in the RNA binding pocket provides a major contribution to the driving force of the ligand structural changes. The observation that not only the RNA adapts to the ligand, in what is called adaptive binding, but that the ligand itself also undergoes conformational changes ("induced fit") is crucial for the rational design of RNA ligands and for understanding the properties of RNA-ligand complexes.
Collapse
Affiliation(s)
- Dat H Nguyen
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- G F Joyce
- The Scripps Research Institute, La Jolla, USA
| |
Collapse
|
22
|
Sooter LJ, Riedel T, Davidson EA, Levy M, Cox JC, Ellington AD. Toward automated nucleic acid enzyme selection. Biol Chem 2001; 382:1327-34. [PMID: 11688716 DOI: 10.1515/bc.2001.165] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methods for automation of nucleic acid selections are being developed. The selection of aptamers has been successfully automated using a Biomek 2000 workstation. Several binding species with nanomolar affinities were isolated from diverse populations. Automation of a deoxyribozyme ligase selection is in progress. The process requires eleven times more robotic manipulations than an aptamer selection. The random sequence pool contained a 5' iodine residue and the ligation substrate contained a 3' phosphorothioate. Initially, a manual deoxyribozyme ligase selection was performed. Thirteen rounds of selection yielded ligators with a 400-fold increase in activity over the initial pool. Several difficulties were encountered during the automation of DNA catalyst selection, including effectively washing bead-bound DNA, pipetting 50% glycerol solutions, purifying single strand DNA, and monitoring the progress of the selection as it is performed. Nonetheless, automated selection experiments for deoxyribozyme ligases were carried out starting from either a naive pool or round eight of the manually selected pool. In both instances, the first round of selection revealed an increase in ligase activity. However, this activity was lost in subsequent rounds. A possible cause could be mispriming during the unmonitored PCR reactions. Potential solutions include pool redesign, fewer PCR cycles, and integration of a fluorescence microtiter plate reader to allow robotic 'observation' of the selections as they progress.
Collapse
Affiliation(s)
- L J Sooter
- Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, 78712, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wecker M, Smith D. Selection for RNA: peptide recognition through sulfur alkylation chemistry. Methods Enzymol 2001; 318:229-37. [PMID: 10889991 DOI: 10.1016/s0076-6879(00)18055-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- M Wecker
- NeXstar Pharmaceuticals, Boulder, Colorado 80301, USA
| | | |
Collapse
|
24
|
Seiquer I, Valverde A, Delgado-Andrade C, Navarro MP. Influence of heat treatment of casein in presence of reducing sugars on Zn solubility and Zn uptake by Caco-2 cells after in vitro digestion. J Physiol Biochem 2000; 56:237-46. [PMID: 11198161 DOI: 10.1007/bf03179792] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of the heat treatment of casein in presence of reducing sugars on some aspects of Zn availability was investigated. Samples were prepared by mixing casein with glucose-fructose, and were used unprocessed (C) or heated (HC). Changes in Zn speciation after the in vitro digestion of the samples, both as part of a diet and in isolation, were studied. The uptake of soluble Zn from the digested samples was investigated in Caco-2 cells. After in vitro digestion, the percentage of precipitated Zn was significantly higher with the HC sample, both when digested alone and as a part of the diet. In assays with Caco-2 cells, a significant decrease in Zn uptake was observed when the uptake buffer contained the sample C digest, by comparison with the control buffer, without casein digest. When the digested heated mixture was added, Zn uptake by the cells was significantly lower than in either of the two other cases. It may be concluded that the heat treatment of casein in the presence of glucose-fructose has a negative effect on Zn availability because, after in vitro digestion, Zn insolubilization was enhanced and Zn uptake by the enterocyte was impaired, compared with the unheated mixture. In addition, the usefulness of Caco-2 cells in this kind of research has been shown.
Collapse
Affiliation(s)
- I Seiquer
- Unidad de Nutrición, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- G Lowe
- Dyson Perrins Laboratory, Oxford University, UK
| |
Collapse
|
26
|
Abstract
AbstractAntibodies, the most popular class of molecules providing molecular recognition needs for a wide range of applications, have been around for more than three decades. As a result, antibodies have made substantial contributions toward the advancement of diagnostic assays and have become indispensable in most diagnostic tests that are used routinely in clinics today. The development of the systematic evolution of ligands by exponential enrichment (SELEX) process, however, made possible the isolation of oligonucleotide sequences with the capacity to recognize virtually any class of target molecules with high affinity and specificity. These oligonucleotide sequences, referred to as “aptamers”, are beginning to emerge as a class of molecules that rival antibodies in both therapeutic and diagnostic applications. Aptamers are different from antibodies, yet they mimic properties of antibodies in a variety of diagnostic formats. The demand for diagnostic assays to assist in the management of existing and emerging diseases is increasing, and aptamers could potentially fulfill molecular recognition needs in those assays. Compared with the bellwether antibody technology, aptamer research is still in its infancy, but it is progressing at a fast pace. The potential of aptamers may be realized in the near future in the form of aptamer-based diagnostic products in the market. In such products, aptamers may play a key role either in conjunction with, or in place of, antibodies. It is also likely that existing diagnostic formats may change according to the need to better harness the unique properties of aptamers.
Collapse
Affiliation(s)
- Sumedha D Jayasena
- NeXstar Pharmaceuticals, Inc., 2860 Wilderness Place, Boulder, CO 80301. Fax 303-444-0672; e-mail
| |
Collapse
|
27
|
Ingham CJ. Characterisation of the enzymatic and RNA-binding properties of the Rhodobacter sphaeroides 2.4.1. Rho homologue. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:115-25. [PMID: 10395924 DOI: 10.1016/s0167-4781(99)00082-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Escherichia coli Rho is a transcription termination factor with complex enzymatic properties. Rho is a near-universal prokaryotic transcription factor, but very few non-enteric Rho factors have been studied. The expression and enzymatic activity of Rho from the GC-rich, Gram-negative bacterium Rhodobacter sphaeroides was characterised. Poly(C)-activated ATP hydrolysis, multimerisation and the abundance of the R. sphaeroides Rho were similar to the E. coli Rho. The R. sphaeroides Rho was a DNA:RNA helicase. The R. sphaeroides Rho was unique in Rho factors characterised to date in that it did not interact with the lambdatR1 terminator transcript and ATP hydrolysis was unusually weakly activated by poly(U) RNA. A chimeric Rho (RhoER), with the RNA-binding domain from the E. coli Rho and the ATPase domain of the R. sphaeroides Rho, was activated by RNA co-factors in a similar fashion to the E. coli Rho. The activity of RhoER suggests functional interactions between the N- and C-terminal domains of Rho monomers are highly conserved between Rho factors. The main differences between Rho factors from different bacteria is in the specificity of RNA binding although this does not appear to be necessarily dependent on the GC bias of target RNA as has been previously suggested.
Collapse
Affiliation(s)
- C J Ingham
- School of Biological Sciences, University Park, Nottingham University, Nottingham, NG7 2RD, UK.
| |
Collapse
|
28
|
Graham JE, Richardson JP. rut Sites in the nascent transcript mediate Rho-dependent transcription termination in vivo. J Biol Chem 1998; 273:20764-9. [PMID: 9694820 DOI: 10.1074/jbc.273.33.20764] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vitro function of the coliphage lambda tR1 Rho-dependent terminator is governed primarily by a tripartite upstream sequence element designated rut. To determine the contribution of the different components of the rut site to terminator function in the normal context of coupled translation of the nascent cro message, tR1 variants lacking different rut site sequences were tested for terminator function in vivo. Intact rutA and rutB sequences were both necessary for efficient termination. However, deletion of the upstream rutA was far more detrimental than deletion of rutB. The intervening boxB, which encodes a short RNA stem and loop, could be deleted without reducing termination or detectably altering Rho's interaction with the corresponding cro transcript. The relative importance of these sequence elements was also the same in a minimal in vitro termination assay system. Rut sequences are therefore essential for terminator function in vivo and rutA contributes substantially more to tR1 function than does rutB. The relative contribution of these elements can be ascribed to differences in Rho's binding affinity for the encoded transcripts. If other cellular factors also bind the rut element RNA, they do not alter the relative contribution of its two regions to Rho-dependent transcription termination in vivo.
Collapse
Affiliation(s)
- J E Graham
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
29
|
Vant-Hull B, Payano-Baez A, Davis RH, Gold L. The mathematics of SELEX against complex targets. J Mol Biol 1998; 278:579-97. [PMID: 9600840 DOI: 10.1006/jmbi.1998.1727] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a computer model for the simulation of simultaneous SELEX against multiple targets. The model assumes equilibrium behavior for the formation of binary ligand:target complexes, and that there is no ligand:ligand or target:target interaction. Target concentrations, ligand concentrations, and affinity distributions of the initial ligand pool for each individual target may be set by the user. We have used this program to gain an understanding of how the presence of multiple targets affects the selection process. In most cases, we find that SELEX is capable of generating different ligands for the different targets in a heterogeneous mixture, regardless of large variations in target concentrations and ligand:target affinities. A low relative partitioning efficiency (the efficiency with which ligands complexed with a target are separated from free ligands) for a target in a mixture gives a greatly reduced rate of selection of high-affinity ligands to that target. The ratio of each high-affinity ligand to its individual target within a pool of ligands selected for binding against a mixture of targets is approximately proportional to the concentration of the target multiplied by the ligand:target partitioning efficiency.
Collapse
Affiliation(s)
- B Vant-Hull
- Department of Molecular Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
30
|
Bardeesy N, Pelletier J. Overlapping RNA and DNA binding domains of the wt1 tumor suppressor gene product. Nucleic Acids Res 1998; 26:1784-92. [PMID: 9512553 PMCID: PMC147468 DOI: 10.1093/nar/26.7.1784] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Wilms' tumour suppressor gene (wt1) is mutated in a subset of patients with Wilms' tumour and has a critical role in urogenital development. wt1 encodes a zinc finger transcription factor which regulates expression of several genes involved in cellular proliferation and differentiation. Although a number of studies have characterized the DNA binding properties of the WT1 protein, recent evidence has suggested that WT1 may also have a role in RNA metabolism. We have used an RNA selection method to identify WT1 binding ligands from a random RNA pool. Three groups of RNA ligands specifically recognized by WT1 were identified. Mutational analysis pinpointed ribonucleotide sequences critical for binding. Analysis of truncated WT1 proteins demonstrated that three of four zinc fingers were necessary for RNA-protein interaction. The naturally occurring WT1 isoforms with insertion of lysine, threonine and serine between zinc fingers three and four were unable to bind the selected RNAs. The selected RNA ligands competed with the cognate WT1 DNA binding site for complex formation with WT1. Our findings suggest potential cellular RNA target sequences for WT1 and provide tools for studying the structural and functional properties of this tumour suppressor protein.
Collapse
Affiliation(s)
- N Bardeesy
- Department of Biochemistry, McGill University, 3655 Drummond Street, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
31
|
Sapag A, Draper DE. In vitro evolution used to define a protein recognition site within a large RNA domain. Bioorg Med Chem 1997; 5:1097-105. [PMID: 9222503 DOI: 10.1016/s0968-0896(97)00045-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A minimum of 460 nucleotides of 16S ribosomal RNA are needed to fold the target site for E. coli ribosomal protein S4, although a much smaller region within this large domain is protected from chemical reagents by the protein. Starting with a 531-nucleotide tRNA fragment, cycles of mutagenesis, selection with S4, and amplification ('in vitro evolution') were used to obtain a pool of 30 RNA sequences selected for S4 recognition but approximately 30% different from wild type. Numerous compensatory base pair changes have largely preserved the same secondary structure among these RNAs as found in wild-type sequences. A 20-base deletion and a single nucleotide insertion are among several unusual features found in most of the selected sequences and also prevalent among other prokaryotic rRNAs. Most of the compensatory base changes and selected features are located outside of the region protected by S4 from chemical reagents. It was unexpected that S4 would select for RNA structures throughout such a large domain; the selected features are probably contributing indirectly to S4 recognition by promoting correct tertiary folding of the region actually contacted by S4. The role of S4 may be to stabilize this domain (nearly one-third of the 16S rRNA) in its proper conformation for ribosome function.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cloning, Molecular
- DNA, Complementary/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Evolution, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- A Sapag
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
32
|
|
33
|
Ciesiolka J, Illangasekare M, Majerfeld I, Nickles T, Welch M, Yarus M, Zinnen S. Affinity selection-amplification from randomized ribooligonucleotide pools. Methods Enzymol 1996; 267:315-35. [PMID: 8743325 DOI: 10.1016/s0076-6879(96)67021-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J Ciesiolka
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Conrad RC, Giver L, Tian Y, Ellington AD. In vitro selection of nucleic acid aptamers that bind proteins. Methods Enzymol 1996; 267:336-67. [PMID: 8743326 DOI: 10.1016/s0076-6879(96)67022-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R C Conrad
- Department of Chemistry, Indiana University, Bloomington 47405, USA
| | | | | | | |
Collapse
|
35
|
Dobbelstein M, Shenk T. In vitro selection of RNA ligands for the ribosomal L22 protein associated with Epstein-Barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries. J Virol 1995; 69:8027-34. [PMID: 7494316 PMCID: PMC189748 DOI: 10.1128/jvi.69.12.8027-8034.1995] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Epstein-Barr virus (EBV)-expressed RNA 1 (EBER1) associates tightly with the ribosomal protein L22. We determined the general requirements for an RNA to bind L22 in a SELEX experiment, selecting RNA ligands for L22 from a randomized pool of RNA sequences by using an L22-glutathione S-transferase fusion protein. The selected sequences all contained a stem-loop motif similar to that of the region of EBER1 previously shown to interact with L22. The nucleotides were highly conserved at three positions within the stem-loop and identical to the corresponding nucleotides in EBER1. Two independent binding sites for L22 could be identified in EBER1, and mobility shift assays indicated that two L22 molecules can interact with EBER1 simultaneously. To search for a cellular L22 ligand, we constructed a SELEX library from cDNA fragments derived from RNA that was coimmunoprecipitated with L22 from an EBV-negative whole-cell lysate. After four rounds of selection and amplification, most of the clones that were obtained overlapped a sequence corresponding to the stem-loop between nucleotides 302 and 317 in human 28S ribosomal RNA. This stem-loop fulfills the criteria for optimal binding to L22 that were defined by SELEX, suggesting that human 28S ribosomal RNA is likely to be a cellular L22 ligand. Additional L22 binding sites were found in 28S ribosomal RNA, as well as within 18S ribosomal RNA and in RNA segments not present in sequence databases. The methodology described for the conversion of a preselected cellular RNA pool into a SELEX library might be generally applicable to other proteins for the identification of cellular RNA ligands.
Collapse
Affiliation(s)
- M Dobbelstein
- Howard Hughes Medical Institute, Princeton University, Lewis Thomas Laboratory, New Jersey 08544-1014, USA
| | | |
Collapse
|
36
|
Tu C, Keane C, Eaton BE. Palladium Catalysis in the Synthesis of 8-Position modified Adenosine, 2′-Deoxyadenosine and Guanosine. ACTA ACUST UNITED AC 1995. [DOI: 10.1080/15257779508009745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Conrad RC, Baskerville S, Ellington AD. In vitro selection methodologies to probe RNA function and structure. Mol Divers 1995; 1:69-78. [PMID: 9237195 DOI: 10.1007/bf01715810] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In vitro selection, or SELEX, has been used both to characterize the interaction of natural nucleic acids with proteins and to generate novel nucleic acid-binding species, or aptamers. Although numerous reports have demonstrated the power of the technique, they have not expanded on the methodologies that can be used for selection. This review focuses on the considerations and problems involved in selecting protein-binding aptamers from a random-sequence RNA pool. As an illustration, we describe two approaches to selecting aptamers to a particular target, the HTLV-I Rex protein. In the first, complete randomization is used to find an artificial, high-affinity RNA binding site. In the second, the contributions of individual nucleotides and/or base pairs to the natural Rex-binding element are determined by mutating the wild-type sequence and selecting active binding variants.
Collapse
Affiliation(s)
- R C Conrad
- Department of Chemistry, Indiana University, Bloomington 47405, USA
| | | | | |
Collapse
|
38
|
Binkley J, Allen P, Brown DM, Green L, Tuerk C, Gold L. RNA ligands to human nerve growth factor. Nucleic Acids Res 1995; 23:3198-205. [PMID: 7545283 PMCID: PMC307178 DOI: 10.1093/nar/23.16.3198] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
High affinity RNA ligands to human nerve growth factor (NGF) were selected from pools of random RNA using SELEX [Tuerk, C. and Gold, L. (1990) Science, 249, 505-510]. Nerve growth factor, which is a protein required for the development of neurons, is not known to bind nucleic acids as part of its natural function. We describe two of the selected RNA molecules in detail. One of them is highly structured, folding into a pseudoknot with an additional hairpin-loop; this structure provides salt-resistant binding to NGF. The other is unstructured and elevated salt concentrations inhibit its binding. These molecules compete with each other for NGF binding. Our RNAs may furnish useful diagnostic tools for the study of an important neurotrophic protein; additionally, they illustrate another example of the potential for nucleic acids to take part in novel binding interactions.
Collapse
Affiliation(s)
- J Binkley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
39
|
Schneider DJ, Feigon J, Hostomsky Z, Gold L. High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry 1995; 34:9599-610. [PMID: 7542922 DOI: 10.1021/bi00029a037] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The reverse transcriptase (RT) of HIV-1 is a plausible target for therapeutic agents aimed at inhibiting propagation of the virus. We have used "irrational drug design", that is, combinatorial chemistry with oligonucleotide libraries, to identify high-affinity ligands aimed at HIV-1 RT. The methodology, termed SELEX (systematic evolution of ligands by exponential enrichment), was employed with a single-stranded DNA library. The selected ssDNA ligands bind HIV-1 RT with Kd values as low as 1 nM and inhibit the RNA-dependent DNA-polymerase activity of the enzyme with Ki values as low as 0.3 nM. We also demonstrate the high specificity of one ligand able to selectively discriminate between the reverse transcriptases of HIV-1, AMV, and MMLV. These ssDNA molecules may be useful as inhibitors or as models for the design of small molecule inhibitors of HIV-1 RT in vivo.
Collapse
Affiliation(s)
- D J Schneider
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | | | | | |
Collapse
|
40
|
Ouellette MM, Wright WE. Use of reiterative selection for defining protein-nucleic acid interactions. Curr Opin Biotechnol 1995; 6:65-72. [PMID: 7534505 DOI: 10.1016/0958-1669(95)80011-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nucleic acids not only code for proteins, but also play a role in a multitude of biological processes, where they act as structural supports, binding sites, co-factors, or catalysts. Recently, an array of techniques has been developed in which molecules that are best fit to perform a given task are selected from a pool of randomized RNA or DNA molecules. These techniques can provide information about the structure/function relationship governing the various biochemical properties of RNA and DNA, including their interaction with proteins. Immediate applications are found not only in the field of transcriptional regulation, but also in the field of RNA-based catalysis.
Collapse
Affiliation(s)
- M M Ouellette
- Department of Neuroscience and Cell Biology, University of Texas Southwestern Medical Center at Dallas 75235
| | | |
Collapse
|
41
|
Morris KN, Tarasow TM, Julin CM, Simons SL, Hilvert D, Gold L. Enrichment for RNA molecules that bind a Diels-Alder transition state analog. Proc Natl Acad Sci U S A 1994; 91:13028-32. [PMID: 7528930 PMCID: PMC45574 DOI: 10.1073/pnas.91.26.13028] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RNA molecules that bind a transition state analog for a Diels-Alder reaction (Kd = 0.35 +/- 0.05 mM) were isolated from a starting pool of approximately 10(14) sequences by affinity chromatography. After the initial rise and plateau of the amount of RNA that eluted with soluble analog, a step gradient elution was used to further enrich the pool for sequences with higher affinities for the target. To our knowledge, the isolation of RNA molecules that bind either a nonplanar or a hydrophobic ligand has not been reported previously. A conserved nucleotide sequence and secondary structure present in many of the RNA molecules are necessary but not sufficient for binding the analog. No catalysts of the targeted Diels-Alder reaction were found among the binders. The absence of catalysis contrasts with previous successful experiments with antibodies and suggests that other strategies may be needed to identify oligonucleotides with diverse catalytic activities.
Collapse
Affiliation(s)
- K N Morris
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309
| | | | | | | | | | | |
Collapse
|
42
|
Jensen RG, deJong FA, Lambert-Davis LG, Hamosh M. Fatty acid and positional selectivities of gastric lipase from premature human infants: in vitro studies. Lipids 1994; 29:433-5. [PMID: 8090065 DOI: 10.1007/bf02537313] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gastric lipase activity in aspirates from premature human infants was tested for fatty acid and positional selectivity using racemic diacid triacylglycerols (TG) as substrates. The resulting free fatty acids and monoacylglycerols (MG) were recovered and analyzed. Octanoic acid (8:0) and decanoic acid (10:0) were hydrolyzed with a preference of 61.5:1 and 2.4:1 compared to palmitic acid (16:0) from rac-16:0-8:0-8:0 and rac-16:0-10:0-10:0, respectively. The ratio of lauric acid (12:0) to oleic acid (18:1) hydrolyzed from rac-18:1-12:0-12:0 was 13:1. Myristic acid (14:0), 18:1 and linoleic acid (18:2) were released at similar rates. These data and the composition of the MG suggest that, in vitro, the lipase is selective for shorter chain fatty acids and for fatty acids on the primary positions of the TG backbone.
Collapse
Affiliation(s)
- R G Jensen
- Department of Nutritional Sciences, University of Connecticut, Storrs 06269-4017
| | | | | | | |
Collapse
|
43
|
Burd CG, Dreyfuss G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J 1994; 13:1197-204. [PMID: 7510636 PMCID: PMC394929 DOI: 10.1002/j.1460-2075.1994.tb06369.x] [Citation(s) in RCA: 354] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.
Collapse
Affiliation(s)
- C G Burd
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | |
Collapse
|
44
|
Abstract
Escherichia coli Rho factor is required for termination of transcription at certain sites by RNA polymerase. Binding to unstructured cytosine-containing RNA target sites, subsequent RNA-dependent ATP hydrolysis, and an RNA-DNA helicase activity that presumably facilitates termination, are considered essential for Rho function. Yet the RNA recognition elements have remained elusive, the parameters relating RNA binding to ATPase activation have been obscure, and the mechanistic steps that integrate Rho's characteristics with its termination function in vitro and in vivo have been largely undefined. Recent work offers new insights into these interactions with results that are both surprising and satisfying in the context of Rho's emerging structure. These include the requirements for binding and ATPase activation by a variety of RNA substrates, dynamic analyses of Rho tracking, helicase and termination activity, and the participation of a new factor (NusG) that interacts with Rho. Models for Rho function are considered in the light of these recent revelations.
Collapse
Affiliation(s)
- T Platt
- Department of Biochemistry, University of Rochester Medical Center, New York 14642
| |
Collapse
|
45
|
Steinmetz EJ, Platt T. Evidence supporting a tethered tracking model for helicase activity of Escherichia coli Rho factor. Proc Natl Acad Sci U S A 1994; 91:1401-5. [PMID: 7509071 PMCID: PMC43166 DOI: 10.1073/pnas.91.4.1401] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription termination factor Rho of Escherichia coli has an ATP-dependent RNA.DNA helicase activity that presumably facilitates RNA transcript release from the elongation complex. This helicase activity is unidirectional (5' to 3') and is stoichiometric, with one RNA molecule released per Rho hexamer in vitro. A simple RNA tracking model postulates that after Rho's initial binding, it translocates preferentially toward the 3' end of the RNA. Nitrocellulose filter binding studies combined with RNase H cleavage are inconsistent with this simple tracking model. Instead, they support a model in which Rho forms tight primary binding interactions with the recognition region of the RNA and remains bound there while transient secondary RNA binding interactions coupled to ATP hydrolysis serve to scan along the RNA to contact the RNA.DNA helix. This "tethered tracking" model is consistent with other properties of Rho factor, including the presence of two classes of RNA binding sites on the Rho hexamer and the 1:1 stoichiometry in the Rho helicase assay.
Collapse
Affiliation(s)
- E J Steinmetz
- Department of Biochemistry, University of Rochester Medical Center, NY 14642
| | | |
Collapse
|
46
|
Abstract
In vitro selection, or SELEX, is a technique that allows the simultaneous screening of highly diverse pools of different RNA or DNA (dsDNA or ssDNA) molecules for a particular feature. Different examples from a great variety of applications of in vitro selection experiments are described and a detailed overview of the method and its variations will be given. Some especially conclusive in vitro selection experiments are discussed in detail to illustrate the potential power and diversity of this method. Potential restrictions of the methods and possible ways to overcome them are pointed out.
Collapse
Affiliation(s)
- S J Klug
- Institut für Molekulare Biochemie, Genzentrum der Ludwig-Maximillian-Universität Müchen, Germany
| | | |
Collapse
|