1
|
Canals D, Hannun YA. Biological function, topology, and quantification of plasma membrane Ceramide. Adv Biol Regul 2024; 91:101009. [PMID: 38128364 PMCID: PMC11829740 DOI: 10.1016/j.jbior.2023.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Over the past 30 years, a growing body of evidence has revealed the regulatory role of the lipid ceramide in various cellular functions. The structural diversity of ceramide, resulting in numerous species, and its distinct distribution within subcellular compartments may account for its wide range of functions. However, our ability to study the potential role of ceramide in specific subcellular membranes has been limited. Several works have shown mitochondrial, Golgi, and plasma membrane ceramide to mediate signaling pathways independently. These results have started to shift the focus on ceramide signaling research toward specific membrane pools. Nonetheless, the challenge arises from the substantial intracellular ceramide content, hindering efforts to quantify its presence in particular membranes. Recently, we have developed the first method capable of detecting and quantifying ceramide in the plasma membrane, leading to unexpected results such as detecting different pools of ceramide responding to drug concentration or time. This review summarizes the historical context that defined the idea of pools of ceramide, the studies on plasma membrane ceramide as a bioactive entity, and the tools available for its study, especially the new method to detect and, for the first time, quantify plasma membrane ceramide. We believe this method will open new avenues for researching sphingolipid signaling and metabolism.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Ung J, Tan SF, Fox TE, Shaw JJP, Vass LR, Costa-Pinheiro P, Garrett-Bakelman FE, Keng MK, Sharma A, Claxton DF, Levine RL, Tallman MS, Cabot MC, Kester M, Feith DJ, Loughran TP. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia. Blood Rev 2022; 55:100950. [PMID: 35487785 PMCID: PMC9475810 DOI: 10.1016/j.blre.2022.100950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, heterogenous malignancy characterized by clonal expansion of bone marrow-derived myeloid progenitor cells. While our current understanding of the molecular and genomic landscape of AML has evolved dramatically and opened avenues for molecularly targeted therapeutics to improve upon standard intensive induction chemotherapy, curative treatments are elusive, particularly in older patients. Responses to current AML treatments are transient and incomplete, necessitating the development of novel treatment strategies to improve outcomes. To this end, harnessing the power of bioactive sphingolipids to treat cancer shows great promise. Sphingolipids are involved in many hallmarks of cancer of paramount importance in AML. Leukemic blast survival is influenced by cellular levels of ceramide, a bona fide pro-death molecule, and its conversion to signaling molecules such as sphingosine-1-phosphate and glycosphingolipids. Preclinical studies demonstrate the efficacy of therapeutics that target dysregulated sphingolipid metabolism as well as their combinatorial synergy with clinically-relevant therapeutics. Thus, increased understanding of sphingolipid dysregulation may be exploited to improve AML patient care and outcomes. This review summarizes the current knowledge of dysregulated sphingolipid metabolism in AML, evaluates how pro-survival sphingolipids promote AML pathogenesis, and discusses the therapeutic potential of targeting these dysregulated sphingolipid pathways.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Su-Fern Tan
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Todd E Fox
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jeremy J P Shaw
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Luke R Vass
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro Costa-Pinheiro
- Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Francine E Garrett-Bakelman
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Michael K Keng
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - David F Claxton
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - Ross L Levine
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Mark Kester
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David J Feith
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Thomas P Loughran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America.
| |
Collapse
|
3
|
Zhang S, Zhu N, Gu J, Li HF, Qiu Y, Liao DF, Qin L. Crosstalk between Lipid Rafts and Aging: New Frontiers for Delaying Aging. Aging Dis 2022; 13:1042-1055. [PMID: 35855333 PMCID: PMC9286918 DOI: 10.14336/ad.2022.0116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Abstract
With the rapid aging in the global population, delay of aging has become a hot research topic. Lipid rafts (LRs) are microdomains in the plasma membrane that contain sphingolipids and cholesterol. Emerging evidence indicates an interesting interplay between LRs and aging. LRs and their components are altered with aging. Further, the aging process is strongly influenced by LRs. In recent years, LRs and their component signaling molecules have been recognized to affect aging by interfering with its hallmarks. Therefore, targeting LRs is a promising strategy to delay aging.
Collapse
Affiliation(s)
- Shuo Zhang
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- 2Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun Qiu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,3Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Kao LP, Morad SAF, Davis TS, MacDougall MR, Kassai M, Abdelmageed N, Fox TE, Kester M, Loughran TP, Abad JL, Fabrias G, Tan SF, Feith DJ, Claxton DF, Spiegel S, Fisher-Wellman KH, Cabot MC. Chemotherapy selection pressure alters sphingolipid composition and mitochondrial bioenergetics in resistant HL-60 cells. J Lipid Res 2019; 60:1590-1602. [PMID: 31363040 PMCID: PMC6718434 DOI: 10.1194/jlr.ra119000251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
The combination of daunorubicin (dnr) and cytarabine (Ara-C) is a cornerstone of treatment for acute myelogenous leukemia (AML); resistance to these drugs is a major cause of treatment failure. Ceramide, a sphingolipid (SL), plays a critical role in cancer cell apoptosis in response to chemotherapy. Here, we investigated the effects of chemotherapy selection pressure with Ara-C and dnr on SL composition and enzyme activity in the AML cell line HL-60. Resistant cells, those selected for growth in Ara-C- and dnr-containing medium (HL-60/Ara-C and HL-60/dnr, respectively), demonstrated upregulated expression and activity of glucosylceramide synthase, acid ceramidase (AC), and sphingosine kinase 1 (SPHK1); were more resistant to ceramide than parental cells; and displayed sensitivity to inhibitors of SL metabolism. Lipidomic analysis revealed a general ceramide deficit and a profound upswing in levels of sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) in HL-60/dnr cells versus parental and HL-60/Ara-C cells. Both chemotherapy-selected cells also exhibited comprehensive upregulations in mitochondrial biogenesis consistent with heightened reliance on oxidative phosphorylation, a property that was partially reversed by exposure to AC and SPHK1 inhibitors and that supports a role for the phosphorylation system in resistance. In summary, dnr and Ara-C selection pressure induces acute reductions in ceramide levels and large increases in S1P and C1P, concomitant with cell resilience bolstered by enhanced mitochondrial remodeling. Thus, strategic control of ceramide metabolism and further research to define mitochondrial perturbations that accompany the drug-resistant phenotype offer new opportunities for developing therapies that regulate cancer growth.
Collapse
Affiliation(s)
- Li-Pin Kao
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC
| | - Samy A F Morad
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC; Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Traci S Davis
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC
| | - Matthew R MacDougall
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Todd E Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Mark Kester
- University of Virginia Cancer Center Charlottesville, VA
| | - Thomas P Loughran
- University of Virginia Cancer Center Charlottesville, VA; Department of Medicine, Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - Jose' L Abad
- Instituto de Quimica Avanzada de Cataluña, Barcelona, Spain
| | - Gemma Fabrias
- Instituto de Quimica Avanzada de Cataluña, Barcelona, Spain
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - David J Feith
- University of Virginia Cancer Center Charlottesville, VA; Department of Medicine, Hematology/Oncology, University of Virginia, Charlottesville, VA
| | | | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC.
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC.
| |
Collapse
|
6
|
Anderson E, Mehta P, Heywood J, Rees B, Bone H, Robinson G, Reynolds D, Salisbury V, Mayer L. CPX-351 exhibits hENT-independent uptake and can be potentiated by fludarabine in leukaemic cells lines and primary refractory AML. Leuk Res 2018; 74:121-129. [PMID: 30119908 DOI: 10.1016/j.leukres.2018.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
CPX-351, a liposomal formulation co-encapsulating cytarabine and daunorubicin (DNR) in a synergistic 5:1 M ratio, has shown favourable response in newly diagnosed elderly high-risk AML. This study assessed intracellular ara-CTP levels following in vitro exposure of human immortalised leukaemic cell lines and primary AML blasts to CPX-351, and investigated fludarabine potentiation of intracellular ara-CTP formation from CPX-351. Comparison of intracellular handling of CPX-351 to cytarabine in HL-60 cells indicated slower conversion to ara-CTP for CPX-351, but equivalent cytotoxicity to cytarabine and combined DNR/cytarabine (DA) at 48 h, mostly likely reflecting the need for intracellular liposome processing to release encapsulated drugs. Further assessment demonstrated cytotoxicity of CPX-351 to be superior to DA at 48 and 72 h in cytarabine-resistant THP-1 cells (p < 0.001), and this effect could not be inhibited upon blockade of human equilibrative nucleoside transporter (hENT) function with dipyridamole. Assessment of Flu-CPX in primary blasts from presentation AML patients (n = 5) demonstrated a more rapid and pronounced potentiation of ara-CTP from CPX-351 than in immortalised cell lines, with 4/5 patients showing significant increases in ara-CTP, notably for those that went on to fail induction and relapse treatment in vivo (n = 3). This suggests a favourable impact on patient outcome from Flu-CPX.
Collapse
Affiliation(s)
| | - Priyanka Mehta
- Bristol Haematology and Oncology Centre, University Hospital Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Jonathan Heywood
- Bristol Haematology and Oncology Centre, University Hospital Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Barbara Rees
- University of the West of England, Bristol, United Kingdom
| | - Heather Bone
- University of the West of England, Bristol, United Kingdom
| | | | | | - Vyv Salisbury
- University of the West of England, Bristol, United Kingdom
| | - Lawrence Mayer
- Jazz Pharmaceuticals, Suite 250-887 Great Northern Way, Vancouver, BC, Canada
| |
Collapse
|
7
|
Mohammadi AS, Li X, Ewing AG. Mass Spectrometry Imaging Suggests That Cisplatin Affects Exocytotic Release by Alteration of Cell Membrane Lipids. Anal Chem 2018; 90:8509-8516. [PMID: 29912552 DOI: 10.1021/acs.analchem.8b01395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We used time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging to investigate the effect of cisplatin, the first member of the platinum-based anticancer drugs, on the membrane lipid composition of model cells to see if lipid changes might be involved in the changes in exocytosis observed. Platinum-based anticancer drugs have been reported to affect neurotransmitter release resulting in what is called the "chemobrain"; however, the mechanism for the influence is not yet understood. TOF-SIMS imaging was carried out using a high energy 40 keV (CO2)6000+ gas cluster ion beam with improved sensitivity for intact lipids in biological samples. Principal components analysis showed that cisplatin treatment of PC12 cells significantly affects the abundance of different lipids and their derivatives, particularly phosphatidylcholine and cholesterol, which are diminished. Treatment of cells with 2 μM and 100 μM cisplatin showed similar effects on induced lipid changes. Lipid content alterations caused by cisplatin treatment at the cell surface are associated with the molecular and bimolecular signaling pathways of cisplatin-induced apoptosis of cells. We suggest that lipid alterations measured by TOF-SIMS are involved, at least in part, in the regulation of exocytosis by cisplatin.
Collapse
Affiliation(s)
- Amir Saeid Mohammadi
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden.,National Center for Imaging Mass Spectrometry , 41296 Gothenburg , Sweden
| | - Xianchan Li
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden.,National Center for Imaging Mass Spectrometry , 41296 Gothenburg , Sweden.,Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Gothenburg , Sweden
| |
Collapse
|
8
|
Alves AC, Ribeiro D, Horta M, Lima JLFC, Nunes C, Reis S. A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug's biological activity. J R Soc Interface 2018; 14:rsif.2017.0408. [PMID: 28855387 DOI: 10.1098/rsif.2017.0408] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 01/10/2023] Open
Abstract
Daunorubicin is extensively used in chemotherapy for diverse types of cancer. Over the years, evidence has suggested that the mechanisms by which daunorubicin causes cytotoxic effects are also associated with interactions at the membrane level. The aim of the present work was to study the interplay between daunorubicin and mimetic membrane models composed of different ratios of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), sphingomyelin (SM) and cholesterol (Chol). Several biophysical parameters were assessed using liposomes as mimetic model membranes. Thereby, the ability of daunorubicin to partition into lipid bilayers, its apparent location within the membrane and its effect on membrane fluidity were investigated. The results showed that daunorubicin has higher affinity for lipid bilayers composed of DMPC, followed by DMPC : SM, DMPC : Chol and lastly by DMPC : SM : Chol. The addition of SM or Chol into DMPC membranes not only increases the complexity of the model membrane but also decreases its fluidity, which, in turn, reduces the amount of anticancer drug that can partition into these mimetic models. Fluorescence quenching studies suggest a broad distribution of the drug across the bilayer thickness, with a preferential location in the phospholipid tails. The gathered data support that daunorubicin permeates all types of membranes to different degrees, interacts with phospholipids through electrostatic and hydrophobic bonds and causes alterations in the biophysical properties of the bilayers, namely in membrane fluidity. In fact, a decrease in membrane fluidity can be observed in the acyl region of the phospholipids. Ultimately, such outcomes can be correlated with daunorubicin's biological action, where membrane structure and lipid composition have an important role. In fact, the results indicate that the intercalation of daunorubicin between the phospholipids can also take place in rigid domains, such as rafts that are known to be involved in different receptor processes, which are important for cellular function.
Collapse
Affiliation(s)
- Ana Catarina Alves
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Miguel Horta
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - José L F C Lima
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Lee WK, Kolesnick RN. Sphingolipid abnormalities in cancer multidrug resistance: Chicken or egg? Cell Signal 2017; 38:134-145. [PMID: 28687494 DOI: 10.1016/j.cellsig.2017.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/25/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022]
Abstract
The cancer multidrug resistance (MDR) phenotype encompasses a myriad of molecular, genetic and cellular alterations resulting from progressive oncogenic transformation and selection. Drug efflux transporters, in particular the MDR P-glycoprotein ABCB1, play an important role in MDR but cannot confer the complete phenotype alone indicating parallel alterations are prerequisite. Sphingolipids are essential constituents of lipid raft domains and directly participate in functionalization of transmembrane proteins, including providing an optimal lipid microenvironment for multidrug transporters, and are also perturbed in cancer. Here we postulate that increased sphingomyelin content, developing early in some cancers, recruits and functionalizes plasma membrane ABCB1 conferring a state of partial MDR, which is completed by glycosphingolipid disturbance and the appearance of intracellular vesicular ABCB1. In this review, the independent and interdependent roles of sphingolipid alterations and ABCB1 upregulation during the transformation process and resultant conferment of partial and complete MDR phenotypes are discussed.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Laboratory of Signal Transduction, Sloan Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, United States; Institute for Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| | - Richard N Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, United States
| |
Collapse
|
10
|
Aybeke EN, Belliot G, Lemaire-Ewing S, Estienney M, Lacroute Y, Pothier P, Bourillot E, Lesniewska E. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1600918. [PMID: 28044439 DOI: 10.1002/smll.201600918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Studies on human norovirus are severely hampered by the absence of a cell culture system until the discovery of murine norovirus (MNV). The cell membrane domains called lipid rafts have been defined as a port of entry for viruses. This study is conducted to investigate murine norovirus binding on the mouse leukemic monocyte macrophage cell line. Lipid raft related structures are extracted from cells by detergent treatment resulting detergent-resistant membrane (DRMs) domains. The real-time polymerase chain reaction technique is performed to detect the viral genome, thereby the MNV binding on the DRMs. The interactions between MNV and DRMs are investigated by high-speed atomic force microscopy (HS-AFM) combined with surface-enhanced Raman spectroscopy (SERS). The inoculation of the virus onto cells results in the aggregations of detergent-resistant membrane domains significantly. The characteristic Raman band of MNV is found in inoculated samples. To be sure that these results are originated from specific interactions between DRM and MNV, methyl-β-cyclo-dextrin (MβCD) is applied to disrupt lipid rafts. The MNV binding on DRMs is precluded by the MβCD treatment. The cholesterols chains are defined as a key factor in the interactions between norovirus and DRMs. The authors conclude that the MNV binding involves the presence of DRMs and cholesterol dependent.
Collapse
Affiliation(s)
- Ece N Aybeke
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Gaël Belliot
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | | | - Marie Estienney
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Yvon Lacroute
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Pierre Pothier
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Eric Bourillot
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Eric Lesniewska
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| |
Collapse
|
11
|
Cheng M, Bhujwalla ZM, Glunde K. Targeting Phospholipid Metabolism in Cancer. Front Oncol 2016; 6:266. [PMID: 28083512 PMCID: PMC5187387 DOI: 10.3389/fonc.2016.00266] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022] Open
Abstract
All cancers tested so far display abnormal choline and ethanolamine phospholipid metabolism, which has been detected with numerous magnetic resonance spectroscopy (MRS) approaches in cells, animal models of cancer, as well as the tumors of cancer patients. Since the discovery of this metabolic hallmark of cancer, many studies have been performed to elucidate the molecular origins of deregulated choline metabolism, to identify targets for cancer treatment, and to develop MRS approaches that detect choline and ethanolamine compounds for clinical use in diagnosis and treatment monitoring. Several enzymes in choline, and recently also ethanolamine, phospholipid metabolism have been identified, and their evaluation has shown that they are involved in carcinogenesis and tumor progression. Several already established enzymes as well as a number of emerging enzymes in phospholipid metabolism can be used as treatment targets for anticancer therapy, either alone or in combination with other chemotherapeutic approaches. This review summarizes the current knowledge of established and relatively novel targets in phospholipid metabolism of cancer, covering choline kinase α, phosphatidylcholine-specific phospholipase D1, phosphatidylcholine-specific phospholipase C, sphingomyelinases, choline transporters, glycerophosphodiesterases, phosphatidylethanolamine N-methyltransferase, and ethanolamine kinase. These enzymes are discussed in terms of their roles in oncogenic transformation, tumor progression, and crucial cancer cell properties such as fast proliferation, migration, and invasion. Their potential as treatment targets are evaluated based on the current literature.
Collapse
Affiliation(s)
- Menglin Cheng
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Biophysics in cancer: The relevance of drug-membrane interaction studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2231-2244. [DOI: 10.1016/j.bbamem.2016.06.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/26/2022]
|
13
|
Guadagni V, Novelli E, Piano I, Gargini C, Strettoi E. Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Prog Retin Eye Res 2015; 48:62-81. [PMID: 26113212 DOI: 10.1016/j.preteyeres.2015.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023]
Abstract
Retinal photoreceptors are highly specialized and performing neurons. Their cellular architecture is exquisitely designed to host a high concentration of molecules involved in light capture, phototransduction, electric and chemical signaling, membrane and molecular turnover, light and dark adaption, network activities etc. Such high efficiency and molecular complexity require a great metabolic demand, altogether conferring to photoreceptors particular susceptibility to external and internal insults, whose occurrence usually precipitate into degeneration of these cells and blindness. In Retinitis Pigmentosa, an impressive number of mutations in genes expressed in the retina and coding for a large varieties of proteins leads to the progressive death of photoreceptors and blindness. Recent advances in molecular tools have greatly facilitated the identification of the underlying genetics and molecular bases of RP leading to the successful implementation of gene therapy for some types of mutations, with visual restoration in human patients. Yet, genetic heterogeneity of RP makes mutation-independent approaches highly desirable, although many obstacles pave the way to general strategies for treating this complex disease, which remains orphan. The review will focus on treatments for RP based on pharmacological tools, choosing, among the many ongoing studies, approaches which rely on strong experimental evidence or rationale. For perspective treatments, new concepts are foreseen to emerge from basic studies elucidating the pathways connecting the primary mutations to photoreceptor death, possibly revealing common molecular targets for drug intervention.
Collapse
Affiliation(s)
- Viviana Guadagni
- Neuroscience Institute, Italian National Research Council (CNR), Area della Ricerca, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Elena Novelli
- Neuroscience Institute, Italian National Research Council (CNR), Area della Ricerca, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council (CNR), Area della Ricerca, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
14
|
Sasaki H, Toyomura K, Matsuzaki W, Okamoto A, Yamaguchi N, Nakamura H, Murayama T. Regulation of alkaline ceramidase activity by the c-Src-mediated pathway. Arch Biochem Biophys 2014; 550-551:12-9. [DOI: 10.1016/j.abb.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/12/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
|
15
|
Anderson E, Smith MA, Martin A, Ruddock M, Lamont J, Alloush H, Conway M, Mehta P, Smith JG, Salisbury V. A novel bioluminescent bacterial biosensor for measurement of Ara-CTP and cytarabine potentiation by fludarabine in seven leukaemic cell lines. Leuk Res 2013; 37:690-6. [PMID: 23473919 DOI: 10.1016/j.leukres.2013.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/23/2012] [Accepted: 02/15/2013] [Indexed: 11/24/2022]
Abstract
This study evaluates an in vitro biosensor assay capable of detecting the intracellular levels of the tri-phosphorylated form of cytarabine (Ara-CTP) within one working day. The biosensor predicted the response of seven leukaemic cell lines with varying known sensitivities to cytarabine alone and in combination with fludarabine. High-performance liquid chromatography (HPLC), 3-day assessment of cellular viable mass, and flow cytometric assessment of apoptosis were used to validate biosensor performance. A correlation between the biosensor results and Ara-CTP quantitation by HPLC was confirmed (R=0.972). The biosensor was also capable of detecting enhanced accumulation of Ara-CTP following sequential pre-treatment of leukaemic cells with cytarabine ± fludarabine.
Collapse
Affiliation(s)
- Elizabeth Anderson
- Centre for Research in Biosciences, Faculty of Health and Life Sciences, University of the West of England, Bristol BS16 1QY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Sphingolipid-metabolizing enzymes are becoming targets for chemotherapeutic development with an increasing interest in the recent years. In this chapter we introduce the sphingolipid family of lipids, and the role of individual species in cell homeostasis. We also discuss their roles in several rare diseases and overall, in cancer transformation. We follow the biosynthesis pathway of the sphingolipid tree, focusing on the enzymes in order to understand how using small molecule inhibitors makes it possible to modulate cancer progression. Finally, we describe the most used and historically significant inhibitors employed in cancer research, their relationships to sphingolipid metabolism, and some promising results found in this field.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, University of Stony Brook, Stony Brook, New York 11794
| | - Yusuf A. Hannun
- Health Science Center, Stony Brook University, 100 Nicolls Road, L-4, 178, Stony Brook, NY 11794, USA
| |
Collapse
|
17
|
Abstract
Chemotherapy is frequently used to treat primary or metastatic cancers, but intrinsic or acquired drug resistance limits its efficiency. Sphingolipids are important regulators of various cellular processes including proliferation, apoptosis, differentiation, angiogenesis, stress, and inflammatory responses which are linked to various aspects of cancer, like tumor growth, neoangiogenesis, and response to chemotherapy. Ceramide, the central molecule of sphingolipid metabolism, generally mediates antiproliferative and proapoptotic functions, whereas sphingosine-1-phosphate and other derivatives have opposing effects. Among the variety of enzymes that control ceramide generation, acid or neutral sphingomyelinases and ceramide synthases are important targets to allow killing of cancer cells by chemotherapeutic drugs. On the contrary, glucosylceramide synthase, ceramidase, and sphingosine kinase are other targets driving cancer cell resistance to chemotherapy. This chapter focuses on ceramide-based mechanisms leading to cancer therapy sensitization or resistance which could have some impacts on the development of novel cancer therapeutic strategies.
Collapse
|
18
|
Henry B, Möller C, Dimanche-Boitrel MT, Gulbins E, Becker KA. Targeting the ceramide system in cancer. Cancer Lett 2011; 332:286-94. [PMID: 21862212 DOI: 10.1016/j.canlet.2011.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/30/2011] [Accepted: 07/08/2011] [Indexed: 12/20/2022]
Abstract
Sphingolipids, in particular ceramide, have been described as important components of cellular signalling pathways. Ceramide can be produced via multiple mechanisms including through the hydrolysis of sphingomyelin by acid and neutral sphingomyelinase or by a de novo synthesis pathway. Recent studies have identified sphingomyelinases and ceramide synthases as important targets for γ-irradiation and chemotherapeutic drugs. Likewise, common cancer treatment modalities, such as γ-irradiation and many chemotherapeutic agents, induce cell death via the generation of ceramide. This suggests that the manipulation of ceramide production and metabolism could offer promising means for the enhancement of anti-tumor therapies. The focus of this mini-review will be to discuss contemporary evidence suggesting that ceramide forming pathways and ceramide itself are important targets for the treatment of tumors and the development of novel tumor treatment strategies.
Collapse
Affiliation(s)
- Brian Henry
- Dept. of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45 122 Essen, Germany
| | | | | | | | | |
Collapse
|
19
|
The lipid-modulating effects of a CD4-specific recombinant antibody correlate with ZAP-70 segregation outside membrane rafts. Immunol Lett 2010; 133:62-9. [DOI: 10.1016/j.imlet.2010.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/01/2010] [Accepted: 07/18/2010] [Indexed: 11/17/2022]
|
20
|
Ito H, Murakami M, Furuhata A, Gao S, Yoshida K, Sobue S, Hagiwara K, Takagi A, Kojima T, Suzuki M, Banno Y, Tanaka K, Tamiya-Koizumi K, Kyogashima M, Nozawa Y, Murate T. Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:681-90. [DOI: 10.1016/j.bbagrm.2009.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 08/08/2009] [Accepted: 08/10/2009] [Indexed: 11/29/2022]
|
21
|
Milhas D, Clarke CJ, Hannun YA. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett 2009; 584:1887-94. [PMID: 19857494 DOI: 10.1016/j.febslet.2009.10.058] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 12/24/2022]
Abstract
The plasma membrane (PM) is a major resource for production of bioactive lipids and contains a large proportion of the cellular sphingomyelin (SM) content. Consequently, the regulation of SM levels at the PM by enzymes such as sphingomyelinase (SMase) and SM synthase 2 (SMS2) can have profound effects - both on biophysical properties of the membrane, but also on cellular signaling. Over the past 20 years, there has been considerable research into the physiological and cellular functions associated with regulation of SM levels, notably with regards to the production of ceramide. In this review, we will summarize this research with particular focus on the SMases and SMS2. We will outline what biological functions are associated with SM metabolism/production at the PM, and discuss what we believe are major challenges that need to be addressed in future studies.
Collapse
Affiliation(s)
- Delphine Milhas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
22
|
Royer MC, Lemaire-Ewing S, Desrumaux C, Monier S, Pais de Barros JP, Athias A, Néel D, Lagrost L. 7-ketocholesterol incorporation into sphingolipid/cholesterol-enriched (lipid raft) domains is impaired by vitamin E: a specific role for alpha-tocopherol with consequences on cell death. J Biol Chem 2009; 284:15826-34. [PMID: 19351882 DOI: 10.1074/jbc.m808641200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cholesterol oxides, in particular 7-ketocholesterol, are proatherogenic compounds that induce cell death in the vascular wall when localized in lipid raft domains of the cell membrane. Deleterious effects of 7-ketocholesterol can be prevented by vitamin E, but the molecular mechanism involved is unclear. In this study, unlike gamma-tocopherol, the alpha-tocopherol vitamin E form was found to prevent 7-ketocholesterol-mediated apoptosis of A7R5 smooth muscle cells. To be operative, alpha-tocopherol needed to be added to the cells before 7-ketocholesterol, and its anti-apoptotic effect was reduced and even suppressed when added together or after 7-ketocholesterol, respectively. Both pre- and co-treatment of the cells with alpha-tocopherol resulted in the redistribution of 7-ketocholesterol out of the sphingolipid/cholesterol-enriched (lipid raft) domains. In turn, fewer amounts of alpha-tocopherol associated with lipid rafts on 7-ketocholesterol-pretreated cells compared with untreated cells, with no prevention of cell death in this case. In further support of the implication of lipid raft domains, the dephosphorylation/inactivation of Akt-PKB was involved in the 7-ketocholesterol-induced apoptosis. Akt-PKB dephosphorylation was prevented by alpha-tocopherol, but not gamma-tocopherol pretreatment.
Collapse
|
23
|
Chudakova DA, Zeidan YH, Wheeler BW, Yu J, Novgorodov SA, Kindy MS, Hannun YA, Gudz TI. Integrin-associated Lyn kinase promotes cell survival by suppressing acid sphingomyelinase activity. J Biol Chem 2008; 283:28806-16. [PMID: 18682390 DOI: 10.1074/jbc.m803301200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrins govern cellular adhesion and transmit signals leading to activation of intracellular signaling pathways aimed to prevent apoptosis. Herein we report that attachment of oligodendrocytes (OLs) to fibronectin via alpha(v)beta(3) integrin receptors rendered the cells more resistant to apoptosis than the cells attached to laminin via alpha(6)beta(1) integrins. Investigation of molecular mechanisms involved in alpha(v)beta(3) integrin-mediated cell survival revealed that ligation of the integrin with fibronectin results in higher expression of activated Lyn kinase. Both in OLs and in the mouse brain, Lyn selectively associates with alpha(v)beta(3) integrin, not with alpha(v)beta(5) integrin, leading to suppression of acid sphingomyelinase activity and preventing ceramide-mediated apoptosis. In OLs, knockdown of Lyn with small interfering RNA resulted in OL apoptosis with concomitant accumulation of C(16)-ceramide due to activation of acid sphingomyelinase (ASMase) and sphingomyelin hydrolysis. Knocking down ASMase partially protected OLs from apoptosis. In the brain, ischemia/reperfusion (IR) triggered rearrangements in the alpha(v)beta(3) integrin-Lyn kinase complex leading to disruption of Lyn kinase-mediated suppression of ASMase activity. Thus, co-immunoprecipitation studies revealed an increased association of alpha(v)beta(3) integrin-Lyn kinase complex with ionotropic glutamate receptor subunits, GluR2 and GluR4, after cerebral IR. Sphingolipid analysis of the brain demonstrated significant accumulation of ceramide and sphingomyelin hydrolysis. The data suggest a novel mechanism for regulation of ASMase activity during cell adhesion in which Lyn acts as a key upstream kinase that may play a critical role in cerebral IR injury.
Collapse
Affiliation(s)
- Daria A Chudakova
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Won JS, Singh AK, Singh I. Lactosylceramide: a lipid second messenger in neuroinflammatory disease. J Neurochem 2007; 103 Suppl 1:180-91. [DOI: 10.1111/j.1471-4159.2007.04822.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Won JS, Singh I. Sphingolipid signaling and redox regulation. Free Radic Biol Med 2006; 40:1875-88. [PMID: 16716889 DOI: 10.1016/j.freeradbiomed.2006.01.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/25/2006] [Accepted: 01/28/2006] [Indexed: 01/09/2023]
Abstract
Sphingolipids including ceramide and its derivatives such as ceramide-1-phosphate, glycosyl-ceramide, and sphinogosine (-1-phosphate) are now recognized as novel intracellular signal mediators for regulation of inflammation, apoptosis, proliferation, and differentiation. One of the important and regulated steps in these events is the generation of these sphingolipids via hydrolysis of sphingomyelin through the action of sphingomyelinases (SMase). Several lines of evidence suggest that reactive oxygen species (ROS; O2-, H2O2, and OH-,) and reactive nitrogen species (RNS; NO, and ONOO-) and cellular redox potential, which is mainly regulated by cellular glutathione (GSH), are tightly linked to the regulation of SMase activation. On the other hand, sphingolipids are also known to play an important role in maintaining cellular redox homeostasis through regulation of NADPH oxidase, mitochondrial integrity, and antioxidant enzymes. Therefore, this paper reviews the relationship between cellular redox and sphingolipid metabolism and its biological significance.
Collapse
Affiliation(s)
- Je-Seong Won
- Division of Developmental Neurological Disorder in Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Room 505, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
26
|
Schmelz EM, Symolon H. Sphingolipids and Cancer. SPHINGOLIPID BIOLOGY 2006:363-381. [DOI: 10.1007/4-431-34200-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Rouquette-Jazdanian AK, Foussat A, Lamy L, Pelassy C, Lagadec P, Breittmayer JP, Aussel C. Cholera toxin B-subunit prevents activation and proliferation of human CD4+ T cells by activation of a neutral sphingomyelinase in lipid rafts. THE JOURNAL OF IMMUNOLOGY 2005; 175:5637-48. [PMID: 16237053 DOI: 10.4049/jimmunol.175.9.5637] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inhibition of human CD4+ T lymphocyte activation and proliferation by cholera toxin B-subunit (CTB) is a well-established phenomenon; nevertheless, the exact mechanism remained unclear. In the present study, we propose an explanation for the rCTB-induced inhibition of CD4+ T lymphocytes. rCTB specifically binds to GM1, a raft marker, and strongly modifies the lipid composition of rafts. First, rCTB inhibits sphingomyelin synthesis; second, it enhances phosphatidylcholine synthesis; and third, it activates a raft-resident neutral sphingomyelinase resembling to neutral sphingomyelinase type 1, thus generating a transient ceramide production. We demonstrated that these ceramides inhibit protein kinase Calpha phosphorylation and its translocation into the modified lipid rafts. Furthermore, we show that rCTB-induced ceramide production activate NF-kappaB. Combined all together: raft modification in terms of lipids, ceramide production, protein kinase Calpha inhibition, and NF-kappaB activation lead to CD4+ T cell inhibition.
Collapse
Affiliation(s)
- Alexandre K Rouquette-Jazdanian
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 576, IFR 50, Hôpital de l'Archet I, Nice Cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Charruyer A, Grazide S, Bezombes C, Müller S, Laurent G, Jaffrézou JP. UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem 2005; 280:19196-204. [PMID: 15769735 DOI: 10.1074/jbc.m412867200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initiation of UV light-induced signaling in mammalian cells is largely considered to be subsequent to DNA damage. Several studies have also described ceramide (CER), a lipid second messenger, as a major contributor in mediating UV light-induced c-Jun N-terminal kinase (JNK) activation and cell death. It is demonstrated here that UV-C light irradiation of U937 cells results in the activation and translocation of a Zn2+-independent acid sphingomyelinase, leading to CER accumulation in raft microdomains. These CER-enriched rafts aggregate and play a functional role in JNK activation. The observation that UV-C light also induced CER generation and the externalization of acid sphingomyelinase and JNK in human platelets conclusively rules out the involvement of a nuclear signal generated by DNA damage in the initiation of a UV light response, which is generated at the plasma membrane.
Collapse
Affiliation(s)
- Alexandra Charruyer
- INSERM U563, Centre de Physiopathologie de Toulouse-Purpan, Centre Hospitalier Universitaire Purpan, 31024 Toulouse, France
| | | | | | | | | | | |
Collapse
|
29
|
Balaian L, Ball ED. Anti-CD33 monoclonal antibodies enhance the cytotoxic effects of cytosine arabinoside and idarubicin on acute myeloid leukemia cells through similarities in their signaling pathways. Exp Hematol 2005; 33:199-211. [PMID: 15676214 DOI: 10.1016/j.exphem.2004.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/28/2004] [Accepted: 11/08/2004] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Chemotherapy agents (CA) such as cytosine arabinoside (ara-C), idarubicin (IDA), and etoposide (VP-16) are widely used in the treatment of acute myeloid leukemia (AML) However, their effects on signaling pathways leading to cytotoxicity have only been described recently. Ligation of the leukemia-associated antigen CD33 by anti-CD33 monoclonal antibody (mAb) also results in signaling events that induce a downregulation of cell growth. We examined the possibility that anti-CD33 mAb and CA might cooperate in mediation of growth inhibition in primary AML samples and AML cell lines. MATERIALS AND METHODS We investigated two AML cells lines and 14 primary AML samples for their proliferative response ((3)H-thymidine incorporation), colony formation, and biochemical (Western blot analysis) to anti-CD33 mAb treatment combined with chemotherapy agents. RESULTS CD33 ligation induced a significant increase in ara-C- or IDA- but not VP-16-or Bryostatin-mediated inhibition of proliferation and colony formation. Ara-C and IDA induced SHP-1 and SHP-2 protein tyrosine phosphatase (PTPs) phosphorylation and Lyn/SHP-1 complex formation, while VP-16 and Bryostatin did not. CD33 ligation, however, mediated phosphorylation of these PTPs and Syk/SHP-1 complex formations. Combined treatment of AML cells by ara-C or IDA with anti-CD33 mAb resulted in higher levels of SHP-1 phosphorylation. Reduction in SHP-1 by short interfering RNA abrogated these effects. CONCLUSION These data suggest that combined incubation of leukemia cells with anti-CD33 mAb and ara-C or IDA, but not VP-16 or Bryostatin, independently triggers similar events in the downstream signaling cascade, and therefore leads to additive antiproliferative effects and enhanced cytotoxicity.
Collapse
Affiliation(s)
- Larisa Balaian
- Department of Medicine and Moores UCSD Cancer Center, University of California, San Diego, La Jolla, Calif, USA
| | | |
Collapse
|
30
|
Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 2004; 82:27-44. [PMID: 15052326 DOI: 10.1139/o03-091] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ceramide, an emerging bioactive lipid and second messenger, is mainly generated by hydrolysis of sphingomyelin through the action of sphingomyelinases. At least two sphingomyelinases, neutral and acid sphingomyelinases, are activated in response to many extracellular stimuli. Despite extensive studies, the precise cellular function of each of these sphingomyelinases in sphingomyelin turnover and in the regulation of ceramide-mediated responses is not well understood. Therefore, it is essential to elucidate the factors and mechanisms that control the activation of acid and neutral sphingomyelinases to understand their the roles in cell regulation. This review will focus on the molecular mechanisms that regulate these enzymes in vivo and in vitro, especially the roles of oxidants (glutathione, peroxide, nitric oxide), proteins (saposin, caveolin 1, caspases), and lipids (diacylglycerol, arachidonic acid, and ceramide).
Collapse
Affiliation(s)
- Norma Marchesini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
31
|
Alphonse G, Bionda C, Aloy MT, Ardail D, Rousson R, Rodriguez-Lafrasse C. Overcoming resistance to gamma-rays in squamous carcinoma cells by poly-drug elevation of ceramide levels. Oncogene 2004; 23:2703-15. [PMID: 15048093 DOI: 10.1038/sj.onc.1207357] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent strategies to sensitize radioresistant tumours are based on combining gamma-irradiation with inducers of apoptosis. We report that the combination of three inhibitors of sphingolipid metabolism, DL-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol.HCl(DL-PDMP)+imipramine +/- D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (D-MAPP), with 10-Gy irradiation triggers both mitotic and apoptotic killing in radioresistant SQ20B squamous carcinoma cells. In these cells, apoptosis is defective due to a lack of ceramide generation upstream, which cannot be explained by sphingomyelinase (neutral and acidic) deficiency or rapid derivation to the sphingolipid pathway. We present evidence of a functional transduction death pathway when ceramide generation is restored, which involves the mitochondrial-mediated pathway coupled to alterations in redox status and to executive caspases activation. The poly-drug treatment restored apoptosis to levels similar to those observed in radiosensitive SCC61 squamous carcinoma cells. Simultaneous exposure to gamma-irradiation and poly-drug treatment acted synergistically in SQ20B cells to produce a marked increase in both mitochondrial dysfunction and caspase cleavage, which led to a 7.8-fold increase in apoptosis within 48 h, relative to irradiated cells. Moreover, the results suggest that the ceramide released by irradiation or poly-drug treatment converges upon common cellular targets. Modulation of endogenous ceramide levels by inhibitors of sphingolipid metabolism may represent a new cellular target for the sensitization of radioresistant tumours to gamma-ray therapy.
Collapse
Affiliation(s)
- Gersende Alphonse
- Department of Biochemistry, INSERM U189, Lyon-Sud Medical School, BP12, 69921 Oullins Cedex, France
| | | | | | | | | | | |
Collapse
|
32
|
Testai FD, Landek MA, Goswami R, Ahmed M, Dawson G. Acid sphingomyelinase and inhibition by phosphate ion: role of inhibition by phosphatidyl-myo-inositol 3,4,5-triphosphate in oligodendrocyte cell signaling. J Neurochem 2004; 89:636-44. [PMID: 15086520 DOI: 10.1046/j.1471-4159.2004.02374.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is ample evidence that both acid (ASMase) and neutral (NSMase) sphingomyelinases play a role in cell death so inhibitors of either enzyme could have significant value as protectors against neurodegeneration. We used a fluorogenic sphingomyelinase substrate, 6-hexadecanoylamino-4-methylumbelliferyl-phosphorylcholine, and a [(14)C]choline-labeled sphingomyelin substrate to screen large numbers of phosphocompounds for inhibition of ASMase in extracts of human oligodendroglioma cells (HOG) and neonatal rat oligodendrocytes. Non-competitive inhibition was observed with inorganic phosphate and AMP, which was a more potent inhibitor of ASMase than cyclic AMP, ADP or ATP. However, other nucleotide phosphates, sugar phosphates, nucleotide sugars and glycerol phosphate did not inhibit ASMase. Our key finding was that phosphatidyl-myo-inositol 3,4,5-triphosphate [PtdIns (3,4,5)P(3)] was a much more potent inhibitor of ASMase than lysophosphatidic acid or phosphatidyl-myo-inositol 4,5-diphosphate [PtdIns(4,5)P(2)]. When PtdIns(3,4,5)P(3) was added to cultured cells we observed 50% inhibition of ASMase but no inhibition of other lysosomal hydrolases. After transfection of HOG cells with the tumor supressor phosphatase and tensin homolog protein (PTEN), which hydrolyses PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), we observed a two-fold increase in ASMase activity. Furthermore, the phosphatidylinositol-3-kinase inhibitor wortmannin (which reduces PtdIns(3,4,5)P(3) levels) also resulted in activation of ASMase. We propose that the small amount of ASMase activity associated with detergent-resistant cell membranes (Rafts) is regulated by PtdIns(3,4,5)P(3) and is most likely involved in receptor clustering and capping.
Collapse
Affiliation(s)
- F D Testai
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
33
|
Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessède G, Pais de Barros JP, Laubriet A, Gambert P, Lizard G, Néel D. Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 2004; 11:897-905. [PMID: 15105836 DOI: 10.1038/sj.cdd.4401434] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
7-Ketocholesterol is a component of oxidized LDL, which plays a central role in atherosclerosis. It is a potent inducer of cell death towards a wide number of cells involved in atherosclerosis. In this study, it is reported that 7-ketocholesterol treatment induces an increase of cytosolic-free Ca(2+) in THP-1 monocytic cells. This increase is correlated with the induction of cytotoxicity as suggested from experiments using the Ca(2+) channel blockers verapamil and nifedipine. This 7-ketocholesterol-induced apoptosis appears to be associated with the dephosphorylation of serine 75 and serine 99 of the proapoptotic protein Bcl-2 antagonist of cell death (BAD). We demonstrated that this dephosphorylation results mainly from the activation of calcium-dependent phosphatase calcineurin by the oxysterol-induced increase in Ca(2+). Moreover, this Ca(2+) increase appears related to the incorporation of 7-ketocholesterol into lipid raft domains of the plasma membrane, followed by the translocation of transient receptor potential calcium channel 1, a component of the store operated Ca(2+) entry channel, to rafts.
Collapse
Affiliation(s)
- A Berthier
- Inserm U498 Métabolisme des lipoprotéines humaines et interactions vasculaires/IFR 100 Inserm, CHU/Hôpital du Bocage, BP77908, 21079 Dijon Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Testai FD, Landek MA, Dawson G. Regulation of sphingomyelinases in cells of the oligodendrocyte lineage. J Neurosci Res 2004; 75:66-74. [PMID: 14689449 DOI: 10.1002/jnr.10816] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Controversy exists regarding the nature of the "executioner" sphingomyelinase (SMase) in cells and its subcellular localization. A new fluorescence-based assay with the substrate 6-hexadecanoylamino-4-methylumbelliferyl-phosphorylcholine allowed rapid and reliable microassays of neutral (N) and acid (A) SMase activity in cell extracts from primary cultures of neonatal rat oligodendrocytes (OPC) and a human oligodendroglioma cell line (HOG). Total SMase activity was much higher in OPC than in HOG cells. Both staurosporine and tumor necrosis factor-alpha (TNF-alpha) induced apoptosis and activated NSMase in a multiphasic manner in both OPC and HOG cells. The increase in caspase 8 activity preceded the 1 hr peak of NSMase activation, which was followed by caspase 3 activation. In contrast, ASMase activity, which constituted >90% of the total SMase activity, was unresponsive to proapoptotic drugs. Neither reducing ASMase levels by 50% by pretreatment with desipramine nor inhibiting sphingolipid synthesis by 50% with fumonisin B1 had any effect on cell death. Isolation of sphingolipid-rich plasma membrane microdomains (rafts) from the cells by sucrose density gradient ultracentrifugation revealed an enrichment of sphingomyelin, ceramide, and caspase 8. Proapoptotic drugs such as staurosporine promoted the translocation of NSMase to the raft fraction. In contrast, ASMase, other lysosomal hydrolases, and caspase 3 remained absent from rafts even after staurosporine treatment. The staurosporine-induced concomitant increase of ceramide in the raft fraction and caspase 3 in the cytosol could be mimicked by the addition of exogenous bacterial SMase. We conclude that caspase 8 activates NSMase in rafts in oligodendrocytes and that the downstream apoptotic signal is via caspase 3.
Collapse
Affiliation(s)
- F D Testai
- Departments of Pediatrics, Biochemistry, and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
35
|
Lucero H, Gae D, Taccioli GE. Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J Biol Chem 2003; 278:22136-43. [PMID: 12672807 DOI: 10.1074/jbc.m301579200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased sensitivity to ionizing radiation (IR) has been shown to be due to defects in DNA double-strand break repair machinery. The major pathway in mammalian cells dedicated to the repair of DNA double-strand breaks is by the nonhomologous end-joining machinery. Six components function in this pathway, of which three (Ku70, Ku86, and DNA-PKcs) constitute a protein complex known as DNA-dependent protein kinase (DNA-PK). However, it is now recognized that the cellular radiation response is complex, and radiosensitivity may be also regulated at different levels in the radiation signal transduction pathway. In addition to DNA damage, exposure to IR triggers intracellular signaling cascades that overlap with pathways initiated by ligand engagement to a receptor. In this study, we provide evidence for the novel localization of the DNA-PK complex in lipid rafts. We also show this property is not a generalized characteristic of all DNA repair proteins. Furthermore, we have detected Ku86 in yeast lipid rafts. Our results suggest that the components of this complex might be recruited separately to the plasma membrane by tethering with raft-resident proteins. In addition, we found an irradiation-induced differential protein phosphorylation pattern dependent upon DNA-PKcs in lipid rafts. Thus, we speculate that another role for the DNA-PKcs subunit and perhaps for the holoenzyme is in the signal transduction of IR response.
Collapse
Affiliation(s)
- Hector Lucero
- Departments of Molecular and Cellular Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | | |
Collapse
|
36
|
Radin NS. Killing tumours by ceramide-induced apoptosis: a critique of available drugs. Biochem J 2003; 371:243-56. [PMID: 12558497 PMCID: PMC1223313 DOI: 10.1042/bj20021878] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 01/22/2003] [Accepted: 01/31/2003] [Indexed: 01/01/2023]
Abstract
Over 1000 research papers have described the production of programmed cell death (apoptosis) by interventions that elevate the cell content of ceramide (Cer). Other interventions, which lower cellular Cer, have been found to interfere with apoptosis induced by other agents. Some studies have shown that slowing the formation of proliferation-stimulating sphingolipids also induces apoptosis. These relationships are due to the two different aspects of Cer: Cer itself produces apoptosis, but metabolic conversion of Cer into either sphingosine 1-phosphate or glucosphingolipids leads to cell proliferation. The balance between these two aspects is missing in cancer cells, and yet intervention by stimulating or blocking only one or two of the pathways in Cer metabolism is very likely to fail. This results from two properties of cancer cells: their high mutation rate and the preferential survival of the most malignant cells. Tumours treated with only one or two drugs that elevate Cer can adjust the uncontrolled processes to either maintain or to 'aggravate' the excessive growth, angiogenesis and metastasis characteristics of tumours. These treatments might simply elevate the production of growth factors, receptors and other substances that reduce the effectiveness of Cer. Tumour cells that do not adapt in this way undergo apoptosis, leaving the adapted cells free to grow and, ultimately, to 'subdue' their host. Thus it is important to kill every type of cancer cell present in the tumour rapidly and simultaneously, using as many different agents to control as many pathways as possible. To aid this approach, this article catalogues many of the drugs that act on different aspects of Cer metabolism. The techniques described here may lead to the development of practical chemotherapy for cancer and other diseases of excess proliferation.
Collapse
Affiliation(s)
- Norman S Radin
- Mental Health Research Institute, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
37
|
Kilkus J, Goswami R, Testai FD, Dawson G. Ceramide in rafts (detergent-insoluble fraction) mediates cell death in neurotumor cell lines. J Neurosci Res 2003; 72:65-75. [PMID: 12645080 DOI: 10.1002/jnr.10549] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detergent-resistant lipid microdomains (Rafts) were isolated from human oligodendroglioma (HOG), human neuroblastoma (LA-N-5), and immortalized dorsal root ganglion (F-11) cell lines by sucrose-density gradient ultracentrifugation and shown to be enriched in cholesterol, sphingomyelin, and ceramide. [(3)H]palmitate labeling allowed the Raft fraction to be easily identified as a sharp peak of (3)H radioactivity in the 5-30% sucrose interphase. Treatment of [(3)H]palmitate-labeled cells with staurosporine (to activate caspase 8 and induce apoptosis) or exogenous sphingomyelinase specifically increased the [(3)H]ceramide content of the Raft fraction. Depletion of cholesterol with beta-methylcyclodextran decreased Raft formation and partially blocked staurosporine-induced apoptosis. Similarly, treatment of cells with Fumonisin B1 to inhibit de novo sphingolipid synthesis by 50% reduced the labeling of the Raft fraction and partially blocked staurosporine-induced apoptosis. Staurosporine treatment activated neutral sphingomyelinase but had no effect on acid sphingomyelinase activity or on other lysosomal hydrolases, such as alpha-L-fucosidase. Most of the neutral sphingomyelinase activity is in the Raft fraction, suggesting that the conversion of sphingomyelin to ceramide in Rafts is an important event in neural cell apoptosis.
Collapse
Affiliation(s)
- John Kilkus
- Departments of Pediatrics, Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 30637, USA
| | | | | | | |
Collapse
|