1
|
Vasan R, Yadav J, Aiyappa‐Maudsley R, Deen S, Storr SJ, Martin SG. High BMP7 expression is associated with poor prognosis in ovarian cancer. J Cell Mol Med 2023; 27:3378-3387. [PMID: 37688374 PMCID: PMC10623526 DOI: 10.1111/jcmm.17951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Bone Morphogenetic Protein 7 (BMP7) is an extracellular signalling protein that belongs to the transforming growth factor-β (TGF- β) superfamily. Previous transcriptomic data suggested that BMP7 expression may be disrupted in ovarian carcinoma and may play an important role in the aggressiveness of the disease. However, the protein expression in patient tumours has not been well studied. The current study aimed to assess BMP7 protein expression in a large cohort of ovarian carcinoma patient tumour samples to establish its associations with different clinical endpoints. Ovarian carcinoma tissue samples from 575 patients who underwent surgery for different subtypes of ovarian cancer were used. BMP7 protein expression was analysed by immunohistochemistry using tissue microarray and full face tumour sections. High BMP7 expression is associated with aggressive ovarian cancer clinicopathological variables including advanced FIGO stage, high grade, residual disease and poor overall survival. Elevated cytoplasmic and nuclear BMP7 expression was significantly associated with advanced FIGO stage, high tumour grade, presence of residual tumours and high-grade serous carcinomas (p = 0.001, 0.005, 0.004, <0.001 and p < 0.001, <0.001, 0.002, 0.001 respectively). Increased cytoplasmic and nuclear BMP7 expression was also significantly associated with an adverse overall survival (p = 0.001 and 0.046 respectively). The study highlights the potential of BMP7 as a prognostic tool and as a potential novel target for ovarian cancer therapies to limit disease progression.
Collapse
Affiliation(s)
- Richa Vasan
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
- Present address:
School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Jahnavi Yadav
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
| | - Radhika Aiyappa‐Maudsley
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
- Present address:
School of medicineUniversity of LeedsLeedsUK
| | - Suha Deen
- Department of Pathology, Queen's Medical CentreNottingham University Hospitals NHS TrustNottinghamUK
| | - Sarah J. Storr
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
| | - Stewart G. Martin
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
| |
Collapse
|
2
|
Sosa E, De Robertis EM. The developmental gene Chordin is amplified and expressed in human cancers. Mol Cell Oncol 2023; 10:2218147. [PMID: 37260544 PMCID: PMC10228393 DOI: 10.1080/23723556.2023.2218147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Chordin (CHRD) is a secreted protein important in early development, yet a role for CHRD in human disease has not been identified. In this study we investigated CHRD in cancer and normal adult tissues using the wealth of genome-wide data available in public databases. We found that Chordin is amplified in the DNA of specific cancers such as lung squamous cell and others, although copy number variation did not strictly correlate with higher mRNA expression. In some cancers, such as renal and stomach carcinomas, increased CHRD expression significantly correlated with poor survival. In normal adult human tissues, CHRD mRNA was highest in hepatocytes. Crossveinless-2/BMPER, a component of the Chordin morphogenetic pathway expressed at the opposite side in embryos, was expressed in liver stellate cells. This raises the intriguing possibility that a BMP gradient might be established in the extracellular matrix of the space of Disse that surrounds portal sinusoid capillaries.
Collapse
Affiliation(s)
- Eric Sosa
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Fukuda T, Suzuki E, Fukuda R. Bone morphogenetic protein signaling is a possible therapeutic target in gynecologic cancer. Cancer Sci 2023; 114:722-729. [PMID: 36468782 PMCID: PMC9986083 DOI: 10.1111/cas.15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily. BMPs play crucial roles in embryogenesis and bone remodeling. Recently, BMP signaling has been found to have diverse effects on different types of tumors. In this review, we summarized the effects of BMP signaling on gynecologic cancer. BMP signaling has tumor-promoting effects on ovarian cancer (OC) and endometrial cancer (EC), whereas it has tumor-suppressing effects on uterine cervical cancer (UCC). Interestingly, EC has frequent gain-of-function mutations in ACVR1, encoding one of the type I BMP receptors, which are also observed in fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma. Little is known about the relationship between BMP signaling and other gynecologic cancers. Tumor-promoting effects of BMP signaling in OC and EC are dependent on the promotion of cancer stemness and epithelial-mesenchymal transition (EMT). In accordance, BMP receptor kinase inhibitors suppress the cell growth and migration of OC and EC. Since both cancer stemness and EMT are associated with chemoresistance, BMP signaling activation might also be an important mechanism by which OC and EC patients acquire chemoresistance. Therefore, BMP inhibitors are promising for OC and EC patients even if they become resistant to standard chemotherapy. In contrast, BMP signaling inhibits UCC growth in vitro. However, the in vivo effects of BMP signaling have not been elucidated in UCC. In conclusion, BMP signaling has a variety of functions, depending on the types of gynecologic cancer. Therefore, targeting BMP signaling should improve the treatment of patients with gynecologic cancer.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Eri Suzuki
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Risa Fukuda
- Division of Dermatology, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
4
|
Zırh EB, Kapaklı ET, Dolgun A, Usubütün A, Zeybek ND. The expression of BMP, integrin, ZEB2 in ovarian high-grade serous carcinoma in relation with lymph node metastasis. Growth Factors 2022; 40:153-162. [PMID: 35867635 DOI: 10.1080/08977194.2022.2099849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Ovarian cancer (OC) is clinically important because it is diagnosed late and has metastasis when it is diagnosed. Mortality risk increases 2.75 times in the presence of lymph node (LN) metastasis. During metastasis, many molecules including BMPs originated from stroma, and tumor cells participate through transcription factors and integrins for cytoskeleton regulation during cell migration. We hypothesized an inverse correlation between BMP2 and BMP7 along with changes in ZEB2, and integrin α5β1 in high-grade OCs in relation to LN metastasis. The BMP2 immunoreactivity was strong along with strong ZEB2 and weak integrins' immunoreactivity in samples with LN metastasis. Strong immunoreactivity of BMP7 was accompanied by strong immunoreactivity of integrins in the samples without LN metastasis. Study results showed BMP2's strong positive immunoreactivity and weak BMP7 immunoreactivity in tumor cells with a significantly weak inverse correlation. This inverse correlation should be considered as both BMPs have different effects in the window of cancer progression and invasion.
Collapse
Affiliation(s)
- Elham Bahador Zırh
- Department of Histology and Embryology, Faculty of Medicine, TOBB Economy and Technology University, Ankara, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Elif Taşar Kapaklı
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Anıl Dolgun
- Department of Mathematical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Alp Usubütün
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
6
|
Correns A, Zimmermann LMA, Baldock C, Sengle G. BMP antagonists in tissue development and disease. Matrix Biol Plus 2021; 11:100071. [PMID: 34435185 PMCID: PMC8377005 DOI: 10.1016/j.mbplus.2021.100071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenic proteins (BMPs) are important growth regulators in embryogenesis and postnatal homeostasis. Their tight regulation is crucial for successful embryonic development as well as tissue homeostasis in the adult organism. BMP inhibition by natural extracellular biologic antagonists represents the most intensively studied mechanistic concept of BMP growth factor regulation. It was shown to be critical for numerous developmental programs, including germ layer specification and spatiotemporal gradients required for the establishment of the dorsal-ventral axis and organ formation. The importance of BMP antagonists for extracellular matrix homeostasis is illustrated by the numerous human connective tissue disorders caused by their mutational inactivation. Here, we will focus on the known functional interactions targeting BMP antagonists to the ECM and discuss how these interactions influence BMP antagonist activity. Moreover, we will provide an overview about the current concepts and investigated molecular mechanisms modulating BMP inhibitor function in the context of development and disease.
Collapse
Key Words
- ALK3, anaplastic lymphoma kinase 3
- ATF2, activating transcription factor 2
- ActR, activin receptor
- BDB2, brachydactyly type B2
- BISC, BMP-induced signalling complex
- BMP antagonists
- BMPER, BMP binding endothelial regulator
- BMPs, bone morphogenetic proteins
- Bone morphogenetic protein (BMP)
- CAN, cerberus and DAN
- CDD, craniodiaphyseal dysplasia
- CHRD domain, chordin specific domain
- CUB domain, for complement C1r/C1s, Uegf, Bmp1 domain
- Connective tissue disorder
- Cv2, crossveinless-2
- DAN, differential screening selected gene aberrative in neuroblastoma
- DSD, diaphanospondylodysostosis
- Dpp, decapentaplegic
- ECM, extracellular matrix
- ERK, extracellular signal-regulated kinases
- Extracellular matrix (ECM)
- FMF, fibrillin microfibrils
- HS, heparan sulphate
- HSPGs, heparan sulphate proteoglycans
- MAPKs, mitogen-activated protein kinases
- MGC1, megalocornea 1
- PI3K, phosphoinositide 3-kinase
- PRDC, protein related to DAN and Cerberus
- SOST, sclerostin
- SYNS1, multiple synostoses syndrome 1
- Scw, screw
- Sog, short gastrulation
- TCC, tarsal-carpal coalition syndrome
- TGF-β, transforming growth factor- β
- Tld, tolloid
- Tsg, twisted gastrulation
- VBCH, Van Buchem disease
- Xlr/Tll, xolloid-related metalloprotease
- vWC, von Willebrand factor type C
- vWD, von Willebrand factor type D
Collapse
Affiliation(s)
- Annkatrin Correns
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Laura-Marie A. Zimmermann
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, B.3016 Michael Smith Building, Oxford Road, M13 9PT, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Michael Smith Building, M13 9PT, Manchester, UK
| | - Gerhard Sengle
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Cologne Centre for Musculoskeletal Biomechanics (CCMB), Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| |
Collapse
|
7
|
Todd GM, Gao Z, Hyvönen M, Brazil DP, Ten Dijke P. Secreted BMP antagonists and their role in cancer and bone metastases. Bone 2020; 137:115455. [PMID: 32473315 DOI: 10.1016/j.bone.2020.115455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional secreted cytokines that act in a highly context-dependent manner. BMP action extends beyond the induction of cartilage and bone formation, to encompass pivotal roles in controlling tissue and organ homeostasis during development and adulthood. BMPs signal via plasma membrane type I and type II serine/threonine kinase receptors and intracellular SMAD transcriptional effectors. Exquisite temporospatial control of BMP/SMAD signalling and crosstalk with other cellular cues is achieved by a series of positive and negative regulators at each step in the BMP/SMAD pathway. The interaction of BMP ligand with its receptors is carefully controlled by a diverse set of secreted antagonists that bind BMPs and block their interaction with their cognate BMP receptors. Perturbations in this BMP/BMP antagonist balance are implicated in a range of developmental disorders and diseases, including cancer. Here, we provide an overview of the structure and function of secreted BMP antagonists, and summarize recent novel insights into their role in cancer progression and bone metastasis. Gremlin1 (GREM1) is a highly studied BMP antagonist, and we will focus on this molecule in particular and its role in cancer. The therapeutic potential of pharmacological inhibitors for secreted BMP antagonists for cancer and other human diseases will also be discussed.
Collapse
Affiliation(s)
- Grace M Todd
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Zhichun Gao
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Peter Ten Dijke
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
8
|
Ouahoud S, Hardwick JC, Hawinkels LJ. Extracellular BMP Antagonists, Multifaceted Orchestrators in the Tumor and Its Microenvironment. Int J Mol Sci 2020; 21:ijms21113888. [PMID: 32486027 PMCID: PMC7313454 DOI: 10.3390/ijms21113888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023] Open
Abstract
The bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor-β (TGF-β) superfamily, are involved in multiple biological processes such as embryonic development and maintenance of adult tissue homeostasis. The importance of a functional BMP pathway is underlined by various diseases, including cancer, which can arise as a consequence of dysregulated BMP signaling. Mutations in crucial elements of this signaling pathway, such as receptors, have been reported to disrupt BMP signaling. Next to that, aberrant expression of BMP antagonists could also contribute to abrogated signaling. In this review we set out to highlight how BMP antagonists affect not only the cancer cells, but also the other cells present in the microenvironment to influence cancer progression.
Collapse
|
9
|
Karim MA, Samad A, Adhikari UK, Kader MA, Kabir MM, Islam MA, Hasan MN. A Multi-Omics Analysis of Bone Morphogenetic Protein 5 ( BMP5) mRNA Expression and Clinical Prognostic Outcomes in Different Cancers Using Bioinformatics Approaches. Biomedicines 2020; 8:E19. [PMID: 31973134 PMCID: PMC7168281 DOI: 10.3390/biomedicines8020019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Cumulative studies have provided controversial evidence for the prognostic values of bone morphogenetic protein 5 (BMP5) in different types of cancers such as colon, breast, lung, bladder, and ovarian cancer. To address the inconsistent correlation of BMP5 expression with patient survival and molecular function of BMP5 in relation to cancer progression, we performed a systematic study to determine whether BMP5 could be used as a prognostic marker in human cancers. BMP5 expression and prognostic values were assessed using different bioinformatics tools such as ONCOMINE, GENT, TCGA, GEPIA, UALCAN, PrognoScan, PROGgene V2 server, and Kaplan-Meier Plotter. In addition, we used cBioPortal database for the identification and analysis of BMP5 mutations, copy number alterations, altered expression, and protein-protein interaction (PPI). We found that BMP5 is frequently down-regulated in our queried cancer types. Use of prognostic analysis showed negative association of BMP5 down-regulation with four types of cancer except for ovarian cancer. The highest mutation was found in the R321*/Q amino acid of BMP5 corresponding to colorectal and breast cancer whereas the alteration frequency was higher in lung squamous carcinoma datasets (>4%). In PPI analysis, we found 31 protein partners of BMP5, among which 11 showed significant co-expression (p-value < 0.001, log odds ratio > 1). Pathway analysis of differentially co-expressed genes with BMP5 in breast, lung, colon, bladder and ovarian cancers revealed the BMP5-correlated pathways. Collectively, this data-driven study demonstrates the correlation of BMP5 expression with patient survival and identifies the involvement of BMP5 pathways that may serve as targets of a novel biomarker for various types of cancers in human.
Collapse
Affiliation(s)
- Md. Adnan Karim
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Utpal Kumar Adhikari
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Md. Ashraful Kader
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Md. Masnoon Kabir
- Laboratory Science & Service Division (LSSD), International Centre for Diarrhoeal Disease Research, Dhaka 1213, Bangladesh
| | - Md. Aminul Islam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| |
Collapse
|
10
|
Zoranovic T, Manent J, Willoughby L, Matos de Simoes R, La Marca JE, Golenkina S, Cuiping X, Gruber S, Angjeli B, Kanitz EE, Cronin SJF, Neely GG, Wernitznig A, Humbert PO, Simpson KJ, Mitsiades CS, Richardson HE, Penninger JM. A genome-wide Drosophila epithelial tumorigenesis screen identifies Tetraspanin 29Fb as an evolutionarily conserved suppressor of Ras-driven cancer. PLoS Genet 2018; 14:e1007688. [PMID: 30325918 PMCID: PMC6203380 DOI: 10.1371/journal.pgen.1007688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/26/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, Ras mutations alone are insufficient for tumorigenesis, therefore it is paramount to identify cooperating cancer-relevant signaling pathways. We devised an in vivo near genome-wide, functional screen in Drosophila and discovered multiple novel, evolutionarily-conserved pathways controlling Ras-driven epithelial tumorigenesis. Human gene orthologs of the fly hits were significantly downregulated in thousands of primary tumors, revealing novel prognostic markers for human epithelial tumors. Of the top 100 candidate tumor suppressor genes, 80 were validated in secondary Drosophila assays, identifying many known cancer genes and multiple novel candidate genes that cooperate with Ras-driven tumorigenesis. Low expression of the confirmed hits significantly correlated with the KRASG12 mutation status and poor prognosis in pancreatic cancer. Among the novel top 80 candidate cancer genes, we mechanistically characterized the function of the top hit, the Tetraspanin family member Tsp29Fb, revealing that Tsp29Fb regulates EGFR signaling, epithelial architecture and restrains tumor growth and invasion. Our functional Drosophila screen uncovers multiple novel and evolutionarily conserved epithelial cancer genes, and experimentally confirmed Tsp29Fb as a key regulator of EGFR/Ras induced epithelial tumor growth and invasion. Cancer involves the cooperative interaction of many gene mutations. The Ras signaling pathway is upregulated in many human cancers, but upregulated Ras signaling alone is not sufficient to induce malignant tumors. We have undertaken a genome-wide genetic screen using a transgenic RNAi library in the vinegar fly, Drosophila melanogaster, to identify tumor suppressor genes that cooperate with the Ras oncogene (RasV12) in conferring overgrown invasive tumors. We stratified the hits by analyzing the expression of human orthologs of these genes in human epithelial cancers, revealing genes that were strongly downregulated in human cancer. By conducting secondary genetic interaction tests, we validated 80 of the top 100 genes. Pathway analysis of these genes revealed that 55 fell into known pathways involved in human cancer, whereas 25 were unique genes. We then confirmed the tumor suppressor properties of one of these genes, Tsp29Fb, encoding a Tetraspanin membrane protein, and showed that Tsp29Fb functions as a tumor suppressor by inhibiting Ras signaling and by maintaining epithelial cell polarity. Altogether, our study has revealed novel Ras-cooperating tumor suppressors in Drosophila and suggests that these genes may also be involved in human cancer.
Collapse
Affiliation(s)
- Tamara Zoranovic
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Jan Manent
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Lee Willoughby
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ricardo Matos de Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John E. La Marca
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sofya Golenkina
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Xia Cuiping
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Susanne Gruber
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Belinda Angjeli
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Elisabeth Eva Kanitz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Shane J. F. Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - G. Gregory Neely
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
- The Charles Perkins Centre, School of Life & Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Patrick O. Humbert
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, and Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kaylene J. Simpson
- Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, and Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Center for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Constantine S. Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Helena E. Richardson
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, and Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (HER); (JMP)
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
- * E-mail: (HER); (JMP)
| |
Collapse
|
11
|
Yuan F, Lu W. Prediction of potential drivers connecting different dysfunctional levels in lung adenocarcinoma via a protein-protein interaction network. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2284-2293. [PMID: 29197663 DOI: 10.1016/j.bbadis.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022]
Abstract
Lung cancer is a serious disease that threatens an affected individual's life. Its pathogenesis has not yet to be fully described, thereby impeding the development of effective treatments and preventive measures. "Cancer driver" theory considers that tumor initiation can be associated with a number of specific mutations in genes called cancer driver genes. Four omics levels, namely, (1) methylation, (2) microRNA, (3) mutation, and (4) mRNA levels, are utilized to cluster cancer driver genes. In this study, the known dysfunctional genes of these four levels were used to identify novel driver genes of lung adenocarcinoma, a subtype of lung cancer. These genes could contribute to the initiation and progression of lung adenocarcinoma in at least two levels. First, random walk with restart algorithm was performed on a protein-protein interaction (PPI) network constructed with PPI information in STRING by using known dysfunctional genes as seed nodes for each level, thereby yielding four groups of possible genes. Second, these genes were further evaluated in a test strategy to exclude false positives and select the most important ones. Finally, after conducting an intersection operation in any two groups of genes, we obtained several inferred driver genes that contributed to the initiation of lung adenocarcinoma in at least two omics levels. Several genes from these groups could be confirmed according to recently published studies. The inferred genes reported in this study were also different from those described in a previous study, suggesting that they can be used as essential supplementary data for investigations on the initiation of lung adenocarcinoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Science & Technology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China.
| | - WenCong Lu
- Department of Chemistry, Shanghai University, Shanghai 200072, China.
| |
Collapse
|
12
|
Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion. Mol Cell Biol 2016; 36:1509-25. [PMID: 26976638 DOI: 10.1128/mcb.00600-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling.
Collapse
|
13
|
Choi YJ, Ingram PN, Yang K, Coffman L, Iyengar M, Bai S, Thomas DG, Yoon E, Buckanovich RJ. Identifying an ovarian cancer cell hierarchy regulated by bone morphogenetic protein 2. Proc Natl Acad Sci U S A 2015; 112:E6882-8. [PMID: 26621735 PMCID: PMC4687560 DOI: 10.1073/pnas.1507899112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Whether human cancer follows a hierarchical or stochastic model of differentiation is controversial. Furthermore, the factors that regulate cancer stem-like cell (CSC) differentiation potential are largely unknown. We used a novel microfluidic single-cell culture method to directly observe the differentiation capacity of four heterogeneous ovarian cancer cell populations defined by the expression of the CSC markers aldehyde dehydrogenase (ALDH) and CD133. We evaluated 3,692 progeny from 2,833 cells. We found that only ALDH(+)CD133(+) cells could generate all four ALDH(+/-)CD133(+/-) cell populations and identified a clear branched differentiation hierarchy. We also observed a single putative stochastic event. Within the hierarchy of cells, bone morphologenetic protein 2 (BMP2) is preferentially expressed in ALDH(-)CD133(-) cells. BMP2 promotes ALDH(+)CD133(+) cell expansion while suppressing the proliferation of ALDH(-)CD133(-) cells. As such, BMP2 suppressed bulk cancer cell growth in vitro but increased tumor initiation rates, tumor growth, and chemotherapy resistance in vivo whereas BMP2 knockdown reduced CSC numbers, in vivo growth, and chemoresistance. These data suggest a hierarchical differentiation pattern in which BMP2 acts as a feedback mechanism promoting ovarian CSC expansion and suppressing progenitor proliferation. These results explain why BMP2 suppresses growth in vitro and promotes growth in vivo. Together, our results support BMP2 as a therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Patrick N Ingram
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
| | - Kun Yang
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Lan Coffman
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Mangala Iyengar
- Department of Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Shoumei Bai
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Dafydd G Thomas
- Department of Pathology University of Michigan, Ann Arbor, MI 48109
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
| | - Ronald J Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; Department of Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
14
|
Li Y, Arao Y, Hall JM, Burkett S, Liu L, Gerrish K, Cavailles V, Korach KS. Research Resource: STR DNA profile and gene expression comparisons of human BG-1 cells and a BG-1/MCF-7 clonal variant. Mol Endocrinol 2015; 28:2072-81. [PMID: 25321415 DOI: 10.1210/me.2014-1229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human ovarian cancer BG-1 cells are a valuable in vitro model that has enabled several laboratories to study the estrogenic responses of ovarian cancers. We recently discovered that there are two different BG-1 cell lines being used for experiments, denoted here as BG-1 FR and BG-1 NIEHS, which exhibit striking morphological differences. The objective of this study was to methodically analyze these two BG-1 variants and compare their characteristics. Short tandem repeat analysis revealed that the DNA profile of BG-1 FR cells was unique, yet the Short tandem repeat pattern of BG-1 NIEHS was identical with that of MCF-7 cells. From a cytogenetic analysis, it became apparent that the BG-1 FR line had the same profile as previously reported, whereas the BG-1 NIEHS and MCF-7 cells share a similar genetic display. A significant number of unique chromosomal translocations were observed between the BG-1 NIEHS and MCF-7 cells, suggesting that acquired genotypic differences resulted in the formation of two lines from a common origin. Although all cell types demonstrated a similar estrogen responsiveness in reporter gene assays, a microarray analysis revealed distinct estrogen-responsive gene expression patterns with surprisingly moderate to low overlap. We conclude that BG-1 FR is the original ovarian cancer cell line, whereas the BG-1 NIEHS is a variant from the MCF-7 cells. These findings provide much needed clarification of the identities and characteristics of key cell line models that are widely used to study estrogen action in female reproductive cancers.
Collapse
Affiliation(s)
- Yin Li
- Laboratory of Reproductive and Developmental Toxicology (Y.L., Y.A., K.S.K.) and Molecular Genomics Core Facility (L.L., K.G.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; College of Pharmacy and Health Sciences (J.M.H.), Campbell University, Buies Creek, North Carolina 27506; Center for Cancer Research (S.B.), National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702; and Institut de Recherche en Cancérologie de Montpellier (V.C.), Institut de Recherche en Cancerologie de Montpellier and INSERM Unité 896, Universite Montpellier1, F-34298 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hover LD, Young CD, Bhola NE, Wilson AJ, Khabele D, Hong CC, Moses HL, Owens P. Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth. Cancer Lett 2015; 368:79-87. [PMID: 26235139 DOI: 10.1016/j.canlet.2015.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 01/06/2023]
Abstract
The bone morphogenetic protein (BMP) pathway belonging to the Transforming Growth Factor beta (TGFβ) family of secreted cytokines/growth factors is an important regulator of cancer. BMP ligands have been shown to play both tumor suppressive and promoting roles in human cancers. We have found that BMP ligands are amplified in human ovarian cancers and that BMP receptor expression correlates with poor progression-free-survival (PFS). Furthermore, active BMP signaling has been observed in human ovarian cancer tissue. We also determined that ovarian cancer cell lines have active BMP signaling in a cell autonomous fashion. Inhibition of BMP signaling with a small molecule receptor kinase antagonist is effective at reducing ovarian tumor sphere growth. Furthermore, BMP inhibition can enhance sensitivity to Cisplatin treatment and regulates gene expression involved in platinum resistance in ovarian cancer. Overall, these studies suggest targeting the BMP pathway as a novel source to enhance chemo-sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Laura D Hover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Christian D Young
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil E Bhola
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew J Wilson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA; Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| | - Dineo Khabele
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA; Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| | - Charles C Hong
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Medicine, Cardiovascular, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip Owens
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Itoh N, Ohta H. Secreted bone morphogenetic protein antagonists of the Chordin family. Biomol Concepts 2015; 1:297-304. [PMID: 25962004 DOI: 10.1515/bmc.2010.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chordin, Chordin-like 1, and Chordin-like 2 are secreted bone morphogenetic protein (BMP) antagonists with highly conserved Chordin-like cysteine-rich domains. Recently, Brorin and Brorin-like have been identified as new Chordin-like BMP antagonists. A Chordin ortholog, Short gastrulation, has been identified in Drosophila, a protostome, but not other orthologs. By contrast, Chordin, Chordin-like 1, and Chordin-like 2 have been identified in Ciona intestinalis, the closest living relatives of the vertebrates, but Brorin and Brorin-like have not. However, all these genes have been identified in most vertebrates. These results indicate that Chordin, Chordin-like 1, and Chordin-like 2 were generated early in the metazoan lineage. Later on, Brorin and Brorin-like were potentially generated by a genome duplication event in early vertebrate evolution. All four cysteine-rich domains of Chordin are essential for the regulation of its action. However, Chordin-like 1, Chordin-like 2, Brorin, and Brorin-like contain only two or three cysteine-rich domains. Although their mechanisms of action remain unclear, they might be distinct from that of Chordin. The expression profiles of these genes in mice and zebrafish indicate unique roles at embryonic and postnatal stages. Mutant/knockdown mouse and zebrafish phenotypes indicate roles in morphogenesis during gastrulation, dorsoventral axis formation, ear, pharyngeal, and neural development, and venous and arterial patterning. Aberrant Chordin expression might result in hereditary diseases and cancer. In addition, altered serum Chordin and Chordin-like 1 levels are also observed in non-hereditary diseases. Together, these results indicate pathophysiological roles.
Collapse
|
17
|
Ali JL, Lagasse BJ, Minuk AJ, Love AJ, Moraya AI, Lam L, Arthur G, Gibson SB, Morrison LC, Werbowetski-Ogilvie TE, Fu Y, Nachtigal MW. Differential cellular responses induced by dorsomorphin and LDN-193189 in chemotherapy-sensitive and chemotherapy-resistant human epithelial ovarian cancer cells. Int J Cancer 2014; 136:E455-69. [PMID: 25227893 DOI: 10.1002/ijc.29220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/21/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022]
Abstract
Inherent or acquired drug resistance is a major contributor to epithelial ovarian cancer (EOC) mortality. Novel drugs or drug combinations that produce EOC cell death or resensitize drug resistant cells to standard chemotherapy may improve patient treatment. After conducting drug tolerability studies for the multikinase inhibitors dorsomorphin (DM) and it is structural analogue LDN-193189 (LDN), these drugs were tested in a mouse intraperitoneal xenograft model of EOC. DM significantly increased survival, whereas LDN showed a trend toward increased survival. In vitro experiments using cisplatin (CP)-resistant EOC cell lines, A2780-cp or SKOV3, we determined that pretreatment or cotreatment with DM or LDN resensitized cells to the killing effect of CP or carboplatin (CB). DM was capable of blocking EOC cell cycle and migration, whereas LDN produced a less pronounced effect on cell cycle and no effect on migration. Subsequent analyses using primary human EOC cell samples or additional established EOC cells lines showed that DM or LDN induced a dose-dependent autophagic or cell death response, respectively. DM induced a characteristic morphological change with the appearance of numerous LC3B-containing acidic vacuoles and an increase in LC3BII levels. This was coincident with a decrease in cell growth and the altered cell cycle consistent with DM-induced cytostasis. By contrast, LDN produced a caspase 3-independent, reactive oxygen species-dependent cell death. Overall, DM and LDN possess drug characteristics suitable for adjuvant agents used to treat chemotherapy-sensitive and -resistant EOC.
Collapse
Affiliation(s)
- Jennifer L Ali
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ma W, Ma J, Xu J, Qiao C, Branscum A, Cardenas A, Baron AT, Schwartz P, Maihle NJ, Huang Y. Lin28 regulates BMP4 and functions with Oct4 to affect ovarian tumor microenvironment. Cell Cycle 2012; 12:88-97. [PMID: 23255092 DOI: 10.4161/cc.23028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that the tumor microenvironment plays a critical role in regulating cancer stem cells (CSCs) and tumor progression through both autocrine and paracrine signaling. Elevated production of bone morphogenetic proteins (BMPs) from human ovarian cancer cells and stroma has been shown to increase CSC proliferation and tumor growth. Here, we report that Lin28, a stem cell factor, binds to BMP4 mRNA in epithelial ovarian carcinoma cells, thereby promoting BMP4 expression at the post-transcriptional level. As co-expression of Lin28 and Oct4 (another stem cell factor) has been implicated in ovarian cancer CSCs, we also determined that high levels of Lin28 are associated with an unfavorable prognosis when co-expressed with high levels of Oct4. Together, these findings uncover a new level of regulation of BMP4 expression and imply a novel Lin28/Oct4/BMP4-mediated mechanism of regulating ovarian tumor cell growth, thus holding potential for the development of new strategies for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Wei Ma
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Peart TM, Correa RJM, Valdes YR, Dimattia GE, Shepherd TG. BMP signalling controls the malignant potential of ascites-derived human epithelial ovarian cancer spheroids via AKT kinase activation. Clin Exp Metastasis 2012; 29:293-313. [PMID: 22249415 DOI: 10.1007/s10585-011-9451-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/28/2011] [Indexed: 11/29/2022]
Abstract
Epithelial ovarian cancer (EOC) cells have the ability to form multi-cellular aggregates in malignant ascites which dramatically alters cell signalling, survival, and metastatic potential. Herein, we demonstrate that patient ascites-derived EOC cells down-regulate endogenous bone morphogenetic protein (BMP) signalling by decreasing BMP ligand expression when grown in suspension culture to form spheroids. Enforced BMP signalling in these cells via constitutively-active BMP type I ALK3(QD) receptor expression causes the formation of smaller, more loosely-aggregated spheroids. Additionally, ALK3(QD)-expressing spheroids have an increased rate of adhesion and dispersion upon reattachment to substratum. Inhibition of endogenous BMP signalling using recombinant Noggin or small molecule inhibitor LDN-193189, on the other hand, opposed these phenotypic changes. To identify potential targets that impact the phenotype of EOC spheroids due to activated BMP signalling, we performed genome-wide expression analyses using Affymetrix arrays. Using the online Connectivity Map resource, the BMP signalling gene expression signature revealed that the AKT pathway is induced by activated BMP signalling in EOC cells; this finding was further validated by phospho-AKT immuno-blotting. In fact, treatment of EOC spheroids with an AKT inhibitor, Akti-1/2, reduced BMP-stimulated cell dispersion during reattachment as compared to controls. Thus, we have identified AKT as being one important downstream component of activated BMP signalling on EOC spheroid pathobiology, which may have important implications on the metastatic potential of this malignancy.
Collapse
Affiliation(s)
- Teresa M Peart
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, ON N6A 4L6, Canada
| | | | | | | | | |
Collapse
|
20
|
Li X, Zhang Y, Shi Y, Dong G, Liang J, Han Y, Wang X, Zhao Q, Ding J, Wu K, Fan D. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J Cell Mol Med 2012; 15:1887-95. [PMID: 21029372 PMCID: PMC3918045 DOI: 10.1111/j.1582-4934.2010.01194.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are small non-coding RNA molecules that control expression of target genes. Previous studies showed that microRNA-107 (miR-107) is overexpressed in gastric cancer tissues compared with the matched normal tissues. However, it remains largely unclear as to how miR-107 exerts its function and modulates the malignant phenotypes of gastric cancer, because our understanding of miR-107 signalling pathways is limited. In this study, we demonstrate that miR-107 is frequently up-regulated in gastric cancers and its overexpression is significantly associated with gastric cancer metastasis. Furthermore, silencing the expression of miR-107 could inhibit gastric cancer cell migration and invasion in vitro and in vivo. Subsequent investigation characterized DICER1 as a direct target of miR-107. Up-regulation of DICER1 resulted in a dramatic reduction of in vitro migration, invasion, in vivo liver metastasis of nude mice, which is similar to that occurs with the silencing of miR-107, indicating that DICER1 functions as a metastasis suppressor in gastric cancer. Furthermore, the restoration of DICER1 can inhibit miR-107-induced gastric cancer cell invasion and metastasis. In conclusion, our results suggested that miR-107, an oncogene miRNA promoting gastric cancer metastasis through down-regulation of DICER1. Inhibition of miR-107 or restoration of DICER1 may represent a new potential therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaohua Li
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bone morphogenetic protein modulator BMPER is highly expressed in malignant tumors and controls invasive cell behavior. Oncogene 2011; 31:2919-30. [PMID: 22020334 DOI: 10.1038/onc.2011.473] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that exert important functions in cell proliferation, migration and differentiation. Till date, multiple human tumors have been reported to display a dysregulation of several members of the BMP pathway that is associated with enhanced malignant tumor growth and metastasis. BMPER (BMP endothelial cell precursor-derived regulator) is a direct BMP modulator that is necessary for BMPs to exert their full-range signaling activity. Moreover, BMPER is expressed by endothelial cells and their progenitors, and has pro-angiogenic features in these cells. Here, we describe the expression of BMPER in human specimens of lung, colon and cervix carcinomas and cell lines derived from such carcinomas. In contrast to healthy tissues, BMPER is highly expressed upon malignant deterioration. Functionally, loss of BMPER in the lung tumor cell line A549 impairs proliferation, migration, invasion as well as tumor cell-induced endothelial cell sprout formation. In contrast, stimulation of A549 cells with exogenous BMPER had no further effect. We found that the BMPER effect may be transduced by regulation of the BMP target transcription factor inhibitor of DNA binding 1 (Id1) and matrix metalloproteinases (MMPs) 9 and 2. These facilitators of cell migration are downregulated when BMPER is absent. To prove the relevance of our in vitro results in vivo, we generated Lewis lung carcinoma cells with impaired BMPER expression and implanted them into the lungs of C57BL/6 mice. In this model, the absence of BMPER resulted in severely reduced tumor growth and tumor angiogenesis. Taken together, these data unequivocally demonstrate that the BMP modulator BMPER is highly expressed in malignant tumors and tumor growth is dependent on the presence of BMPER.
Collapse
|
22
|
McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S, Cabrera L, Keller E, McCauley L, Cho KR, Buckanovich RJ. Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 2011; 121:3206-19. [PMID: 21737876 DOI: 10.1172/jci45273] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/11/2011] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence suggests that mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment; however, controversy exists regarding their role in solid tumors. In this study, we identified and confirmed the presence of carcinoma-associated MSCs (CA-MSCs) in the majority of human ovarian tumor samples that we analyzed. These CA-MSCs had a normal morphologic appearance, a normal karyotype, and were nontumorigenic. CA-MSCs were multipotent with capacity for differentiating into adipose, cartilage, and bone. When combined with tumor cells in vivo, CA-MSCs promoted tumor growth more effectively than did control MSCs. In vitro and in vivo studies suggested that CA-MSCs promoted tumor growth by increasing the number of cancer stem cells. Although CA-MSCs expressed traditional MSCs markers, they had an expression profile distinct from that of MSCs from healthy individuals, including increased expression of BMP2, BMP4, and BMP6. Importantly, BMP2 treatment in vitro mimicked the effects of CA-MSCs on cancer stem cells, while inhibiting BMP signaling in vitro and in vivo partly abrogated MSC-promoted tumor growth. Taken together, our data suggest that MSCs in the ovarian tumor microenvironment have an expression profile that promotes tumorigenesis and that BMP inhibition may be an effective therapeutic approach for ovarian cancer.
Collapse
Affiliation(s)
- Karen McLean
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thériault BL, Nachtigal MW. Human ovarian cancer cell morphology, motility, and proliferation are differentially influenced by autocrine TGFβ superfamily signalling. Cancer Lett 2011; 313:108-21. [PMID: 21945631 DOI: 10.1016/j.canlet.2011.08.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 11/29/2022]
Abstract
TGFβ superfamily signalling participates in normal and pathophysiologic cellular processes. Despite several reports demonstrating active TGFβ superfamily signalling pathways in OvCa cell lines and primary cultures, few studies examine their functional outcome. Herein we show that primary human ovarian cancer cells possess intact autocrine BMP, TGFβ and activin signalling. Blocking autocrine signalling resulted in differential cellular responses affecting cellular morphology, motility and proliferation. Additionally, BMP4-induced alterations in morphology and motility are dependent on Smad signalling. These results suggest that a balance between BMP and TGFβ/activin signalling may be altered to favour BMP signalling during ovarian cancer metastatic progression.
Collapse
|
24
|
Laatio L, Myllynen P, Serpi R, Rysä J, Ilves M, Lappi-Blanco E, Ruskoaho H, Vähäkangas K, Puistola U. BMP-4 expression has prognostic significance in advanced serous ovarian carcinoma and is affected by cisplatin in OVCAR-3 cells. Tumour Biol 2011; 32:985-95. [DOI: 10.1007/s13277-011-0200-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/31/2011] [Indexed: 02/07/2023] Open
|
25
|
Herrera B, van Dinther M, Ten Dijke P, Inman GJ. Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res 2010; 69:9254-62. [PMID: 19996292 DOI: 10.1158/0008-5472.can-09-2912] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) act as central regulators of ovarian physiology and may be involved in ovarian cancer development. In an effort to understand these processes, we characterized transforming growth factor beta/BMP receptor and Smad expression in immortalized ovarian surface epithelial cells and a panel of ovarian cancer cell lines. These studies prompted us to evaluate the potential role of BMP9 signaling in ovarian cancer. Using small interfering RNA, ligand trap, inhibitor, and ligand stimulation approaches, we show that BMP9 acts as a proliferative factor for immortalized ovarian surface epithelial cells and ovarian cancer cell lines, signaling predominantly through an ALK2/Smad1/Smad4 pathway rather than through ALK1, the major BMP9 receptor in endothelial cells. Importantly, we find that some ovarian cancer cell lines have gained autocrine BMP9 signaling that is required for proliferation. Furthermore, immunohistochemistry analysis of an ovarian cancer tissue microarray reveals that approximately 25% of epithelial ovarian cancers express BMP9, whereas normal human ovarian surface epithelial specimens do not. Our data indicate that BMP9 signaling through ALK2 may be a novel therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Blanca Herrera
- Growth Factor Signalling Laboratory, The Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
26
|
Le Page C, Puiffe ML, Meunier L, Zietarska M, de Ladurantaye M, Tonin PN, Provencher D, Mes-Masson AM. BMP-2 signaling in ovarian cancer and its association with poor prognosis. J Ovarian Res 2009; 2:4. [PMID: 19366455 PMCID: PMC2674440 DOI: 10.1186/1757-2215-2-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 04/14/2009] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND We previously observed the over-expression of BMP-2 in primary cultures of epithelial ovarian cancer (EOC) cells as compared to normal epithelial cells based on Affymetrix microarray profiling 1. Here we investigate the effect of BMP-2 on several parameters of ovarian cancer tumorigenesis using the TOV-2223, TOV-1946 and TOV-112D EOC cell lines. METHODS We treated each EOC cell line with recombinant BMP-2 and assayed various parameters associated with tumorigenesis. More specifically, cell signaling events induced by BMP-2 treatment were investigated by western-blot using anti-phosphospecific antibodies. Induction of Id1, Snail and Smad6 mRNA expression was investigated by real time RT-PCR. The ability of cells to migrate was tested using the scratch assay. Cell-cell adhesion was analyzed by the ability of cells to form spheroids. We also investigated BMP-2 expression in tissue samples from a series of EOC patients. RESULTS Treatment of these cell lines with recombinant BMP-2 induced a rapid phosphorylation of Smad1/5/8 and Erk MAPKs. Increased expression of Id1, Smad6 and Snail mRNAs was also observed. Only in the TOV-2223 cell line were these signaling events accompanied by an alteration in cell proliferation. We also observed that BMP-2 efficiently increased the motility of all three cell lines. In contrast, BMP-2 treatment decreased the ability of TOV-1946 and TOV-112D cell lines to form spheroids indicating an inhibition of cell-cell adhesion. The expression of BMP-2 in tumor tissues from patients was inversely correlated with survival. CONCLUSION These results suggest that EOC cell secretion of BMP-2 in the tumor environment contributes to a modification of tumor cell behavior through a change in motility and adherence. We also show that BMP-2 expression in tumor tissues is associated with a poorer prognosis for ovarian cancer patients.
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR/CHUM)/Institut du cancer de Montréal, Montréal, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hsu MY, Rovinsky SA, Lai CY, Qasem S, Liu X, How J, Engelhardt JF, Murphy GF. Aggressive melanoma cells escape from BMP7-mediated autocrine growth inhibition through coordinated Noggin upregulation. J Transl Med 2008; 88:842-55. [PMID: 18560367 PMCID: PMC2676927 DOI: 10.1038/labinvest.2008.55] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-beta superfamily responsible for mediating a diverse array of cellular functions both during embryogenesis and in adult life. Previously, we reported that upregulation of BMP7 in human melanoma correlates with tumor progression. However, melanoma cells are either inhibited by or become resistant to BMP7 as a function of tumor progression, with normal melanocytes being most susceptible. Herein, real-time quantitative reverse transcriptase-polymerase chain reactions and western blotting revealed that the expression of BMP antagonist, Noggin, correlates with resistance to BMP7 in advanced melanoma cells. To test the hypothesis that coordinated upregulation of Noggin protects advanced melanoma cells from autocrine inhibition by BMP7, functional expression of Noggin in susceptible melanoma cells was achieved by adenoviral gene transfer. The Noggin-overexpressing cells exhibited a growth advantage in response to subsequent BMP7 transduction in vitro under anchorage-dependent and -independent conditions, in three-dimensional skin reconstructs, as well as in vivo in severe combined immunodeficient mice. In concordance, Noggin knockdown by lentiviral shRNA confers sensitivity to BMP7-induced growth inhibition in advanced melanoma cells. Our findings suggest that, like TGF-beta, BMP7 acts as an autocrine growth inhibitor in melanocytic cells, and that advanced melanoma cells may escape from BMP7-induced inhibition through concomitant aberrant expression of Noggin.
Collapse
Affiliation(s)
- Mei-Yu Hsu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Shepherd TG, Thériault BL, Nachtigal MW. Autocrine BMP4 signalling regulates ID3 proto-oncogene expression in human ovarian cancer cells. Gene 2008; 414:95-105. [PMID: 18372118 DOI: 10.1016/j.gene.2008.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 12/14/2007] [Accepted: 02/16/2008] [Indexed: 11/28/2022]
Abstract
Bone morphogenetic protein (BMP)-4 signalling leads to the direct upregulation of ID3 proto-oncogene expression in human ovarian cancer cells. An upstream BMP4-responsive enhancer element consisting of a palindromic BMP response element (BRE) site and CAGA box was identified ~3.0 kb upstream of the human ID3 gene, and a nearly-identical element exists in the second intron of the ID3 gene. BMP4 stimulation leads to the direct binding of Smads 1/5 and Smad4 to the upstream and intronic enhancers, and together both enhancers cooperate to yield heightened BMP4-mediated ID3 promoter activity. We further demonstrate that ID3 is overexpressed in human ovarian cancer cells when compared to normal ovarian surface epithelial cells, and treatment of ovarian cancer cells with the BMP4 antagonist Noggin abrogates endogenous ID3 gene expression. Our findings define the mechanism of BMP4-mediated ID3 gene expression, and support the notion that ovarian cancer cells possess autocrine BMP4 signalling required to sustain ID3 overexpression which may contribute to human ovarian cancer pathogenesis.
Collapse
Affiliation(s)
- Trevor G Shepherd
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | | | |
Collapse
|
29
|
Thériault BL, Shepherd TG, Mujoomdar ML, Nachtigal MW. BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 2007; 28:1153-62. [PMID: 17272306 DOI: 10.1093/carcin/bgm015] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We identified previously an autocrine bone morphogenetic protein-4 (BMP4) signalling pathway in primary human normal ovarian surface epithelial (OSE) and epithelial ovarian cancer (OvCa) cells. Herein we show that treatment of OvCa cells with BMP4 produced morphological alterations and increased cellular adhesion, motility and invasion. The BMP4 inhibitor noggin blocked the BMP4-induced phenotype, and decreased autocrine BMP4-mediated OvCa cell motility and adherence. In response to exogenous BMP4, the epithelial-mesenchymal transition (EMT) markers Snail and Slug mRNA and protein were up-regulated, E-cadherin mRNA and protein were down-regulated and the network of alpha smooth muscle actin changed to resemble a mesenchymal cell. We also observed changes in the level of activated Rho GTPases in OvCa cells treated with BMP4, strongly suggesting that the changes in morphology, adhesion, motility and invasion are probably mediated through the activation of these molecules. Strikingly, treatment of normal OSE cells with BMP4 or noggin failed to alter cell motility, providing evidence that OSE and OvCa cells possess a distinct capability to respond to BMP4. Overall, our studies suggest a link between autocrine BMP signalling mediated through the Rho GTPase family and Snail- and Slug-induced EMT that may collectively contribute to aggressive OvCa behaviour.
Collapse
Affiliation(s)
- Brigitte L Thériault
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|