1
|
Transposase-CRISPR mediated targeted integration (TransCRISTI) in the human genome. Sci Rep 2022; 12:3390. [PMID: 35232993 PMCID: PMC8888626 DOI: 10.1038/s41598-022-07158-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
Various methods have been used in targeted gene knock-in applications. CRISPR-based knock-in strategies based on homology-independent repair pathways such as CRISPR HITI have been shown to possess the best efficiency for gene knock-in in mammalian cells. However, these methods suffer from the probability of plasmid backbone insertion at the target site. On the other hand, studies trying to combine the targeting ability of the Cas9 molecule and the excision/integration capacity of the PB transposase have shown random integrations. In this study, we introduce a new homology-independent knock-in strategy, Transposase-CRISPR mediated Targeted Integration (TransCRISTI), that exploits a fusion of Cas9 nuclease and a double mutant piggyBac transposase. In isogenic mammalian cell lines, we show that the TransCRISTI method demonstrates higher efficiency (72%) for site-specific insertions than the CRISPR HITI (44%) strategy. Application of the TransCRISTI method resulted in site-directed integration in 4.13% and 3.69% of the initially transfected population in the human AAVS1and PML loci, respectively, while the CRISPR HITI strategy resulted in site-directed integration in the PML locus in only 0.6% of cells. We also observed lower off-target and random insertions in the TransCRISTI group than the CRISPR HITI group. The TransCRISTI technology represents a great potential for the accurate and high-efficiency knock-in of the desired transposable elements into the predetermined genomic locations.
Collapse
|
2
|
The large bat Helitron DNA transposase forms a compact monomeric assembly that buries and protects its covalently bound 5'-transposon end. Mol Cell 2021; 81:4271-4286.e4. [PMID: 34403695 DOI: 10.1016/j.molcel.2021.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Helitrons are widespread eukaryotic DNA transposons that have significantly contributed to genome variability and evolution, in part because of their distinctive, replicative rolling-circle mechanism, which often mobilizes adjacent genes. Although most eukaryotic transposases form oligomers and use RNase H-like domains to break and rejoin double-stranded DNA (dsDNA), Helitron transposases contain a single-stranded DNA (ssDNA)-specific HUH endonuclease domain. Here, we report the cryo-electron microscopy structure of a Helitron transposase bound to the 5'-transposon end, providing insight into its multidomain architecture and function. The monomeric transposase forms a tightly packed assembly that buries the covalently attached cleaved end, protecting it until the second end becomes available. The structure reveals unexpected architectural similarity to TraI, a bacterial relaxase that also catalyzes ssDNA movement. The HUH active site suggests how two juxtaposed tyrosines, a feature of many replication initiators that use HUH nucleases, couple the conformational shift of an α-helix to control strand cleavage and ligation reactions.
Collapse
|
3
|
Bhatt S, Chalmers R. Targeted DNA transposition in vitro using a dCas9-transposase fusion protein. Nucleic Acids Res 2019; 47:8126-8135. [PMID: 31429873 PMCID: PMC6735945 DOI: 10.1093/nar/gkz552] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Homology-directed genome engineering is limited by transgene size. Although DNA transposons are more efficient with large transgenes, random integrations are potentially mutagenic. Here we present an in vitro mechanistic study that demonstrates efficient Cas9 targeting of the mariner transposon Hsmar1. Integrations were unidirectional and tightly constrained to one side of the sgRNA binding site. Further analysis of the nucleoprotein intermediates demonstrated that the transposase and Cas9 moieties can bind their respective substrates independently or in concert. Kinetic analysis of the reaction in the presence of the Cas9 target-DNA revealed a delay between first and second strand cleavage at the transposon end. This step involves a significant conformational change that may be hindered by the properties of the interdomainal linker. Otherwise, the transposase moiety behaved normally and was proficient for integration in vitro and in Escherichia coli. Specific integration into the lacZ gene in E. coli was obscured by a high background of random integrations. Nevertheless, Cas9 is an attractive candidate for transposon-targeting because it has a high affinity and long dwell-time at its target site. This will facilitate a future optogenetic strategy for the temporal control of integration, which will increase the ratio of targeted to untargeted events.
Collapse
Affiliation(s)
- Shivam Bhatt
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
4
|
Chen SP, Wang HH. An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions. CRISPR J 2019; 2:376-394. [PMID: 31742433 DOI: 10.1089/crispr.2019.0030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Efficient site-directed insertion of heterologous DNA into a genome remains an outstanding challenge. Recombinases that can integrate kilobase-sized DNA constructs are difficult to reprogram to user-defined loci, while genomic insertion using CRISPR-Cas methods relies on inefficient host DNA repair machinery. Here, we describe a Cas-Transposon (CasTn) system for genomic insertions that uses a Himar1 transposase fused to a catalytically dead dCas9 nuclease to mediate programmable, site-directed transposition. Using cell-free in vitro assays, we demonstrated that the Himar-dCas9 fusion protein increased the frequency of transposon insertion at a single targeted TA dinucleotide by >300-fold compared to a random transposase, and that site-directed transposition is dependent on target choice while robust to log-fold variations in protein and DNA concentrations. We also showed that Himar-dCas9 mediates directed transposition into plasmids in Escherichia coli. This work highlights CasTn as a new modality for host-independent, programmable, site-directed DNA insertions.
Collapse
Affiliation(s)
- Sway P Chen
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, New York
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| |
Collapse
|
5
|
The piggyBac-based double-inducible binary vector system: A novel universal platform for studying gene functions and interactions. Plasmid 2019; 105:102420. [PMID: 31265838 DOI: 10.1016/j.plasmid.2019.102420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
Eukaryotic inducible overexpression systems, including Tet-On and mifepristone-inducible systems, have been widely used to study gene functions by reverse genetics. Among the transposon systems reported to date, the piggyBac transposon system is one of the most efficient in cultured mammalian cells. Here, we report a piggyBac-based double-inducible system that combined the advantages of previous systems. To create this system, the trans- and cis-elements of the Tet-On and mifepristone-inducible systems were cloned into a piggyBac-based trans-vector and cis-vector, respectively. The coding regions of two splicing variants of RUNX1, RUNX1a and RUNX1b, were inserted into the cis-vector to test its ability to express foreign genes along with fluorescent marker proteins. Transgenic 293 T cells were established, and the system was tested by inducing expression of foreign genes with DOX and/or mifepristone; GFP and/or mCherry were used as reporter genes. The system efficiently and stringently induced expression of GFP/mCherry and their co-expressed genes without significant mutual interference, as determined by qRT-PCR and Western blot. This piggyBac-based double-inducible system represents a new genetic tool for studying gene functions and interactions in vitro and in vivo in almost all organisms.
Collapse
|
6
|
Luo W, Galvan DL, Woodard LE, Dorset D, Levy S, Wilson MH. Comparative analysis of chimeric ZFP-, TALE- and Cas9-piggyBac transposases for integration into a single locus in human cells. Nucleic Acids Res 2017; 45:8411-8422. [PMID: 28666380 PMCID: PMC5737283 DOI: 10.1093/nar/gkx572] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/22/2017] [Indexed: 01/02/2023] Open
Abstract
Integrating DNA delivery systems hold promise for many applications including treatment of diseases; however, targeted integration is needed for improved safety. The piggyBac (PB) transposon system is a highly active non-viral gene delivery system capable of integrating defined DNA segments into host chromosomes without requiring homologous recombination. We systematically compared four different engineered zinc finger proteins (ZFP), four transcription activator-like effector proteins (TALE), CRISPR associated protein 9 (SpCas9) and the catalytically inactive dSpCas9 protein fused to the amino-terminus of the transposase enzyme designed to target the hypoxanthine phosphoribosyltransferase (HPRT) gene located on human chromosome X. Chimeric transposases were evaluated for expression, transposition activity, chromatin immunoprecipitation at the target loci, and targeted knockout of the HPRT gene in human cells. One ZFP-PB and one TALE-PB chimera demonstrated notable HPRT gene targeting. In contrast, Cas9/dCas9-PB chimeras did not result in gene targeting. Instead, the HPRT locus appeared to be protected from transposon integration. Supplied separately, PB permitted highly efficient isolation of Cas9-mediated knockout of HPRT, with zero transposon integrations in HPRT by deep sequencing. In summary, these tools may allow isolation of 'targeted-only' cells, be utilized to protect a genomic locus from transposon integration, and enrich for Cas9-mutated cells.
Collapse
Affiliation(s)
- Wentian Luo
- Department of Veterans Affairs, Nashville, TN 37212 USA and Department of Medicine, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel L Galvan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E Woodard
- Department of Veterans Affairs, Nashville, TN 37212 USA and Department of Medicine, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dan Dorset
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Matthew H Wilson
- Department of Veterans Affairs, Nashville, TN 37212 USA and Department of Medicine, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Zhao S, Jiang E, Chen S, Gu Y, Shangguan AJ, Lv T, Luo L, Yu Z. PiggyBac transposon vectors: the tools of the human gene encoding. Transl Lung Cancer Res 2016; 5:120-5. [PMID: 26958506 DOI: 10.3978/j.issn.2218-6751.2016.01.05] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A transposon is a DNA segment, which is able to change its relative position within the entire genome of a cell. The piggyBac (PB) transposon is a movable genetic element that efficiently transposes between vectors and chromosomes through a "cut-and-paste" mechanism. During transposition, the PB transposase recognizes transposon-specific inverted terminal repeats (ITRs) sequences located on both ends of the transposon vector and eight efficiently moves the contents from its original positions and efficiently integrates them into TTAA chromosomal sites. PB has drawn much attention because of its transposition efficiency, safety and stability. Due to its priorities, PB can be used as a new genetic vehicle, a new tool for oncogene screening and a new method for gene therapy. PB has created a new outlook for human gene encoding.
Collapse
Affiliation(s)
- Shuang Zhao
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Enze Jiang
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Shuangshuang Chen
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Yuan Gu
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Anna Junjie Shangguan
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Tangfeng Lv
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Liguo Luo
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Zhenghong Yu
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
8
|
Pyykkö I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P. An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods Mol Biol 2016; 1427:363-415. [PMID: 27259938 DOI: 10.1007/978-1-4939-3615-1_21] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles offer new possibilities for inner ear treatment as they can carry a variety of drugs, protein, and nucleic acids to inner ear. Nanoparticles are equipped with several functions such as targetability, immuno-transparency, biochemical stability, and ability to be visualized in vivo and in vitro. A group of novel peptides can be attached to the surface of nanoparticles that will enhance the cell entry, endosomal escape, and nuclear targeting. Eight different types of nanoparticles with different payload carrying strategies are available now. The transtympanic delivery of nanoparticles indicates that, depending on the type of nanoparticle, different migration pathways into the inner ear can be employed, and that optimal carriers can be designed according to the intended cargo. The use of nanoparticles as drug/gene carriers is especially attractive in conjunction with cochlear implantation or even as an inclusion in the implant as a drug/gene reservoir.
Collapse
Affiliation(s)
- Ilmari Pyykkö
- Department of Otolaryngology, University of Tampere and University Hospital of Tampere, Tampere, 33014, Finland. .,Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, Tampere, 33520, Finland.
| | - Jing Zou
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, 02150, Espoo, Finland
| | - Annelies Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Paavo Kinnunen
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, Finland
| |
Collapse
|
9
|
Abstract
DNA transposons offer an efficient nonviral method of permanently modifying the genomes of mammalian cells. The piggyBac transposon system has proven effective in genomic engineering of mammalian cells for preclinical applications, including gene discovery, simultaneous multiplexed genome modification, animal transgenesis, gene transfer in vivo achieving long-term gene expression in animals, and the genetic modification of clinically relevant cell types, such as induced pluripotent stem cells and human T lymphocytes. piggyBac has many desirable features, including seamless excision of transposons from the genomic DNA and the potential to target integration events to desired DNA sequences. In this review, we explore these recent applications and also highlight the unique advantages of using piggyBac for developing new molecular therapeutic strategies.
Collapse
Affiliation(s)
- Lauren E Woodard
- Department of Veterans Affairs, Tennessee Valley Health System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Veterans Affairs, Tennessee Valley Health System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Nakanishi H, Higuchi Y, Yamashita F, Hashida M. Targeted gene integration using the combination of a sequence-specific DNA-binding protein and phiC31 integrase. J Biotechnol 2014; 186:139-47. [PMID: 25038544 DOI: 10.1016/j.jbiotec.2014.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/06/2014] [Accepted: 07/09/2014] [Indexed: 01/04/2023]
Abstract
PhiC31 integrase-based vectors can integrate therapeutic genes selectively into attP or pseudo-attP sites in genomes, but considerable numbers of pseudo-attP sites in human genomes exist inside endogenous gene-coding regions. To avoid endogenous gene disruptions, we aimed to enhance the integration site-specificity of the phiC31 integrase-based vector using a sequence-specific DNA-binding protein containing Gal4 and LexA DNA-binding motifs. The dual DNA-binding protein was designed to tether the UAS-containing donor vector to the target sequence, the LexA operator, and restrict integration to sites close to the LexA operator. To analyze the site-specificity in chromosomal integration, a human cell line having LexA operators on the genome was established, and the cell line was transfected with donor vectors expressing the DNA-binding protein and the phiC31 integrase expression vector (helper vector). Quantitative PCR indicated that integration around the LexA operator was 26-fold higher with the UAS-containing donor vector than with the control. Sequence analysis confirmed that the integration occurred around the LexA operator. The dual DNA-binding protein-based targeted integration strategy developed herein would allow safer and more reliable genetic manipulations for various applications, including gene and cell therapies.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Japan Society for the Promotion of Science (JSPS), Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Yuriko Higuchi
- Institute for Innovative NanoBio Drug Discovery and Development, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 69 Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Galvan DL, Kettlun CS, Wilson MH. Targeting piggyBac transposon integrations in the human genome. Methods Mol Biol 2014; 1114:143-61. [PMID: 24557901 DOI: 10.1007/978-1-62703-761-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA based transposon systems offer a technology for active and efficient delivery of genes into human cells. An emerging field is directed at manipulating such systems to achieve site-directed integration as compared to un-targeted integration which occurs with native or unmodified transposon systems. The naturally active piggyBac transposon system is derived from insects but has been shown to be very efficient in gene-modifying human cells. Recent efforts have utilized the fusion of DNA binding domains to the piggyBac transposase enzyme with the goal of targeting integration to specific locations in the human genome. In this chapter, we describe methodology for engineering and characterizing chimeric piggyBac transposase enzymes, including experimental approaches for evaluating activity and targeting specificity in the human genome.
Collapse
Affiliation(s)
- Daniel L Galvan
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
12
|
Owens JB, Mauro D, Stoytchev I, Bhakta MS, Kim MS, Segal DJ, Moisyadi S. Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res 2013; 41:9197-207. [PMID: 23921635 PMCID: PMC3799441 DOI: 10.1093/nar/gkt677] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022] Open
Abstract
Insertional therapies have shown great potential for combating genetic disease and safer methods would undoubtedly broaden the variety of possible illness that can be treated. A major challenge that remains is reducing the risk of insertional mutagenesis due to random insertion by both viral and non-viral vectors. Targetable nucleases are capable of inducing double-stranded breaks to enhance homologous recombination for the introduction of transgenes at specific sequences. However, off-target DNA cleavages at unknown sites can lead to mutations that are difficult to detect. Alternatively, the piggyBac transposase is able perform all of the steps required for integration; therefore, cells confirmed to contain a single copy of a targeted transposon, for which its location is known, are likely to be devoid of aberrant genomic modifications. We aimed to retarget transposon insertions by comparing a series of novel hyperactive piggyBac constructs tethered to a custom transcription activator like effector DNA-binding domain designed to bind the first intron of the human CCR5 gene. Multiple targeting strategies were evaluated using combinations of both plasmid-DNA and transposase-protein relocalization to the target sequence. We demonstrated user-defined directed transposition to the CCR5 genomic safe harbor and isolated single-copy clones harboring targeted integrations.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Damiano Mauro
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Mital S. Bhakta
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Moon-Soo Kim
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| |
Collapse
|
13
|
Meir YJJ, Lin A, Huang MF, Lin JR, Weirauch MT, Chou HC, Lin SJA, Wu SCY. A versatile, highly efficient, and potentially safer piggyBac transposon system for mammalian genome manipulations. FASEB J 2013; 27:4429-43. [PMID: 23896728 DOI: 10.1096/fj.12-223586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The piggyBac transposon is one of the most attractive nonviral tools for mammalian genome manipulations. Given that piggybac mobilizes in a "cut-and-paste" fashion, integrant remobilization could potentially damage the host genome. Here, we report a novel piggyBac transposon system with a series of recombinant transposases. We found that the transposition activity of wild-type (PBase) and hyperactive (hyPBase) piggyBac transposases can be significantly increased by peptide fusions in a cell-type dependent fashion, with the greatest change typically seen in mouse embryonic stem (ES) cells. The two most potent recombinant transposases, TPLGMH and ThyPLGMH, give a 9- and 7-fold increase, respectively, in the number of integrants in HEK293 compared with Myc-tagged PBase (MycPBase), and both display 4-fold increase in generating induced pluripotential stem cells. Interestingly, ThyPLGMH but not TPLGMH shows improved chromosomal excision activity (2.5-fold). This unique feature of TPLGMH provides the first evidence that integration activity of a transposase can be drastically improved without increasing its remobilization activity. Transposition catalyzed by ThyPLGMH is more random and occurs further from CpG islands than that catalyzed by MycPBase or TPLGMH. Our transposon system diversifies the mammalian genetic toolbox and provides a spectrum of piggyBac transposases that is better suited to different experimental purposes.
Collapse
Affiliation(s)
- Yaa-Jyuhn James Meir
- 1S.C.-Y.W., Institute of Molecular Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan 333.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol Cell Biol 2013; 33:1317-30. [PMID: 23358416 DOI: 10.1128/mcb.00670-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The DNA transposon piggyBac is widely used as a tool in mammalian experimental systems for transgenesis, mutagenesis, and genome engineering. We have characterized genome-wide insertion site preferences of piggyBac by sequencing a large set of integration sites arising from transposition from two separate genomic loci and a plasmid donor in mouse embryonic stem cells. We found that piggyBac preferentially integrates locally to the excision site when mobilized from a chromosomal location and identified other nonlocal regions of the genome with elevated insertion frequencies. piggyBac insertions were associated with expressed genes and markers of open chromatin structure and were excluded from heterochromatin. At the nucleotide level, piggyBac prefers to insert into TA-rich regions within a broader GC-rich context. We also found that piggyBac can insert into sites other than its known TTAA insertion site at a low frequency (2%). Such insertions introduce mismatches that are repaired with signatures of host cell repair pathways. Transposons could be mobilized from plasmids with the observed noncanonical flanking regions, indicating that piggyBac could generate point mutations in the genome.
Collapse
|
15
|
Bire S, Rouleux-Bonnin F. Transgene Site-Specific Integration: Problems and Solutions. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
A Hyperactive Transposase Promotes Persistent Gene Transfer of a piggyBac DNA Transposon. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e50. [PMID: 23344650 PMCID: PMC3499692 DOI: 10.1038/mtna.2012.12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonviral vector systems are used increasingly in gene targeting and gene transfer applications. The piggyBac transposon represents an alternative integrating vector for in vivo gene transfer. We hypothesized that this system could achieve persistent gene transfer to the liver when administered systemically. We report that a novel hyperactive transposase generated higher transposition efficiency than a codon-optimized transposase in a human liver cell line. Hyperactive transposase-mediated reporter gene expression persisted at levels twice that of codon-optimized transposase in the livers of mice for the 6-month study. Of note, expression persisted in mice following partial hepatectomy, consistent with expression from an integrated transgene. We also used the hyperactive transposase to deliver the human α1-antitrypsin gene and achieved stable expression in serum. To determine the integration pattern of insertions, we performed large-scale mapping in human cells and recovered 60,685 unique hyperactive transposase-mediated insertions. We found that a hyperactive piggyBac transposase conferred an altered pattern of integration from that of insect piggyBac transposase, with a decreased frequency of integration near transcription start sites than previously reported. Our results support that the piggyBac transposon combined with the hyperactive transposase is an efficient integrating vector system for in vitro and in vivo applications.
Collapse
|
17
|
Owens JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, Maragathavally KJ, Coates CJ, Segal DJ, Moisyadi S. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 2012; 40:6978-91. [PMID: 22492708 PMCID: PMC3413120 DOI: 10.1093/nar/gks309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 11/14/2022] Open
Abstract
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Nong C. Dang
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zoia Stoytcheva
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Mahdi Belcaid
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kommineni J. Maragathavally
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Craig J. Coates
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
18
|
Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther 2012; 20:1852-62. [PMID: 22776959 DOI: 10.1038/mt.2012.126] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a nonviral, integrating vector system with proven efficacy in preclinical animal models, and thus holds promise for future clinical applications. However, SB has a close-to-random insertion profile that could lead to genotoxic effects, thereby presenting a potential safety issue. We evaluated zinc finger (ZF) DNA-binding domains (DBDs) for their abilities to introduce a bias into SB's insertion profile. E2C, that binds a unique site in the erbB-2 gene, mediated locus-specific transposon insertions at low frequencies. A novel ZF targeting LINE1 repeats, ZF-B, showed specific binding to an 18-bp site represented by ~12,000 copies in the human genome. We mapped SB insertions using linear-amplification (LAM)-PCR and Illumina sequencing. Targeted insertions with ZF-B peaked at approximately fourfold enrichment of transposition around ZF-B binding sites yielding ~45% overall frequency of insertion into LINE1. A decrease in the ZF-B dataset with respect to transposon insertions in genes was found, suggesting that LINE1 repeats act as a sponge that "soak up" a fraction of SB insertions and thereby redirect them away from genes. Improvements in ZF technology and a careful choice of targeted genomic regions may improve the safety profile of SB for future clinical applications.
Collapse
|
19
|
Bire S, Rouleux-Bonnin F. Transposable elements as tools for reshaping the genome: it is a huge world after all! Methods Mol Biol 2012; 859:1-28. [PMID: 22367863 DOI: 10.1007/978-1-61779-603-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the first part of this chapter, we review the classification and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modified their contribution as molecular tools.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 6239, Université François Rabelais, UFR des Sciences et Technques, Tours, France
| | | |
Collapse
|
20
|
Abstract
The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized.
Collapse
Affiliation(s)
- Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| |
Collapse
|
21
|
Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther 2011; 19:1636-44. [PMID: 21730970 DOI: 10.1038/mt.2011.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to direct gene delivery to a user-defined chromosomal location would greatly improve gene transfer applications. The piggyBac transposon system is a nonviral gene transfer system proven effective in a variety of cells and tissues, including human cells. We fused a highly site-specific synthetic zinc-finger DNA-binding domain (ZFP) to the N-terminus of the piggyBac transposase and evaluated site-directed genomic integration in human cells. Chimeric ZFP-piggyBac transposase exhibited robust gene transfer activity, targeted binding to a cognate endogenous chromosomal ZFP site in the human genome, and site-directed transposon integration into an episomal plasmid target containing a single ZFP site in human cells. We evaluated the ability of ZFP-piggyBac to direct gene integration into an engineered chromosomal ZFP target site in the human genome and consistently observed a higher degree of ZFP-piggyBac site-directed genomic integration when compared to native piggyBac. Chromatin immunoprecipitation (ChIP) experiments revealed binding of native piggyBac to our engineered TTAA-containing chromosomal target which supported integration, but not a TTAA-deficient chromosomal target which lacked integration. Our results offer insight into the requirements for using a chimeric zinc finger-piggyBac transposase to direct integration into a user-defined chromosomal location.
Collapse
|
22
|
Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool. Mol Cell Biochem 2011; 354:301-9. [PMID: 21516337 DOI: 10.1007/s11010-011-0832-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/15/2011] [Indexed: 12/16/2022]
Abstract
Transposons have been promising elements for gene integration, and the Sleeping Beauty (SB) system has been the major one for many years, although there have been several other transposon systems available, for example, Tol2. However, recently another system known as PiggyBac (PB) has been introduced and developed for fulfilling the same purposes, for example, mutagenesis, transgenesis and gene therapy and in some cases with improved transposition efficiency and advantages over the Sleeping Beauty transposon system, although improved hyperactive transposase has highly increased the transposition efficacy for SB. The PB systems have been used in many different scientific research fields; therefore, the purpose of this review is to describe some of these versatile uses of the PiggyBac system to give readers an overview on the usage of PiggyBac system.
Collapse
|
23
|
Wang N, Jiang CY, Jiang MX, Zhang CX, Cheng JA. Using chimeric piggyBac transposase to achieve directed interplasmid transposition in silkworm Bombyx mori and fruit fly Drosophila cells. J Zhejiang Univ Sci B 2011; 11:728-34. [PMID: 20803777 DOI: 10.1631/jzus.b1000139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The piggyBac transposon has been long used to integrate foreign DNA into insect genomes. However, undesirable transgene expression can result from random insertions into the genome. In this study, the efficiency of chimeric Gal4-piggyBac transposase in directing integration onto a DNA target plasmid was evaluated in cultured silkworm Bombyx mori Bm-12 and fruit fly Drosophila Schneider 2 (S2) cells. The Gal4-piggyBac transposase has a Gal4 DNA-binding domain (DBD), and the target plasmid has upstream activating sequences (UAS) to which the Gal4 DBD can bind with high affinity. The results indicate that, in the Bm-12 and S2 cells, transpositional activity of Gal4-piggyBac transposase was increased by 4.0 and 7.5 times, respectively, compared to controls, where Gal4-UAS interaction was absent. Moreover, the Gal4-piggyBac transposase had the ability of directing piggyBac element integration to certain sites of the target plasmid, although the target-directing specificity was not as high as expected. The chimeric piggyBac transposase has the potential for use in site-directed transgenesis and gene function research in B. mori.
Collapse
Affiliation(s)
- Na Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | |
Collapse
|
24
|
Izsvák Z, Hackett PB, Cooper LJN, Ivics Z. Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. Bioessays 2010; 32:756-67. [PMID: 20652893 DOI: 10.1002/bies.201000027] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent results confirm that long-term expression of therapeutic transgenes can be achieved by using a transposon-based system in primary stem cells and in vivo. Transposable elements are natural DNA transfer vehicles that are capable of efficient genomic insertion. The latest generation, Sleeping Beauty transposon-based hyperactive vector (SB100X), is able to address the basic problem of non-viral approaches - that is, low efficiency of stable gene transfer. The combination of transposon-based non-viral gene transfer with the latest improvements of non-viral delivery techniques could provide a long-term therapeutic effect without compromising biosafety. The new challenges of pre-clinical research will focus on further refinement of the technology in large animal models and improving the safety profile of SB vectors by target-selected transgene integration into genomic "safe harbors." The first clinical application of the SB system will help to validate the safety of this approach.
Collapse
Affiliation(s)
- Zsuzsanna Izsvák
- Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
| | | | | | | |
Collapse
|
25
|
Chen YT, Furushima K, Hou PS, Ku AT, Deng JM, Jang CW, Fang H, Adams HP, Kuo ML, Ho HN, Chien CL, Behringer RR. PiggyBac transposon-mediated, reversible gene transfer in human embryonic stem cells. Stem Cells Dev 2010; 19:763-71. [PMID: 19740021 DOI: 10.1089/scd.2009.0118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Permanent and reversible genetic modifications are important approaches to study gene function in different cell types. They are also important for stem cell researchers to explore and test the therapeutic potential of stem cells. The piggyBac transposon from insects is a rising nonviral system that efficiently mutagenizes and mediates gene transfer into the mammalian genome. It is also characterized by its precise excision, leaving no trace sequence behind so that the genomic integrity of the mutated cell can be restored. Here, we use an optimized piggyBac transposon system to mediate gene transfer and expression of a bifunctional fluorescent reporter in human embryonic stem (ES) cells. We provide molecular evidence for transposase-mediated piggyBac integration events and functional evidence for successful expression of a transferred fluorescent protein genes in human ES cells and their in vitro differentiated derivatives. We also demonstrate that the integrated piggyBac transposon can be removed and an undisrupted insertion site can be restored, which implies potential applications for its use in gene therapy and genetics studies.
Collapse
Affiliation(s)
- You-Tzung Chen
- Graduate Institute of Clinical Genomics and Graduate Institute of Clinical Medicine, Stem Cell Core Laboratory, NTU Research Center for Medical Excellence, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Benedict M, Eckerstorfer M, Franz G, Gaugitsch H, Greiter A, Heissenberger A, Knols B, Kumschick S, Nentwig W, Rabitsch W. Defining Environment Risk Assessment Criteria for Genetically Modified Insects to be placed on the EU Market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Manuri PVR, Wilson MH, Maiti SN, Mi T, Singh H, Olivares S, Dawson MJ, Huls H, Lee DA, Rao PH, Kaminski JM, Nakazawa Y, Gottschalk S, Kebriaei P, Shpall EJ, Champlin RE, Cooper LJN. piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum Gene Ther 2010; 21:427-37. [PMID: 19905893 DOI: 10.1089/hum.2009.114] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonviral integrating vectors can be used for expression of therapeutic genes. piggyBac (PB), a transposon/transposase system, has been used to efficiently generate induced pluripotent stems cells from somatic cells, without genetic alteration. In this paper, we apply PB transposition to express a chimeric antigen receptor (CAR) in primary human T cells. We demonstrate that T cells electroporated to introduce the PB transposon and transposase stably express CD19-specific CAR and when cultured on CD19(+) artificial antigen-presenting cells, numerically expand in a CAR-dependent manner, display a phenotype associated with both memory and effector T cell populations, and exhibit CD19-dependent killing of tumor targets. Integration of the PB transposon expressing CAR was not associated with genotoxicity, based on chromosome analysis. PB transposition for generating human T cells with redirected specificity to a desired target such as CD19 is a new genetic approach with therapeutic implications.
Collapse
Affiliation(s)
- Pallavi V Raja Manuri
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The piggyBac transposon system represents a promising nonviral tool for gene delivery and discovery, and may also be of value for clinical gene therapy. PiggyBac is a highly efficient integrating vector that stably transfects (approximately 40%) of primary human T cells for potential adoptive immunotherapy applications. To evaluate the potential genotoxicity of piggyBac, we compared 228 integration sites in primary human T cells to integrations in 2 other human-derived cell lines (HEK293 and HeLa) and randomly simulated integrations into the human genome. Our results revealed distinct differences between cell types. PiggyBac had a nonrandom integration profile and a preference for transcriptional units (approximately 50% into RefSeq genes in all cell types), CpG islands (18% in T cells and 8% in other human cells), and transcriptional start sites (<5 kb, 16% to 20% in all cell types). PiggyBac also preferred TTAA but not AT-rich regions of the human genome. We evaluated the expression of mapped genes into which piggyBac integrated, and found selection of more active genes in primary human T cells compared with other human cell types, possibly due to concomitant T-cell activation during transposition. Importantly, we found that in comparison to what has been reported for gammaretroviral and human lenitviral vectors, piggyBac had decreased integration frequency into or within 50 kb of the transcriptional start sites of known proto-oncogenes. Hence the piggyBac nonviral gene delivery system seems to represent a promising gene transfer system for clinical applications using human T lymphocytes.
Collapse
|
29
|
Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proc Natl Acad Sci U S A 2010; 107:8117-22. [PMID: 20404201 DOI: 10.1073/pnas.1003674107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient integration of functional genes is an essential prerequisite for successful gene delivery such as cell transfection, animal transgenesis, and gene therapy. Gene delivery strategies based on viral vectors are currently the most efficient. However, limited cargo capacity, host immune response, and the risk of insertional mutagenesis are limiting factors and of concern. Recently, several groups have used transposon-based approaches to deliver genes to a variety of cells. The piggyBac (pB) transposase in particular has been shown to be well suited for cell transfection and gene therapy approaches because of its flexibility for molecular modification, large cargo capacity, and high transposition activity. However, safety considerations regarding transposase gene insertions into host genomes have rarely been addressed. Here we report our results on engineering helper-independent pB plasmids. The single-plasmid gene delivery system carries both the piggyBac transposase (pBt) expression cassette as well as the transposon cargo flanked by terminal repeat element sequences. Improvements to the helper-independent structure were achieved by developing new plasmids in which the pBt gene is rendered inactive after excision of the transposon from the plasmid. As a consequence, potentially negative effects that may develop by the persistence of an active pBt gene posttransposition are eliminated. The results presented herein demonstrate that our helper-independent plasmids represent an important step in the development of safe and efficient gene delivery methods that should prove valuable in gene therapy and transgenic approaches.
Collapse
|
30
|
Lynch AG, Tanzer F, Fraser MJ, Shephard EG, Williamson AL, Rybicki EP. Use of the piggyBac transposon to create HIV-1 gag transgenic insect cell lines for continuous VLP production. BMC Biotechnol 2010; 10:30. [PMID: 20356379 PMCID: PMC2853493 DOI: 10.1186/1472-6750-10-30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 03/31/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Insect baculovirus-produced Human immunodeficiency virus type 1 (HIV-1) Gag virus-like-particles (VLPs) stimulate good humoral and cell-mediated immune responses in animals and are thought to be suitable as a vaccine candidate. Drawbacks to this production system include contamination of VLP preparations with baculovirus and the necessity for routine maintenance of infectious baculovirus stock. We used piggyBac transposition as a novel method to create transgenic insect cell lines for continuous VLP production as an alternative to the baculovirus system. RESULTS Transgenic cell lines maintained stable gag transgene integration and expression up to 100 cell passages, and although the level of VLPs produced was low compared to baculovirus-produced VLPs, they appeared similar in size and morphology to baculovirus-expressed VLPs. In a murine immunogenicity study, whereas baculovirus-produced VLPs elicited good CD4 immune responses in mice when used to boost a prime with a DNA vaccine, no boost response was elicited by transgenically produced VLPs. CONCLUSION Transgenic insect cells are stable and can produce HIV Pr55 Gag VLPs for over 100 passages: this novel result may simplify strategies aimed at making protein subunit vaccines for HIV. Immunogenicity of the Gag VLPs in mice was less than that of baculovirus-produced VLPs, which may be due to lack of baculovirus glycoprotein incorporation in the transgenic cell VLPs. Improved yield and immunogenicity of transgenic cell-produced VLPs may be achieved with the addition of further genetic elements into the piggyBac integron.
Collapse
Affiliation(s)
- Alisson G Lynch
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
Transposons are promising systems for somatic gene integration because they can not only integrate exogenous genes efficiently, but also be delivered to a variety of organs using a range of transfection methods. piggyBac (PB) transposon has a high transposability in mammalian cells in vitro, and has been used for genetic and preclinical studies. However, the transposability of PB in mammalian somatic cells in vivo has not been demonstrated yet. Here, we demonstrated PB-mediated sustained gene expression in adult mice. We constructed PB-based plasmid DNA (pDNA) containing reporter [firefly and Gaussia luciferase (Gluc)] genes. Mice were transfected by injection of these pDNAs using a hydrodynamics-based procedure, and the conditions for high-level sustained gene expression were examined. Consequently, gene expressions were sustained over 2 months. Our results suggest that PB is useful for organ-selective somatic integration and sustained gene expression in mammals, and will contribute to basic genetic studies and gene therapies.
Collapse
|
33
|
Atkinson H, Chalmers R. Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 2010; 138:485-98. [PMID: 20084428 DOI: 10.1007/s10709-009-9434-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 12/20/2009] [Indexed: 11/25/2022]
Abstract
Viruses have long been considered to be the most promising tools for human gene therapy. However, the initial enthusiasm for the use of viruses has been tarnished in the light of potentially fatal side effects. Transposons have a long history of use with bacteria in the laboratory and are now routinely applied to eukaryotic model organisms. Transposons show promise for applications in human genetic modification and should prove a useful addition to the gene therapy tool kit. Here we review the use of viruses and the limitations of current approaches to gene therapy, followed by a more detailed analysis of transposon length and the physical properties of internal sequences, which both affect transposition efficiency. As transposon length increases, transposition decreases: this phenomenon is known as length-dependence, and has implications for vector cargo capacity. Disruption of internal sequences, either via deletion of native DNA or insertion of exogenous DNA, may reduce or enhance genetic mobility. These effects may be related to host factor binding, essential spacer requirements or other influences yet to be elucidated. Length-dependence is a complex phenomenon driven not simply by the distance between the transposon ends, but by host proteins, the transposase and the properties of the DNA sequences encoded within the transposon.
Collapse
Affiliation(s)
- Helen Atkinson
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Center, Nottingham NG7 2UH, UK
| | | |
Collapse
|
34
|
Feng X, Bednarz AL, Colloms SD. Precise targeted integration by a chimaeric transposase zinc-finger fusion protein. Nucleic Acids Res 2009; 38:1204-16. [PMID: 19965773 PMCID: PMC2831304 DOI: 10.1093/nar/gkp1068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transposons of the Tc1/mariner family have been used to integrate foreign DNA stably into the genome of a large variety of different cell types and organisms. Integration is at TA dinucleotides located essentially at random throughout the genome, potentially leading to insertional mutagenesis, inappropriate activation of nearby genes, or poor expression of the transgene. Here, we show that fusion of the zinc-finger DNA-binding domain of Zif268 to the C-terminus of ISY100 transposase leads to highly specific integration into TA dinucleotides positioned 6-17 bp to one side of a Zif268 binding site. We show that the specificity of targeting can be changed using Zif268 variants that bind to sequences from the HIV-1 promoter, and demonstrate a bacterial genetic screen that can be used to select for increased levels of targeted transposition. A TA dinucleotide flanked by two Zif268 binding sites was efficiently targeted by our transposase-Zif268 fusion, suggesting the possibility of designer 'Z-transposases' that could deliver transgenic cargoes to chosen genomic locations.
Collapse
Affiliation(s)
- Xiaofeng Feng
- Faculty of Biomedical and Life Sciences, University of Glasgow, Bower Building, University Ave, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
35
|
NAKANISHI H, HIGUCHI Y, KAWAKAMI S, YAMASHITA F, HASHIDA M. Development and Therapeutic Application of Transposon-based Vectors. YAKUGAKU ZASSHI 2009; 129:1433-43. [DOI: 10.1248/yakushi.129.1433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hideyuki NAKANISHI
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuriko HIGUCHI
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shigeru KAWAKAMI
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Fumiyoshi YAMASHITA
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Mitsuru HASHIDA
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
- Institute for Integrated Cell-Material Sciences, Kyoto University (iCeMS)
| |
Collapse
|
36
|
An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 2009; 5:332-42. [PMID: 19733544 DOI: 10.1016/j.stem.2009.07.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/04/2009] [Accepted: 07/21/2009] [Indexed: 11/23/2022]
Abstract
Unraveling the therapeutic potential of human embryonic stem cells (hESC) requires tools to modify their genome. We have engineered the PiggyBac transposable element to create an efficient system for gene delivery in hESCs. This redesigned system, named "ePiggyBac," can deliver up to 18 Kb inserts, and transgene expression is observed in almost 90% of hES cells. ePiggyBac transposons can also carry insulators, inducible expression cassettes, and short hairpin RNAs for gain- and loss-of-function approaches. In hES cells, ePiggyBac's efficiency is superior to that of viral vectors and previously described transposons, including other PiggyBac-based systems. In addition, ePiggyBac transgenes can be removed from the hESC genome without leaving any mutation. We used this system to direct hESC differentiation toward a neuronal phenotype. We then removed the transposons to obtain transgene-free neuronal precursors and neurons. The ability to create fully reversible genetic modifications represents an important step toward clinical applications of hESCs.
Collapse
|
37
|
Demattei MV, Thomas X, Carnus E, Augé-Gouillou C, Renault S. Site-directed integration of transgenes: transposons revisited using DNA-binding-domain technologies. Genetica 2009; 138:531-40. [PMID: 19662501 DOI: 10.1007/s10709-009-9390-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/14/2009] [Indexed: 11/30/2022]
Abstract
In the last 20 years, tools derived from DNA transposons have made major contributions to genetic studies from gene delivery to gene discovery. Various complementary and fairly ubiquitous DNA vehicles have been developed. Although many transposons are efficient DNA vehicles, they appear to have limited ability to target specific sequences, since all that is required at the integration locus is the presence of a short 2- to 4-bp sequence. Consequently, insertions mediated by transposon-based vectors occur somewhat randomly. In the past 5 years, strategies have emerged to enhance the site-specificity of transposon-based vectors, and to avoid random integrations. The first proposes that new target site specificity could be grafted onto a transposase by adding a new DNA-binding domain. Alternative strategies consist of indirectly targeting either the transposase or the transposon to a chosen genomic locus. The most important information available about each strategy are presented, and limitations and future prospects are discussed.
Collapse
|
38
|
Crénès G, Moundras C, Demattei MV, Bigot Y, Petit A, Renault S. Target site selection by the mariner-like element, Mos1. Genetica 2009; 138:509-17. [PMID: 19629719 DOI: 10.1007/s10709-009-9387-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/07/2009] [Indexed: 12/18/2022]
Abstract
The eukaryotic transposon Mos1 is a class-II transposable element that moves using a "cut-and-paste" mechanism in which the transposase is the only protein factor required. The formation of the excision complex is well documented, but the integration step has so far received less investigation. Like all mariner-like elements, Mos1 was thought to integrate into a TA dinucleotide without displaying any other target selection preferences. We set out to synthesize what is currently known about Mos1 insertion sites, and to define the characteristics of Mos1 insertion sequences in vitro and in vivo. Statistical analysis can be used to identify the TA dinucleotides that are non-randomly targeted for transposon integration. In vitro, no specific feature determining target choice other than the requirement for a TA dinucleotide has been identified. In vivo, data were obtained from two previously reported integration hotspots: the bacterial cat gene and the Caenorhabditis elegans rDNA locus. Analysis of these insertion sites revealed a preference for TA dinucleotides that are included in TATA or TA x TA motifs, or located within AT-rich regions. Analysis of the physical properties of sequences obtained in vitro and in vivo do not help to explain Mos1 integration preferences, suggesting that other characteristics must be involved in Mos1 target choice.
Collapse
Affiliation(s)
- Gwénaelle Crénès
- Université François Rabelais de Tours, GICC, Parc de Grandmont, 37200 Tours, France
| | | | | | | | | | | |
Collapse
|
39
|
Ohlfest JR, Ivics Z, Izsvák Z. Transposable elements as plasmid-based vectors for long-term gene transfer into tumors. Methods Mol Biol 2009; 542:105-116. [PMID: 19565898 DOI: 10.1007/978-1-59745-561-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A primary limitation to using nonviral vectors for cancer gene therapy is transient expression of the therapeutic gene. Even when the ultimate goal is tumor cell death, a minimum threshold of gene expression is required to kill tumor cells by direct or indirect mechanisms. It has been shown that transposable elements can significantly enhance the duration of gene expression when plasmid DNA vectors are used to transfect tumor or tumor-associated stroma. Much like a retrovirus, transposon-based plasmid vectors achieve integration into the genome, and thereby sustain transgene expression, which is especially important in actively mitotic cells such as tumor cells. Herein we briefly discuss the different transposons available for gene therapy applications, and provide a detailed protocol for nonviral transposon-based gene delivery to solid experimental tumors in mice.
Collapse
Affiliation(s)
- John R Ohlfest
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
40
|
Keith JH, Schaeper CA, Fraser TS, Fraser MJ. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. BMC Mol Biol 2008; 9:73. [PMID: 18694512 PMCID: PMC2533014 DOI: 10.1186/1471-2199-9-73] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 08/11/2008] [Indexed: 01/08/2023] Open
Abstract
Background The piggyBac mobile element is quickly gaining popularity as a tool for the transgenesis of many eukaryotic organisms. By studying the transposase which catalyzes the movement of piggyBac, we may be able to modify this vector system to make it a more effective transgenesis tool. In a previous publication, Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, and Collins FH have proposed the presence of the widespread 'DDE/DDD' motif for piggyBac at amino acid positions D268, D346, and D447. Results This study utilizes directed mutagenesis and plasmid-based mobility assays to assess the importance of these residues as the catalytic core of the piggyBac transposase. We have functionally analyzed individual point-mutations with respect to charge and physical size in all three proposed residues of the 'DDD' motif as well as another nearby, highly conserved aspartate at D450. All of our mutations had a significant effect on excision frequency in S2 cell cultures. We have also aligned the piggyBac transposase to other close family members, both functional and non-functional, in an attempt to identify the most highly conserved regions and position a number of interesting features. Conclusion We found all the designated DDD aspartates reside in clusters of amino acids that conserved among piggyBac family transposase members. Our results indicate that all four aspartates are necessary, to one degree or another, for excision to occur in a cellular environment, but D450 seems to have a tolerance for a glutamate substitution. All mutants tested significantly decreased excision frequency in cell cultures when compared with the wild-type transposase.
Collapse
|
41
|
Voigt K, Izsvák Z, Ivics Z. Targeted gene insertion for molecular medicine. J Mol Med (Berl) 2008; 86:1205-19. [PMID: 18607557 DOI: 10.1007/s00109-008-0381-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022]
Abstract
Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.
Collapse
Affiliation(s)
- Katrin Voigt
- Max Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, 13092, Berlin, Germany
| | | | | |
Collapse
|
42
|
Sharma N, Moldt B, Dalsgaard T, Jensen TG, Mikkelsen JG. Regulated gene insertion by steroid-induced PhiC31 integrase. Nucleic Acids Res 2008; 36:e67. [PMID: 18499713 PMCID: PMC2441784 DOI: 10.1093/nar/gkn298] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonviral integration systems are widely used genetic tools in transgenesis and play increasingly important roles in strategies for therapeutic gene transfer. Methods to efficiently regulate the activity of transposases and site-specific recombinases have important implications for their spatiotemporal regulation in live transgenic animals as well as for studies of their applicability as safe vectors for genetic therapy. In this report, strategies for posttranslational induction of a variety of gene-inserting proteins are investigated. An engineered hormone-binding domain, derived from the human progesterone receptor, hPR891, and specifically recognized by the synthetic steroid mifepristone, is fused to the Sleeping Beauty, Frog Prince, piggyBac and Tol2 transposases as well as to the Flp and ΦC31 recombinases. By analyzing mifepristone-directed inducibility of gene insertion in cultured human cells, efficient posttranslational regulation of the Flp recombinase and the ΦC31 integrase is documented. In addition, fusion of the ΦC31 integrase with the ERT2 modified estrogen receptor hormone-binding domain results in a protein, which is inducible by a factor of 22-fold and retains 75% of the activity of the wild-type protein. These inducible ΦC31 integrase systems are important new tools in transgenesis and in safety studies of the ΦC31 integrase for gene therapy applications.
Collapse
Affiliation(s)
- Nynne Sharma
- Department of Human Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
43
|
Wu SCY, Maragathavally KJ, Coates CJ, Kaminski JM. Steps toward targeted insertional mutagenesis with class II transposable elements. Methods Mol Biol 2008; 435:139-51. [PMID: 18370073 DOI: 10.1007/978-1-59745-232-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Insertional mutagenesis can be achieved by a variety of approaches, including both random and targeted methods. In contrast to chemical mutagenesis, insertional mutagens provide a molecular tag, thereby allowing rapid identification of the mutated genomic region. Integration into defined genomic locations has great utility for both gene insertion and mutagenesis. Our laboratories have explored targeted integration through the use of transposases coupled to defined DNA-binding domains. This technology holds great promise for targeted insertional mutagenesis by biasing integration events to regions recognized by the chosen DNA-binding domain. Herein, we provide a brief background on targeted transposon integration and detailed protocols for testing chimeric transposases in both mammalian cell culture and insect embryos.
Collapse
|
44
|
Abstract
Transposons are mobile genetic elements that can be used to integrate transgenes into host cell genomes. The piggyBac transposon system has been used for transgenesis of insects and for germline mutagenesis in mice. We compared transposition activity of piggyBac with Sleeping Beauty (SB), a widely used transposon system for preclinical gene therapy studies. An engineered piggyBac transposon with minimal length 5' and 3' terminal repeats exhibited greater transposition activity in transfected cultured human cells than a well-characterized hyperactive SB system. PiggyBac excision was very precise as evidenced by the typical absence of "footprint" mutations at the site of transposon excision. We mapped 575 piggyBac integration sites in human cells to determine site selectivity of genomic integration. PiggyBac demonstrated non-random integration site selectivity that differed from that previously reported for SB, including a higher preference for integrations in regions surrounding transcriptional start sites and within long terminal repeat elements. Importantly, overproduction inhibition was not observed with piggyBac, a major limitation of the SB system. This permitted the generation of combination "helper-independent" piggyBac transposase-transposon vectors that exhibited a 2-fold increase of transposition activity in human cells as compared with cells transfected with separate transposon and transposase plasmids. We conclude that piggyBac is a transposon system with certain properties, including high efficiency and lack of overproduction inhibition that are advantageous in preclinical development of transposon-based gene therapy.
Collapse
Affiliation(s)
- Matthew H Wilson
- 1Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
45
|
Abstract
Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species.
Collapse
Affiliation(s)
- Xiao-Guang Chen
- Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guang Zhou, GD 510515, People's Republic of China
| | | | | |
Collapse
|
46
|
Hackett CS, Geurts AM, Hackett PB. Predicting preferential DNA vector insertion sites: implications for functional genomics and gene therapy. Genome Biol 2007; 8 Suppl 1:S12. [PMID: 18047689 PMCID: PMC2106846 DOI: 10.1186/gb-2007-8-s1-s12] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Viral and transposon vectors have been employed in gene therapy as well as functional genomics studies. However, the goals of gene therapy and functional genomics are entirely different; gene therapists hope to avoid altering endogenous gene expression (especially the activation of oncogenes), whereas geneticists do want to alter expression of chromosomal genes. The odds of either outcome depend on a vector's preference to integrate into genes or control regions, and these preferences vary between vectors. Here we discuss the relative strengths of DNA vectors over viral vectors, and review methods to overcome barriers to delivery inherent to DNA vectors. We also review the tendencies of several classes of retroviral and transposon vectors to target DNA sequences, genes, and genetic elements with respect to the balance between insertion preferences and oncogenic selection. Theoretically, knowing the variables that affect integration for various vectors will allow researchers to choose the vector with the most utility for their specific purposes. The three principle benefits from elucidating factors that affect preferences in integration are as follows: in gene therapy, it allows assessment of the overall risks for activating an oncogene or inactivating a tumor suppressor gene that could lead to severe adverse effects years after treatment; in genomic studies, it allows one to discern random from selected integration events; and in gene therapy as well as functional genomics, it facilitates design of vectors that are better targeted to specific sequences, which would be a significant advance in the art of transgenesis.
Collapse
Affiliation(s)
- Christopher S Hackett
- Biomedical Sciences Graduate Program and Department of Neurology, University of California San Francisco, Room U441K, Parnassus Ave, San Francisco, California 94143-0663, USA
| | | | | |
Collapse
|
47
|
Abstract
Draft genome sequences for Schistosoma mansoni and Schistosoma japonicum are now available. However, the identity and importance of most schistosome genes have yet to be determined. Recently, progress has been made towards the genetic manipulation and transgenesis of schistosomes. Both loss-of-function and gain-of-function approaches appear to be feasible in schistosomes based on findings described in the past 5 years. This review focuses on reports of schistosome transgenesis, specifically those dealing with the transformation of schistosomes with exogenous mobile genetic elements and/or their endogenous relatives for the genetic manipulation of schistosomes. Transgenesis mediated by mobile genetic elements offers a potentially tractable route to introduce foreign genes to schistosomes, a means to determine the importance of schistosome genes, including those that could be targeted in novel interventions and the potential to undertake large-scale forward genetics by insertional mutagenesis.
Collapse
|
48
|
|
49
|
Morales ME, Mann VH, Kines KJ, Gobert GN, Fraser MJ, Kalinna BH, Correnti JM, Pearce EJ, Brindley PJ. piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni. FASEB J 2007; 21:3479-89. [PMID: 17586730 DOI: 10.1096/fj.07-8726com] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transposon piggyBac from the genome of the cabbage looper moth Trichoplusia ni has been observed in the laboratory to jump into the genomes of key model and pathogenic eukaryote organisms including mosquitoes, planarians, human and other mammalian cells, and the malaria parasite Plasmodium falciparum. Introduction of exogenous transposons into schistosomes has not been reported but transposon-mediated transgenesis of schistosomes might supersede current methods for functional genomics of this important human pathogen. In the present study we examined whether the piggyBac transposon could deliver reporter transgenes into the genome of Schistosoma mansoni parasites. A piggyBac donor plasmid modified to encode firefly luciferase under control of schistosome gene promoters was introduced along with 7-methylguanosine capped RNAs encoding piggyBac transposase into cultured schistosomula by square wave electroporation. The activity of the helper transposase mRNA was confirmed by Southern hybridization analysis of genomic DNA from the transformed schistosomes, and hybridization signals indicated that the piggyBac transposon had integrated into numerous sites within the parasite chromosomes. piggyBac integrations were recovered by retrotransposon-anchored PCR, revealing characteristic piggyBac TTAA footprints in the vicinity of the endogenous schistosome retrotransposons Boudicca, SR1, and SR2. This is the first report of chromosomal integration of a transgene and somatic transgenesis of this important human pathogen, in this instance accomplished by mobilization of the piggyBac transposon.
Collapse
Affiliation(s)
- Maria E Morales
- Department of Tropical Medicine, Tulane University, Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ivics Z, Katzer A, Stüwe EE, Fiedler D, Knespel S, Izsvák Z. Targeted Sleeping Beauty transposition in human cells. Mol Ther 2007; 15:1137-44. [PMID: 17426709 DOI: 10.1038/sj.mt.6300169] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transposons are natural gene delivery vehicles. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in the cells of vertebrates including humans. SB transposition into chromosomal DNA occurs in a fairly random manner. This is clearly not desirable in human gene therapeutic applications because there are potential genotoxic effects associated with transposon integration. In this study we set out to manipulate the selection of SB's target sites for targeted transposition into predetermined chromosomal regions. We evaluated experimental strategies based on engineered proteins composed of DNA-binding domains fused to (i) the transposase; (ii) another protein that binds to a specific DNA sequence within the transposable element; and (iii) another protein that interacts with the transposase. We demonstrated targeted transposition into endogenous matrix attachment regions (MARs) and a chromosomally integrated tetracycline response element (TRE) in cultured human cells, using targeting proteins that bind to the transposon DNA. An approach based on interactions between the transposase and a targeting protein containing the N-terminal protein interaction domain of SB was found to enable an approximately 10(7)-fold enrichment of transgene insertion at a desired locus. Our experiments provide proof-of-principle for targeted chromosomal transposition of an otherwise randomly integrating transposon. Targeted transposition can be a powerful technology for safe transgene integration in human therapeutic applications.
Collapse
Affiliation(s)
- Zoltán Ivics
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|