1
|
J Proteins Counteract Amyloid Propagation and Toxicity in Yeast. BIOLOGY 2022; 11:biology11091292. [PMID: 36138771 PMCID: PMC9495310 DOI: 10.3390/biology11091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Dozens of diseases are associated with misfolded proteins that accumulate in highly ordered fibrous aggregates called amyloids. Protein quality control (PQC) factors keep cells healthy by helping maintain the integrity of the cell’s proteins and physiological processes. Yeast has been used widely for years to study how amyloids cause toxicity to cells and how PQC factors help protect cells from amyloid toxicity. The so-called J-domain proteins (JDPs) are PQC factors that are particularly effective at providing such protection. We discuss how PQC factors protect animals, human cells, and yeast from amyloid toxicity, focusing on yeast and human JDPs. Abstract The accumulation of misfolded proteins as amyloids is associated with pathology in dozens of debilitating human disorders, including diabetes, Alzheimer’s, Parkinson’s, and Huntington’s diseases. Expressing human amyloid-forming proteins in yeast is toxic, and yeast prions that propagate as infectious amyloid forms of cellular proteins are also harmful. The yeast system, which has been useful for studying amyloids and their toxic effects, has provided much insight into how amyloids affect cells and how cells respond to them. Given that an amyloid is a protein folding problem, it is unsurprising that the factors found to counteract the propagation or toxicity of amyloids in yeast involve protein quality control. Here, we discuss such factors with an emphasis on J-domain proteins (JDPs), which are the most highly abundant and diverse regulators of Hsp70 chaperones. The anti-amyloid effects of JDPs can be direct or require interaction with Hsp70.
Collapse
|
2
|
Wayne NJ, Dembny KE, Pease T, Saba F, Zhao X, Masison DC, Greene LE. Huntingtin Polyglutamine Fragments Are a Substrate for Hsp104 in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0012221. [PMID: 34424055 PMCID: PMC8547424 DOI: 10.1128/mcb.00122-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
The aggregation of huntingtin fragments with expanded polyglutamine repeat regions (HttpolyQ) that cause Huntington's disease depends on the presence of a prion with an amyloid conformation in yeast. As a result of this relationship, HttpolyQ aggregation indirectly depends on Hsp104 due to its essential role in prion propagation. We find that HttQ103 aggregation is directly affected by Hsp104 with and without the presence of [RNQ+] and [PSI+] prions. When we inactivate Hsp104 in the presence of prion, yeast cells have only one or a few large HttQ103 aggregates rather than numerous smaller aggregates. When we inactivate Hsp104 in the absence of prion, there is no significant aggregation of HttQ103, whereas with active Hsp104, HttQ103 aggregates accumulate slowly due to the severing of spontaneously nucleated aggregates by Hsp104. We do not observe either effect with HttQ103P, which has a polyproline-rich region downstream of the polyglutamine region, because HttQ103P does not spontaneously nucleate and Hsp104 does not efficiently sever the prion-nucleated HttQ103P aggregates. Therefore, the only role of Hsp104 in HttQ103P aggregation is to propagate yeast prion. In conclusion, because Hsp104 efficiently severs the HttQ103 aggregates but not HttQ103P aggregates, it has a marked effect on the aggregation of HttQ103 but not HttQ103P.
Collapse
Affiliation(s)
- Nicole J. Wayne
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine E. Dembny
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tyler Pease
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Farrin Saba
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Howard CJ, Frost A. Ribosome-associated quality control and CAT tailing. Crit Rev Biochem Mol Biol 2021; 56:603-620. [PMID: 34233554 DOI: 10.1080/10409238.2021.1938507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translation is the set of mechanisms by which ribosomes decode genetic messages as they synthesize polypeptides of a defined amino acid sequence. While the ribosome has been honed by evolution for high-fidelity translation, errors are inevitable. Aberrant mRNAs, mRNA structure, defective ribosomes, interactions between nascent proteins and the ribosomal exit tunnel, and insufficient cellular resources, including low tRNA levels, can lead to functionally irreversible stalls. Life thus depends on quality control mechanisms that detect, disassemble and recycle stalled translation intermediates. Ribosome-associated Quality Control (RQC) recognizes aberrant ribosome states and targets their potentially toxic polypeptides for degradation. Here we review recent advances in our understanding of RQC in bacteria, fungi, and metazoans. We focus in particular on an unusual modification made to the nascent chain known as a "CAT tail", or Carboxy-terminal Alanine and Threonine tail, and the mechanisms by which ancient RQC proteins catalyze CAT-tail synthesis.
Collapse
Affiliation(s)
- Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Ghosh A, Williams LD, Pestov DG, Shcherbik N. Proteotoxic stress promotes entrapment of ribosomes and misfolded proteins in a shared cytosolic compartment. Nucleic Acids Res 2020; 48:3888-3905. [PMID: 32030400 PMCID: PMC7144922 DOI: 10.1093/nar/gkaa068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
Cells continuously monitor protein synthesis to prevent accumulation of aberrant polypeptides. Insufficient capacity of cellular degradative systems, chaperone shortage or high levels of mistranslation by ribosomes can result in proteotoxic stress and endanger proteostasis. One of the least explored reasons for mistranslation is the incorrect functioning of the ribosome itself. To understand how cells deal with ribosome malfunction, we introduced mutations in the Expansion Segment 7 (ES7L) of 25S rRNA that allowed the formation of mature, translationally active ribosomes but induced proteotoxic stress and compromised cell viability. The ES7L-mutated ribosomes escaped nonfunctional rRNA Decay (NRD) and remained stable. Remarkably, ES7L-mutated ribosomes showed increased segregation into cytoplasmic foci containing soluble misfolded proteins. This ribosome entrapment pathway, termed TRAP (Translational Relocalization with Aberrant Polypeptides), was generalizable beyond the ES7L mutation, as wild-type ribosomes also showed increased relocalization into the same compartments in cells exposed to proteotoxic stressors. We propose that during TRAP, assembled ribosomes associated with misfolded nascent chains move into cytoplasmic compartments enriched in factors that facilitate protein quality control. In addition, TRAP may help to keep translation at its peak efficiency by preventing malfunctioning ribosomes from active duty in translation.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Dimitri G Pestov
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
6
|
Cdc48/VCP and Endocytosis Regulate TDP-43 and FUS Toxicity and Turnover. Mol Cell Biol 2020; 40:MCB.00256-19. [PMID: 31767634 DOI: 10.1128/mcb.00256-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease. TDP-43 (TAR DNA-binding protein 43) and FUS (fused in sarcoma) are aggregation-prone RNA-binding proteins that in ALS can mislocalize to the cytoplasm of affected motor neuron cells, often forming cytoplasmic aggregates in the process. Such mislocalization and aggregation are implicated in ALS pathology, though the mechanism(s) of TDP-43 and FUS cytoplasmic toxicity remains unclear. Recently, we determined that the endocytic function aids the turnover (i.e., protein degradation) of TDP-43 and reduces TDP-43 toxicity. Here, we identified that Cdc48 and Ubx3, a Cdc48 cofactor implicated in endocytic function, regulates the turnover and toxicity of TDP-43 and FUS expressed in Saccharomyces cerevisiae Cdc48 physically interacts and colocalizes with TDP-43, as does VCP, in ALS patient tissue. In yeast, FUS toxicity also depends strongly on endocytic function but not on autophagy under normal conditions. FUS expression also impairs endocytic function, as previously observed with TDP-43. Taken together, our data identify a role for Cdc48/VCP and endocytic function in regulating TDP-43 and FUS toxicity and turnover. Furthermore, endocytic dysfunction may be a common defect affecting the cytoplasmic clearance of ALS aggregation-prone proteins and may represent a novel therapeutic target of promise.
Collapse
|
7
|
Winters CM, Hong-Brown LQ, Chiang HL. Intracellular vesicle clusters are organelles that synthesize extracellular vesicle-associated cargo proteins in yeast. J Biol Chem 2020; 295:2650-2663. [PMID: 31974164 DOI: 10.1074/jbc.ra119.008612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) play important roles in cell-cell communication. In budding yeast (Saccharomyces cerevisiae), EVs function as carriers to transport cargo proteins into the periplasm for storage during glucose starvation. However, intracellular organelles that synthesize these EV-associated cargo proteins have not been identified. Here, we investigated whether cytoplasmic organelles-called intracellular vesicle clusters (IVCs)-serve as sites for the synthesis of proteins targeted for secretion as EV-associated proteins. Using proteomics, we identified 377 IVC-associated proteins in yeast cells grown under steady-state low-glucose conditions, with the largest group being involved in protein translation. Isolated IVCs exhibited protein synthesis activities that required initiation and elongation factors. We have also identified 431 newly synthesized proteins on isolated IVCs. Expression of 103Q-GFP, a foreign protein with a long polyglutamine extension, resulted in distribution of this protein as large puncta that co-localized with IVC markers, including fructose-1,6-bisphosphatase (FBPase) and the vacuole import and degradation protein Vid24p. We did not observe this pattern in cycloheximide-treated cells or in cells lacking VID genes, required for IVC formation. The induction of 103Q-GFP on IVCs adversely affected total protein synthesis in intact cells and on isolated IVCs. This expression also decreased levels of EV-associated cargo proteins in the extracellular fraction without affecting the number of secreted EVs. Our results provide important insights into the functions of IVCs as sites for the synthesis of EV-associated proteins targeted for secretion to the periplasm.
Collapse
Affiliation(s)
- Chelsea M Winters
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Ly Q Hong-Brown
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Hui-Ling Chiang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033.
| |
Collapse
|
8
|
Yeast Models for Amyloids and Prions: Environmental Modulation and Drug Discovery. Molecules 2019; 24:molecules24183388. [PMID: 31540362 PMCID: PMC6767215 DOI: 10.3390/molecules24183388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases in mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features were recently reported for various proteins involved in amyloid and neural inclusion disorders. Heritable yeast prions share molecular properties (and in the case of polyglutamines, amino acid composition) with human disease-related amyloids. Fundamental protein quality control pathways, including chaperones, the ubiquitin proteasome system and autophagy are highly conserved between yeast and human cells. Crucial cellular proteins and conditions influencing amyloids and prions were uncovered in the yeast model. The treatments available for neurodegenerative amyloid-associated diseases are few and their efficiency is limited. Yeast models of amyloid-related neurodegenerative diseases have become powerful tools for high-throughput screening for chemical compounds and FDA-approved drugs that reduce aggregation and toxicity of amyloids. Although some environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. Environmental stresses trigger amyloid formation and loss, acting either via influencing intracellular concentrations of the amyloidogenic proteins or via heterologous inducers of prions. Studies of environmental and physiological regulation of yeast prions open new possibilities for pharmacological intervention and/or prophylactic procedures aiming on common cellular systems rather than the properties of specific amyloids.
Collapse
|
9
|
Hofer S, Kainz K, Zimmermann A, Bauer MA, Pendl T, Poglitsch M, Madeo F, Carmona-Gutierrez D. Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. Front Mol Neurosci 2018; 11:318. [PMID: 30233317 PMCID: PMC6131589 DOI: 10.3389/fnmol.2018.00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that leads to progressive neuronal loss, provoking impaired motor control, cognitive decline, and dementia. So far, HD remains incurable, and available drugs are effective only for symptomatic management. HD is caused by a mutant form of the huntingtin protein, which harbors an elongated polyglutamine domain and is highly prone to aggregation. However, many aspects underlying the cytotoxicity of mutant huntingtin (mHTT) remain elusive, hindering the efficient development of applicable interventions to counteract HD. An important strategy to obtain molecular insights into human disorders in general is the use of eukaryotic model organisms, which are easy to genetically manipulate and display a high degree of conservation regarding disease-relevant cellular processes. The budding yeast Saccharomyces cerevisiae has a long-standing and successful history in modeling a plethora of human maladies and has recently emerged as an effective tool to study neurodegenerative disorders, including HD. Here, we summarize some of the most important contributions of yeast to HD research, specifically concerning the elucidation of mechanistic features of mHTT cytotoxicity and the potential of yeast as a platform to screen for pharmacological agents against HD.
Collapse
Affiliation(s)
- Sebastian Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | |
Collapse
|
10
|
Eleutherio E, Brasil ADA, França MB, de Almeida DSG, Rona GB, Magalhães RSS. Oxidative stress and aging: Learning from yeast lessons. Fungal Biol 2018; 122:514-525. [DOI: 10.1016/j.funbio.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
11
|
Alexandrov AI, Serpionov GV, Kushnirov VV, Ter-Avanesyan MD. Wild type huntingtin toxicity in yeast: Implications for the role of amyloid cross-seeding in polyQ diseases. Prion 2017; 10:221-7. [PMID: 27220690 DOI: 10.1080/19336896.2016.1176659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Proteins with expanded polyglutamine (polyQ) regions are prone to form amyloids, which can cause diseases in humans and toxicity in yeast. Recently, we showed that in yeast non-toxic amyloids of Q-rich proteins can induce aggregation and toxicity of wild type huntingtin (Htt) with a short non-pathogenic polyglutamine tract. Similarly to mutant Htt with an elongated N-terminal polyQ sequence, toxicity of its wild type counterpart was mediated by induced aggregation of the essential Sup35 protein, which contains a Q-rich region. Notably, polymerization of Sup35 was not caused by the initial benign amyloids and, therefore, aggregates of wild type Htt acted as intermediaries in seeding Sup35 polymerization. This exemplifies a protein polymerization cascade which can generate a network of interdependent polymers. Here we discuss cross-seeded protein polymerization as a possible mechanism underlying known interrelations between different polyQ diseases. We hypothesize that similar mechanisms may enable proteins, which possess expanded Q-rich tracts but are not associated with diseases, to promote the development of polyQ diseases.
Collapse
Affiliation(s)
- A I Alexandrov
- a Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - G V Serpionov
- a Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - V V Kushnirov
- a Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - M D Ter-Avanesyan
- a Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
12
|
Berglund LL, Hao X, Liu B, Grantham J, Nyström T. Differential effects of soluble and aggregating polyQ proteins on cytotoxicity and type-1 myosin-dependent endocytosis in yeast. Sci Rep 2017; 7:11328. [PMID: 28900136 PMCID: PMC5595923 DOI: 10.1038/s41598-017-11102-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022] Open
Abstract
Huntington’s disease develops when the polyglutamine (polyQ) repeat in the Huntingtin (Htt) protein is expanded to over 35 glutamines rendering it aggregation-prone. Here, using Htt exon-1 as a polyQ model protein in a genome-wide screen in yeast, we show that the normal and soluble Htt exon-1 is toxic in cells with defects in type-1 myosin-dependent endocytosis. The toxicity of Htt is linked to physical interactions with type-1 myosins, which occur via the Htt proline-rich region, leading to a reduction in actin patch polarization and clathrin-dependent endocytosis. An expansion of the polyQ stretch from 25 to 103 glutamines, which causes Htt aggregation, alleviated Htt toxicity in cells lacking Myo5 or other components involved in early endocytosis. The data suggest that the proline-rich stretch of Htt interacts with type-1 myosin/clathrin-dependent processes and demonstrate that a reduction in the activity of such processes may result in a positive selection for polyQ expansions.
Collapse
Affiliation(s)
- Lisa L Berglund
- Institute of Biomedicine - Department of Microbiology & Immunology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 7A, 405 30, Göteborg, Sweden
| | - Xinxin Hao
- Institute of Biomedicine - Department of Microbiology & Immunology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 7A, 405 30, Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 405 30, Göteborg, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 405 30, Göteborg, Sweden
| | - Thomas Nyström
- Institute of Biomedicine - Department of Microbiology & Immunology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 7A, 405 30, Göteborg, Sweden.
| |
Collapse
|
13
|
Gottschling DE, Nyström T. The Upsides and Downsides of Organelle Interconnectivity. Cell 2017; 169:24-34. [PMID: 28340346 DOI: 10.1016/j.cell.2017.02.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Interconnectivity and feedback control are hallmarks of biological systems. This includes communication between organelles, which allows them to function and adapt to changing cellular environments. While the specific mechanisms for all communications remain opaque, unraveling the wiring of organelle networks is critical to understand how biological systems are built and why they might collapse, as occurs in aging. A comprehensive understanding of all the routes involved in inter-organelle communication is still lacking, but important themes are beginning to emerge, primarily in budding yeast. These routes are reviewed here in the context of sub-system proteostasis and complex adaptive systems theory.
Collapse
Affiliation(s)
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
14
|
How and why do toxic conformers of aberrant proteins accumulate during ageing? Essays Biochem 2017; 61:317-324. [DOI: 10.1042/ebc20160085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/04/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022]
Abstract
Ageing can be defined as a gradual decline in cellular and physical functions accompanied by an increased sensitivity to the environment and risk of death. The increased risk of mortality is causally connected to a gradual, intracellular accumulation of so-called ageing factors, of which damaged and aggregated proteins are believed to be one. Such aggregated proteins also contribute to several age-related neurodegenerative disorders e.g. Alzheimer’s, Parkinson’s, and Huntington’s diseases, highlighting the importance of protein quality control (PQC) in ageing and its associated diseases. PQC consists of two interrelated systems: the temporal control system aimed at refolding, repairing, and/or removing aberrant proteins and their aggregates and the spatial control system aimed at harnessing the potential toxicity of aberrant proteins by sequestering them at specific cellular locations. The accumulation of toxic conformers of aberrant proteins during ageing is often declared to be a consequence of an incapacitated temporal PQC system—i.e. a gradual decline in the activity of chaperones and proteases. Here, we review the current knowledge on PQC in relation to ageing and highlight that the breakdown of both temporal and spatial PQC may contribute to ageing and thus comprise potential targets for therapeutic interventions of the ageing process.
Collapse
|
15
|
Kumar R, Neuser N, Tyedmers J. Hitchhiking vesicular transport routes to the vacuole: Amyloid recruitment to the Insoluble Protein Deposit (IPOD). Prion 2017; 11:71-81. [PMID: 28277942 PMCID: PMC5399893 DOI: 10.1080/19336896.2017.1293226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequestration of aggregates into specialized deposition sites occurs in many species across all kingdoms of life ranging from bacteria to mammals and is commonly believed to have a cytoprotective function. Yeast cells possess at least 3 different spatially separated deposition sites, one of which is termed “Insoluble Protein Deposit (IPOD)” and harbors amyloid aggregates. We have recently discovered that recruitment of amyloid aggregates to the IPOD uses an actin cable based recruitment machinery that also involves vesicular transport.1 Here we discuss how different proteins known to be involved in vesicular transport processes to the vacuole might act to guide amyloid aggregates to the IPOD. These factors include the Myosin V motor protein Myo2 involved in transporting vacuolar vesicles along actin cables, the transmembrane protein Atg9 involved in the recruitment of large precursor hydrolase complexes to the vacuole, the phosphatidylinositol/ phosphatidylcholine (PI/PC) transfer protein Sec 14 and the SNARE chaperone Sec 18. Furthermore, we present new data suggesting that the yeast dynamin homolog Vps1 is also crucial for faithful delivery of the amyloid model protein PrD-GFP to the IPOD. This is in agreement with a previously identified role for Vps1 in recruitment of heat-denatured aggregates to a perivacuolar deposition site.2
Collapse
Affiliation(s)
- Rajesh Kumar
- a Department of Medicine I and Clinical Chemistry , University Hospital Heidelberg , Heidelberg , Germany
| | - Nicole Neuser
- a Department of Medicine I and Clinical Chemistry , University Hospital Heidelberg , Heidelberg , Germany
| | - Jens Tyedmers
- a Department of Medicine I and Clinical Chemistry , University Hospital Heidelberg , Heidelberg , Germany
| |
Collapse
|
16
|
Hill SM, Hanzén S, Nyström T. Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Rep 2017; 18:377-391. [PMID: 28193623 PMCID: PMC5331209 DOI: 10.15252/embr.201643458] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 01/08/2023] Open
Abstract
The accumulation of damaged and aggregated proteins is a hallmark of aging and increased proteotoxic stress. To limit the toxicity of damaged and aggregated proteins and to ensure that the damage is not inherited by succeeding cell generations, a system of spatial quality control operates to sequester damaged/aggregated proteins into inclusions at specific protective sites. Such spatial sequestration and asymmetric segregation of damaged proteins have emerged as key processes required for cellular rejuvenation. In this review, we summarize findings on the nature of the different quality control sites identified in yeast, on genetic determinants required for spatial quality control, and on how aggregates are recognized depending on the stress generating them. We also briefly compare the yeast system to spatial quality control in other organisms. The data accumulated demonstrate that spatial quality control involves factors beyond the canonical quality control factors, such as chaperones and proteases, and opens up new venues in approaching how proteotoxicity might be mitigated, or delayed, upon aging.
Collapse
Affiliation(s)
- Sandra Malmgren Hill
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sarah Hanzén
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Thomas Nyström
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
17
|
Serpionov GV, Alexandrov AI, Ter-Avanesyan MD. Distinct mechanisms of mutant huntingtin toxicity in different yeast strains. FEMS Yeast Res 2016; 17:fow102. [PMID: 27915242 DOI: 10.1093/femsyr/fow102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/17/2016] [Accepted: 12/01/2016] [Indexed: 11/12/2022] Open
Abstract
Expansion of polyglutamine stretches in several proteins causes neurodegenerative amyloidoses, including Huntington disease. In yeast, mutant huntingtin (mHtt) with a stretch of 103 glutamine residues (HttQ103) forms toxic aggregates. A range of yeast strains have been used to elucidate the mechanisms of mHtt toxicity, and have revealed perturbations of various unrelated processes. HttQ103 aggregates can induce aggregation of cellular proteins, many of which contain glutamine/asparagine-rich regions, including Sup35 and Def1. In the strain 74-D694 HttQ103, toxicity is related to aggregation-mediated depletion of soluble Sup35 and its interacting partner Sup45. Def1 was also implicated in mHtt toxicity, since its lack detoxified HttQ103 in another yeast strain, BY4741. Here we show that in BY4742, deletion of DEF1 lowers HttQ103 toxicity and decreases the amount of its polymers, but does not affect copolymerization of Sup35. Furthermore, in contrast to 74-D694, increasing the levels of soluble Sup35 and Sup45 does not alleviate toxicity of HttQ103 in BY4742. These data demonstrate a difference in the mechanisms underlying mHtt toxicity in different yeast strains and suggest that in humans with Huntington disease, neurons of different brain compartments and cells in other tissues can also be damaged by different mechanisms.
Collapse
Affiliation(s)
- Genrikh V Serpionov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexander I Alexandrov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Michael D Ter-Avanesyan
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
18
|
Prion Aggregates Are Recruited to the Insoluble Protein Deposit (IPOD) via Myosin 2-Based Vesicular Transport. PLoS Genet 2016; 12:e1006324. [PMID: 27689885 PMCID: PMC5045159 DOI: 10.1371/journal.pgen.1006324] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022] Open
Abstract
Aggregation of amyloidogenic proteins is associated with several neurodegenerative diseases. Sequestration of misfolded and aggregated proteins into specialized deposition sites may reduce their potentially detrimental properties. Yeast exhibits a distinct deposition site for amyloid aggregates termed "Insoluble PrOtein Deposit (IPOD)", but nothing is known about the mechanism of substrate recruitment to this site. The IPOD is located directly adjacent to the Phagophore Assembly Site (PAS) where the cell initiates autophagy and the Cytoplasm-to-Vacuole Targeting (CVT) pathway destined for delivery of precursor peptidases to the vacuole. Recruitment of CVT substrates to the PAS was proposed to occur via vesicular transport on Atg9 vesicles and requires an intact actin cytoskeleton and "SNAP (Soluble NSF Attachment Protein) Receptor Proteins (SNARE)" protein function. It is, however, unknown how this vesicular transport machinery is linked to the actin cytoskeleton. We demonstrate that recruitment of model amyloid PrD-GFP and the CVT substrate precursor-aminopeptidase 1 (preApe1) to the IPOD or PAS, respectively, is disturbed after genetic impairment of Myo2-based actin cable transport and SNARE protein function. Rather than accumulating at the respective deposition sites, both substrates reversibly accumulated often together in the same punctate structures. Components of the CVT vesicular transport machinery including Atg8 and Atg9 as well as Myo2 partially co-localized with the joint accumulations. Thus we propose a model where vesicles, loaded with preApe1 or PrD-GFP, are recruited to tropomyosin coated actin cables via the Myo2 motor protein for delivery to the PAS and IPOD, respectively. We discuss that deposition at the IPOD is not an integrated mandatory part of the degradation pathway for amyloid aggregates, but more likely stores excess aggregates until downstream degradation pathways have the capacity to turn them over after liberation by the Hsp104 disaggregation machinery.
Collapse
|
19
|
Yang J, Hao X, Cao X, Liu B, Nyström T. Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. eLife 2016; 5. [PMID: 27033550 PMCID: PMC4868537 DOI: 10.7554/elife.11792] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/02/2016] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is a neurological disorder caused by polyglutamine expansions in mutated Huntingtin (mHtt) proteins, rendering them prone to form inclusion bodies (IB). We report that in yeast, such IB formation is a factor-dependent process subjected to age-related decline. A genome-wide, high-content imaging approach, identified the E3 ubiquitin ligase, Ltn1 of the ribosome quality control complex (RQC) as a key factor required for IB formation, ubiquitination, and detoxification of model mHtt. The failure of ltn1∆ cells to manage mHtt was traced to another RQC component, Tae2, and inappropriate control of heat shock transcription factor, Hsf1, activity. Moreover, super-resolution microscopy revealed that mHtt toxicity in RQC-deficient cells was accompanied by multiple mHtt aggregates altering actin cytoskeletal structures and retarding endocytosis. The data demonstrates that spatial sequestration of mHtt into IBs is policed by the RQC-Hsf1 regulatory system and that such compartmentalization, rather than ubiquitination, is key to mHtt detoxification. DOI:http://dx.doi.org/10.7554/eLife.11792.001 Huntington’s disease is a neurological disease that is caused by mutations in the gene that encodes a protein called Htt. Individuals with this mutation gradually lose neurons as they age, resulting in declines in muscle coordination and mental abilities. The mutant Htt proteins tend to form clumps inside cells, but it is not clear if these clumps are the cause of the disease symptoms or whether they have a protective effect. Yang et al. used yeast as a model to investigate whether the mutant Htt proteins need other molecules to allow them to form clumps. The experiments identified several new molecules that are required for mutated Htt to form clumps. Some of these are components of a system called the Ribosome Quality Control (RQC) complex, which monitors newly made proteins and labels abnormal ones for destruction. However, Yang et al.’s findings suggest that the RQC complex regulates the formation of Htt clumps through a different pathway involving a protein called heat shock factor 1. In this case, cells would need to fine-tune heat shock factor 1 activity to make mutant Htt proteins clump together to protect cells from damage. Future experiments should expand Yang et al.’s findings to animal models of Huntington’s disease and identify which other molecules contribute to the formation of Htt clumps. One challenge will be to find out why older neurons fail to form clumps of Htt proteins, and whether this can be overcome by drugs that boost the activity of the molecules that Yang et al. identified. DOI:http://dx.doi.org/10.7554/eLife.11792.002
Collapse
Affiliation(s)
- Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xiuling Cao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Thomas Nyström
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
20
|
Braun RJ. Ubiquitin-dependent proteolysis in yeast cells expressing neurotoxic proteins. Front Mol Neurosci 2015; 8:8. [PMID: 25814926 PMCID: PMC4357299 DOI: 10.3389/fnmol.2015.00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 01/16/2023] Open
Abstract
Critically impaired protein degradation is discussed to contribute to neurodegenerative disorders, including Parkinson's, Huntington's, Alzheimer's, and motor neuron diseases. Misfolded, aggregated, or surplus proteins are efficiently degraded via distinct protein degradation pathways, including the ubiquitin-proteasome system, autophagy, and vesicular trafficking. These pathways are regulated by covalent modification of target proteins with the small protein ubiquitin and are evolutionary highly conserved from humans to yeast. The yeast Saccharomyces cerevisiae is an established model for deciphering mechanisms of protein degradation, and for the elucidation of pathways underlying programmed cell death. The expression of human neurotoxic proteins triggers cell death in yeast, with neurotoxic protein-specific differences. Therefore, yeast cell death models are suitable for analyzing the role of protein degradation pathways in modulating cell death upon expression of disease-causing proteins. This review summarizes which protein degradation pathways are affected in these yeast models, and how they are involved in the execution of cell death. I will discuss to which extent this mimics the situation in other neurotoxic models, and how this may contribute to a better understanding of human disorders.
Collapse
Affiliation(s)
- Ralf J Braun
- Institut für Zellbiologie, Universität Bayreuth Bayreuth, Germany
| |
Collapse
|
21
|
Overexpression of Q-rich prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome. Proc Natl Acad Sci U S A 2014; 111:18219-24. [PMID: 25489109 DOI: 10.1073/pnas.1421313111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expansion of a poly-glutamine (polyQ) repeat in a group of functionally unrelated proteins is the cause of several inherited neurodegenerative disorders, including Huntington's disease. The polyQ length-dependent aggregation and toxicity of these disease proteins can be reproduced in Saccharomyces cerevisiae. This system allowed us to screen for genes that when overexpressed reduce the toxic effects of an N-terminal fragment of mutant huntingtin with 103 Q. Surprisingly, among the identified suppressors were three proteins with Q-rich, prion-like domains (PrDs): glycine threonine serine repeat protein (Gts1p), nuclear polyadenylated RNA-binding protein 3, and minichromosome maintenance protein 1. Overexpression of the PrD of Gts1p, containing an imperfect 28 residue glutamine-alanine repeat, was sufficient for suppression of toxicity. Association with this discontinuous polyQ domain did not prevent 103Q aggregation, but altered the physical properties of the aggregates, most likely early in the assembly pathway, as reflected in their increased SDS solubility. Molecular simulations suggested that Gts1p arrests the aggregation of polyQ molecules at the level of nonfibrillar species, acting as a cap that destabilizes intermediates on path to form large fibrils. Quantitative proteomic analysis of polyQ interactors showed that expression of Gts1p reduced the interaction between polyQ and other prion-like proteins, and enhanced the association of molecular chaperones with the aggregates. These findings demonstrate that short, Q-rich peptides are able to shield the interactive surfaces of toxic forms of polyQ proteins and direct them into nontoxic aggregates.
Collapse
|
22
|
Yang Z, Stone DE, Liebman SW. Prion-promoted phosphorylation of heterologous amyloid is coupled with ubiquitin-proteasome system inhibition and toxicity. Mol Microbiol 2014; 93:1043-56. [PMID: 25039275 DOI: 10.1111/mmi.12716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 11/30/2022]
Abstract
Many neurodegenerative diseases are associated with conversion of a soluble protein into amyloid deposits, but how this is connected to toxicity remains largely unknown. Here, we explore mechanisms of amyloid associated toxicity using yeast. [PIN(+)], the prion form of the Q/N-rich Rnq1 protein, was known to enhance aggregation of heterologous proteins, including the overexpressed Q/N-rich amyloid forming domain of Pin4 (Pin4C), and Pin4C aggregates were known to attract chaperones, including Sis1. Here we show that in [PIN(+)] but not [pin(-)] cells, overexpression of Pin4C is deadly and linked to hyperphosphorylation of aggregated Pin4C. Furthermore, Pin4C aggregation, hyperphosphorylation and toxicity are simultaneously reversed by Sis1 overexpression. Toxicity may result from proteasome overload because hyperphosphorylated Pin4C aggregation is associated with reduced degradation of a ubiquitin-protein degradation reporter. Finally, hyperphosphorylation of endogenous full-length Pin4 was also facilitated by [PIN(+)], revealing that a prion can regulate post-translational modification of another protein.
Collapse
Affiliation(s)
- Zi Yang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | | |
Collapse
|
23
|
Song J, Yang Q, Yang J, Larsson L, Hao X, Zhu X, Malmgren-Hill S, Cvijovic M, Fernandez-Rodriguez J, Grantham J, Gustafsson CM, Liu B, Nyström T. Essential genetic interactors of SIR2 required for spatial sequestration and asymmetrical inheritance of protein aggregates. PLoS Genet 2014; 10:e1004539. [PMID: 25079602 PMCID: PMC4117435 DOI: 10.1371/journal.pgen.1004539] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/16/2014] [Indexed: 11/19/2022] Open
Abstract
Sir2 is a central regulator of yeast aging and its deficiency increases daughter cell inheritance of stress- and aging-induced misfolded proteins deposited in aggregates and inclusion bodies. Here, by quantifying traits predicted to affect aggregate inheritance in a passive manner, we found that a passive diffusion model cannot explain Sir2-dependent failures in mother-biased segregation of either the small aggregates formed by the misfolded Huntingtin, Htt103Q, disease protein or heat-induced Hsp104-associated aggregates. Instead, we found that the genetic interaction network of SIR2 comprises specific essential genes required for mother-biased segregation including those encoding components of the actin cytoskeleton, the actin-associated myosin V motor protein Myo2, and the actin organization protein calmodulin, Cmd1. Co-staining with Hsp104-GFP demonstrated that misfolded Htt103Q is sequestered into small aggregates, akin to stress foci formed upon heat stress, that fail to coalesce into inclusion bodies. Importantly, these Htt103Q foci, as well as the ATPase-defective Hsp104Y662A-associated structures previously shown to be stable stress foci, co-localized with Cmd1 and Myo2-enriched structures and super-resolution 3-D microscopy demonstrated that they are associated with actin cables. Moreover, we found that Hsp42 is required for formation of heat-induced Hsp104Y662A foci but not Htt103Q foci suggesting that the routes employed for foci formation are not identical. In addition to genes involved in actin-dependent processes, SIR2-interactors required for asymmetrical inheritance of Htt103Q and heat-induced aggregates encode essential sec genes involved in ER-to-Golgi trafficking/ER homeostasis.
Collapse
Affiliation(s)
- Jia Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Lisa Larsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Sandra Malmgren-Hill
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Marija Cvijovic
- Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Beidong Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
24
|
Smethurst DG, Dawes IW, Gourlay CW. Actin - a biosensor that determines cell fate in yeasts. FEMS Yeast Res 2013; 14:89-95. [DOI: 10.1111/1567-1364.12119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023] Open
Affiliation(s)
| | - Ian W. Dawes
- School of Biotechnology and Biomolecular Sciences; University of NSW; Kensington Sydney NSW Australia
| | - Campbell W. Gourlay
- Kent Fungal Group; School of Biosciences; University of Kent; Canterbury Kent UK
| |
Collapse
|
25
|
Tenreiro S, Munder MC, Alberti S, Outeiro TF. Harnessing the power of yeast to unravel the molecular basis of neurodegeneration. J Neurochem 2013; 127:438-52. [DOI: 10.1111/jnc.12271] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Sandra Tenreiro
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
| | - Matthias C. Munder
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden Germany
| | - Tiago F. Outeiro
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto de Fisiologia; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Department of NeuroDegeneration and Restorative Research; University Medizin Göttingen; Göttingen Germany
| |
Collapse
|
26
|
Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, Dayani Y, Zhou A. Amyloids and yeast prion biology. Biochemistry 2013; 52:1514-27. [PMID: 23379365 DOI: 10.1021/bi301686a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prions (infectious proteins) of Saccharomyces cerevisiae are proteins acting as genes, by templating their conformation from one molecule to another in analogy to DNA templating its sequence. Most yeast prions are amyloid forms of normally soluble proteins, and a single protein sequence can have any of several self-propagating forms (called prion strains or variants), analogous to the different possible alleles of a DNA gene. A central issue in prion biology is the structural basis of this conformational templating process. The in-register parallel β sheet structure found for several infectious yeast prion amyloids naturally suggests an explanation for this conformational templating. While most prions are plainly diseases, the [Het-s] prion of Podospora anserina may be a functional amyloid, with important structural implications. Yeast prions are important models for human amyloid diseases in general, particularly because new evidence is showing infectious aspects of several human amyloidoses not previously classified as prions. We also review studies of the roles of chaperones, aggregate-collecting proteins, and other cellular components using yeast that have led the way in improving the understanding of similar processes that must be operating in many human amyloidoses.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Yang Z, Hong JY, Derkatch IL, Liebman SW. Heterologous gln/asn-rich proteins impede the propagation of yeast prions by altering chaperone availability. PLoS Genet 2013; 9:e1003236. [PMID: 23358669 PMCID: PMC3554615 DOI: 10.1371/journal.pgen.1003236] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022] Open
Abstract
Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q)/asparagine (N)-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller “seeds.” We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI+] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI+] or [URE3] prions. We explore in detail the events leading to the loss (curing) of [PSI+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI+]. Certain proteins can occasionally misfold into infectious aggregates called prions. Once formed, these aggregates grow by attracting the soluble form of that protein to join them. The presence of these aggregates can cause profound effects on cells and, in humans, can cause diseases such as transmissible spongiform encephalopathies (TSEs). In yeast, the aggregates are efficiently transmitted to daughter cells because they are cut into small pieces by molecular scissors (chaperones). Here we show that heritable prion aggregates are frequently lost when we overproduce certain other proteins with curing activity. We analyzed one such protein in detail and found that when it is overproduced it forms aggregates that sequester chaperones. This sequestration appears to block the ability of the chaperones to cut the prion aggregates. The result is that the prions get too large to be transmitted to daughter cells. Such sequestration of molecular scissors provides a potential approach to thwart the propagation of disease-causing infectious protein aggregates.
Collapse
Affiliation(s)
- Zi Yang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joo Y. Hong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Irina L. Derkatch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Susan W. Liebman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
Yeast prions, based on self-seeded highly ordered fibrous aggregates (amyloids), serve as a model for human amyloid diseases. Propagation of yeast prions depends on the balance between chaperones of the Hsp100 and Hsp70 families. The yeast prion [PSI(+)] can be eliminated by an excess of the chaperone Hsp104. This effect is reversed by an excess of the chaperone Hsp70-Ssa. Here we show that the actions of Hsp104 and Ssa on [PSI(+)] are modulated by the small glutamine-rich tetratricopeptide cochaperone Sgt2. Sgt2 is conserved from yeast to humans, has previously been implicated in the guided entry of tail-anchored proteins (GET) trafficking pathway, and is known to interact with Hsps, cytosolic Get proteins, and tail-anchored proteins. We demonstrate that Sgt2 increases the ability of excess Ssa to counteract [PSI(+)] curing by excess Hsp104. Deletion of SGT2 also restores trafficking of a tail-anchored protein in cells with a disrupted GET pathway. One region of Sgt2 interacts both with the prion domain of Sup35 and with tail-anchored proteins. Sgt2 levels are increased in response to the presence of a prion when major Hsps are not induced. Our data implicate Sgt2 as an amyloid "sensor" and a regulator of chaperone targeting to different types of aggregation-prone proteins.
Collapse
|
29
|
Verma M, Sharma A, Naidu S, Bhadra AK, Kukreti R, Taneja V. Curcumin prevents formation of polyglutamine aggregates by inhibiting Vps36, a component of the ESCRT-II complex. PLoS One 2012; 7:e42923. [PMID: 22880132 PMCID: PMC3413662 DOI: 10.1371/journal.pone.0042923] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/13/2012] [Indexed: 01/07/2023] Open
Abstract
Small molecules with antioxidative properties have been implicated in amyloid disorders. Curcumin is the active ingredient present in turmeric and known for several biological and medicinal effects. Adequate evidence substantiates the importance of curcumin in Alzheimer's disease and recent evidence suggests its role in Prion and Parkinson's disease. However, contradictory effects have been suggested for Huntington's disease. This difference provided a compelling reason to investigate the effect of curcumin on glutamine-rich (Q-rich) and non-glutamine-rich (non Q-rich) amyloid aggregates in the well established yeast model system. Curcumin significantly inhibited the formation of htt72Q-GFP (a Q-rich) and Het-s-GFP (a non Q-rich) aggregates in yeast. We show that curcumin prevents htt72Q-GFP aggregation by down regulating Vps36, a component of the ESCRT-II (Endosomal sorting complex required for transport). Moreover, curcumin disrupted the htt72Q-GFP aggregates that were pre-formed in yeast and cured the yeast prion, [PSI(+)].
Collapse
Affiliation(s)
- Meenakshi Verma
- Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
| | - Abhishek Sharma
- Faculty of Chemistry and Biochemistry, Ruhr Universitat, Bochum, Germany
| | - Swarna Naidu
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | - Ankan Kumar Bhadra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| |
Collapse
|
30
|
Contribution of yeast models to neurodegeneration research. J Biomed Biotechnol 2012; 2012:941232. [PMID: 22910375 PMCID: PMC3403639 DOI: 10.1155/2012/941232] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/11/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
As a model organism Saccharomyces cerevisiae has greatly contributed to our understanding of many fundamental aspects of cellular biology in higher eukaryotes. More recently, engineered yeast models developed to study endogenous or heterologous proteins that lay at the root of a given disease have become powerful tools for unraveling the molecular basis of complex human diseases like neurodegeneration. Additionally, with the possibility of performing target-directed large-scale screenings, yeast models have emerged as promising first-line approaches in the discovery process of novel therapeutic opportunities against these pathologies. In this paper, several yeast models that have contributed to the uncovering of the etiology and pathogenesis of several neurodegenerative diseases are described, including the most common forms of neurodegeneration worldwide, Alzheimer's, Parkinson's, and Huntington's diseases. Moreover, the potential input of these cell systems in the development of more effective therapies in neurodegeneration, through the identification of genetic and chemical suppressors, is also addressed.
Collapse
|
31
|
Zhao X, Park YN, Todor H, Moomau C, Masison D, Eisenberg E, Greene LE. Sequestration of Sup35 by aggregates of huntingtin fragments causes toxicity of [PSI+] yeast. J Biol Chem 2012; 287:23346-55. [PMID: 22573320 PMCID: PMC3390612 DOI: 10.1074/jbc.m111.287748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of huntingtin fragments with 103 glutamines (HttQ103) is toxic in yeast containing either the [PIN+] prion, which is the amyloid form of Rnq1, or [PSI+] prion, which is the amyloid form of Sup35. We find that HttQP103, which has a polyproline region at the C-terminal end of the polyQ repeat region, is significantly more toxic in [PSI+] yeast than in [PIN+], even though HttQP103 formed multiple aggregates in both [PSI+] and [PIN+] yeast. This toxicity was only observed in the strong [PSI+] variant, not the weak [PSI+] variant, which has more soluble Sup35 present than the strong variant. Furthermore, expression of the MC domains of Sup35, which retains the C-terminal domain of Sup35, but lacks the N-terminal prion domain, almost completely rescued HttQP103 toxicity, but was less effective in rescuing HttQ103 toxicity. Therefore, the toxicity of HttQP103 in yeast containing the [PSI+] prion is primarily due to sequestration of the essential protein, Sup35.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Gong H, Romanova NV, Allen KD, Chandramowlishwaran P, Gokhale K, Newnam GP, Mieczkowski P, Sherman MY, Chernoff YO. Polyglutamine toxicity is controlled by prion composition and gene dosage in yeast. PLoS Genet 2012; 8:e1002634. [PMID: 22536159 PMCID: PMC3334884 DOI: 10.1371/journal.pgen.1002634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/21/2012] [Indexed: 12/02/2022] Open
Abstract
Polyglutamine expansion causes diseases in humans and other mammals. One example is Huntington's disease. Fragments of human huntingtin protein having an expanded polyglutamine stretch form aggregates and cause cytotoxicity in yeast cells bearing endogenous QN-rich proteins in the aggregated (prion) form. Attachment of the proline(P)-rich region targets polyglutamines to the large perinuclear deposit (aggresome). Aggresome formation ameliorates polyglutamine cytotoxicity in cells containing only the prion form of Rnq1 protein. Here we show that expanded polyglutamines both with (poly-QP) or without (poly-Q) a P-rich stretch remain toxic in the presence of the prion form of translation termination (release) factor Sup35 (eRF3). A Sup35 derivative that lacks the QN-rich domain and is unable to be incorporated into aggregates counteracts cytotoxicity, suggesting that toxicity is due to Sup35 sequestration. Increase in the levels of another release factor, Sup45 (eRF1), due to either disomy by chromosome II containing the SUP45 gene or to introduction of the SUP45-bearing plasmid counteracts poly-Q or poly-QP toxicity in the presence of the Sup35 prion. Protein analysis confirms that polyglutamines alter aggregation patterns of Sup35 and promote aggregation of Sup45, while excess Sup45 counteracts these effects. Our data show that one and the same mode of polyglutamine aggregation could be cytoprotective or cytotoxic, depending on the composition of other aggregates in a eukaryotic cell, and demonstrate that other aggregates expand the range of proteins that are susceptible to sequestration by polyglutamines. Polyglutamine diseases, including Huntington disease, are associated with expansions of polyglutamine tracts, resulting in aggregation of respective proteins. The severity of Huntington disease is controlled by both DNA and non–DNA factors. Mechanisms of such a control are poorly understood. Polyglutamine may sequester other cellular proteins; however, different experimental models have pointed to different sequestered proteins. By using a yeast model, we demonstrate that the mechanism of polyglutamine toxicity is driven by the composition of other (endogenous) aggregates (for example, yeast prions) present in a eukaryotic cell. Although these aggregates do not necessarily cause significant toxicity on their own, they serve as mediators in protein sequestration and therefore determine which specific proteins are to be sequestered by polyglutamines. We also show that polyglutamine deposition into an aggresome, a perinuclear compartment thought to be cytoprotective, fails to ameliorate cytotoxicity in cells with certain compositions of pre-existing aggregates. Finally, we demonstrate that an increase in the dosage of a sequestered protein due to aneuploidy by a chromosome carrying a respective gene may rescue cytotoxicity. Our data shed light on genetic and epigenetic mechanisms modulating polyglutamine cytotoxicity and establish a new approach for identifying potential therapeutic targets through characterization of the endogenous aggregated proteins.
Collapse
Affiliation(s)
- He Gong
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nina V. Romanova
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kim D. Allen
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | | - Kavita Gokhale
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Gary P. Newnam
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Piotr Mieczkowski
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yury O. Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Protein misfolding is associated with many human diseases, particularly neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Huntington's disease (HD) is caused by the abnormal expansion of a polyglutamine (polyQ) region within the protein huntingtin. The polyQ-expanded huntingtin protein attains an aberrant conformation (i.e. it misfolds) and causes cellular toxicity. At least eight further neurodegenerative diseases are caused by polyQ-expansions, including the Spinocerebellar Ataxias and Kennedy's disease. The model organism yeast has facilitated significant insights into the cellular and molecular basis of polyQ-toxicity, including the impact of intra- and inter-molecular factors of polyQ-toxicity, and the identification of cellular pathways that are impaired in cells expressing polyQ-expansion proteins. Importantly, many aspects of polyQ-toxicity that were found in yeast were reproduced in other experimental systems and to some extent in samples from HD patients, thus demonstrating the significance of the yeast model for the discovery of basic mechanisms underpinning polyQ-toxicity. A direct and relatively simple way to determine polyQ-toxicity in yeast is to measure growth defects of yeast cells expressing polyQ-expansion proteins. This manuscript describes three complementary experimental approaches to determine polyQ-toxicity in yeast by measuring the growth of yeast cells expressing polyQ-expansion proteins. The first two experimental approaches monitor yeast growth on plates, the third approach monitors the growth of liquid yeast cultures using the BioscreenC instrument. Furthermore, this manuscript describes experimental difficulties that can occur when handling yeast polyQ models and outlines strategies that will help to avoid or minimize these difficulties. The protocols described here can be used to identify and to characterize genetic pathways and small molecules that modulate polyQ-toxicity. Moreover, the described assays may serve as templates for accurate analyses of the toxicity caused by other disease-associated misfolded proteins in yeast models.
Collapse
|
34
|
Walter GM, Smith MC, Wisén S, Basrur V, Elenitoba-Johnson KSJ, Duennwald ML, Kumar A, Gestwicki JE. Ordered assembly of heat shock proteins, Hsp26, Hsp70, Hsp90, and Hsp104, on expanded polyglutamine fragments revealed by chemical probes. J Biol Chem 2011; 286:40486-93. [PMID: 21969373 DOI: 10.1074/jbc.m111.284448] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisae, expanded polyglutamine (polyQ) fragments are assembled into discrete cytosolic aggregates in a process regulated by the molecular chaperones Hsp26, Hsp70, Hsp90, and Hsp104. To better understand how the different chaperones might cooperate during polyQ aggregation, we used sequential immunoprecipitations and mass spectrometry to identify proteins associated with either soluble (Q25) or aggregation-prone (Q103) fragments at both early and later times after induction of their expression. We found that Hsp26, Hsp70, Hsp90, and other chaperones interact with Q103, but not Q25, within the first 2 h. Further, Hsp70 and Hsp90 appear to be partially released from Q103 prior to the maturation of the aggregates and before the recruitment of Hsp104. To test the importance of this seemingly ordered process, we used a chemical probe to artificially enhance Hsp70 binding to Q103. This treatment retained both Hsp70 and Hsp90 on the polyQ fragment and, interestingly, limited subsequent exchange for Hsp26 and Hsp104, resulting in incomplete aggregation. Together, these results suggest that partial release of Hsp70 may be an essential step in the continued processing of expanded polyQ fragments in yeast.
Collapse
Affiliation(s)
- Gladis M Walter
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Stein KC, True HL. The [RNQ+] prion: a model of both functional and pathological amyloid. Prion 2011; 5:291-8. [PMID: 22052347 DOI: 10.4161/pri.18213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of fibrillar amyloid is most often associated with protein conformational disorders such as prion diseases, Alzheimer disease and Huntington disease. Interestingly, however, an increasing number of studies suggest that amyloid structures can sometimes play a functional role in normal biology. Several proteins form self-propagating amyloids called prions in the budding yeast Saccharomyces cerevisiae. These unique elements operate by creating a reversible, epigenetic change in phenotype. While the function of the non-prion conformation of the Rnq1 protein is unclear, the prion form, [RNQ+], acts to facilitate the de novo formation of other prions to influence cellular phenotypes. The [RNQ+] prion itself does not adversely affect the growth of yeast, but the overexpression of Rnq1p can form toxic aggregated structures that are not necessarily prions. The [RNQ+] prion is also involved in dictating the aggregation and toxicity of polyglutamine proteins ectopically expressed in yeast. Thus, the [RNQ+] prion provides a tractable model that has the potential to reveal significant insight into the factors that dictate how amyloid structures are initiated and propagated in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Kevin C Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
36
|
Abstract
Protein misfolding is associated with many human diseases, including neurodegenerative diseases, such as Alzheimer disease, Parkinson disease and Huntington disease. Protein misfolding often results in the formation of intracellular or extracellular inclusions or aggregates. Even though deciphering the role of these aggregates has been the object of intense research activity, their role in protein misfolding diseases is unclear. Here, I discuss the implications of studies on polyglutamine aggregation and toxicity in yeast and other model organisms. These studies provide an excellent experimental and conceptual paradigm that contributes to understanding the differences between toxic and protective trajectories of protein misfolding. Future studies like the ones discussed here have the potential to transform basic concepts of protein misfolding in human diseases and may thus help to identify new therapeutic strategies for their treatment.
Collapse
|
37
|
Halfmann R, Alberti S, Krishnan R, Lyle N, O'Donnell CW, King OD, Berger B, Pappu RV, Lindquist S. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Mol Cell 2011; 43:72-84. [PMID: 21726811 DOI: 10.1016/j.molcel.2011.05.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/21/2011] [Accepted: 04/29/2011] [Indexed: 11/26/2022]
Abstract
Sequences rich in glutamine (Q) and asparagine (N) residues often fail to fold at the monomer level. This, coupled to their unusual hydrogen-bonding abilities, provides the driving force to switch between disordered monomers and amyloids. Such transitions govern processes as diverse as human protein-folding diseases, bacterial biofilm assembly, and the inheritance of yeast prions (protein-based genetic elements). A systematic survey of prion-forming domains suggested that Q and N residues have distinct effects on amyloid formation. Here, we use cell biological, biochemical, and computational techniques to compare Q/N-rich protein variants, replacing Ns with Qs and Qs with Ns. We find that the two residues have strong and opposing effects: N richness promotes assembly of benign self-templating amyloids; Q richness promotes formation of toxic nonamyloid conformers. Molecular simulations focusing on intrinsic folding differences between Qs and Ns suggest that their different behaviors are due to the enhanced turn-forming propensity of Ns over Qs.
Collapse
Affiliation(s)
- Randal Halfmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Manogaran AL, Hong JY, Hufana J, Tyedmers J, Lindquist S, Liebman SW. Prion formation and polyglutamine aggregation are controlled by two classes of genes. PLoS Genet 2011; 7:e1001386. [PMID: 21625618 PMCID: PMC3098188 DOI: 10.1371/journal.pgen.1001386] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 04/14/2011] [Indexed: 11/20/2022] Open
Abstract
Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN+]. When fused to GFP and overexpressed in [ps−] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI+] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI+]. Two classes of gene deletions were identified. Class I deletions (bug1Δ, bem1Δ, arf1Δ, and hog1Δ) reduced the efficiency of [PSI+] induction, but formed rings normally. Class II deletions (las17Δ, vps5Δ, and sac6Δ) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps. Certain proteins that exist in functional unaggregated conformers can also form self-perpetuating infectious aggregates called prions. Here we investigate factors involved in the initial switch to the prion form. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by overexpression of the SUP35 gene in the presence of the prion form of the Rnq1 protein, [PIN+]. When tagged with green fluorescent protein and transiently overexpressed in [psi−] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings give rise to daughter cells that are [PSI+]. Here, we investigate factors required for this induction of [PSI+]. Analyses of over 400 gene deletions revealed two classes that reduce [PSI+] induction: one class forms fluorescent rings normally, and the other does not. Interestingly, the former class enhanced, while the latter class reduced, toxicity associated with the expanded polyglutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. These results suggest that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps.
Collapse
Affiliation(s)
- Anita L. Manogaran
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Joo Y. Hong
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joan Hufana
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jens Tyedmers
- Zentrum fuer Molekulare Biologie Heidelberg, DKFZ-ZMBH-Alliance, Universitaet Heidelberg, Heidelberg, Germany
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Susan W. Liebman
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Konopka CA, Locke MN, Gallagher PS, Pham N, Hart MP, Walker CJ, Gitler AD, Gardner RG. A yeast model for polyalanine-expansion aggregation and toxicity. Mol Biol Cell 2011; 22:1971-84. [PMID: 21508314 PMCID: PMC3113764 DOI: 10.1091/mbc.e11-01-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyalanine expansions can result in aggregation and cause cytotoxicity. We have created the first yeast model of polyalanine-expansion aggregation and toxicity using the poly(Ade)-binding protein Pab1. Nine human disorders result from the toxic accumulation and aggregation of proteins with expansions in their endogenous polyalanine (polyA) tracts. Given the prevalence of polyA tracts in eukaryotic proteomes, we wanted to understand the generality of polyA-expansion cytotoxicity by using yeast as a model organism. In our initial case, we expanded the polyA tract within the native yeast poly(Adenine)-binding protein Pab1 from 8A to 13A, 15A, 17A, and 20A. These expansions resulted in increasing formation of Pab1 inclusions, insolubility, and cytotoxicity that correlated with the length of the polyA expansion. Pab1 binds mRNA as part of its normal function, and disrupting RNA binding or altering cytoplasmic mRNA levels suppressed the cytotoxicity of 17A-expanded Pab1, indicating a requisite role for mRNA in Pab1 polyA-expansion toxicity. Surprisingly, neither manipulation suppressed the cytotoxicity of 20A-expanded Pab1. Thus longer expansions may have a different mechanism for toxicity. We think that this difference underscores the potential need to examine the cytotoxic mechanisms of both long and short expansions in models of expansion disorders.
Collapse
|
40
|
Abstract
The budding yeast, Saccharomyces cerevisiae, is the best-studied eukaryotic cell, at both genetic and physiological levels. As a eukaryote, yeast shares highly conserved molecular and cellular mechanisms with human cells. Thus, this simple fungus is an invaluable model to study the fundamental molecular mechanisms involved in several human diseases. In the particular case of neurodegenerative disorders, yeast models have been able to recapitulate several important features of complex and devastating disorders, such as Huntington's and Parkinson's diseases. Once validated, these models have also been used to accelerate the identification of both novel therapeutic targets and compounds with therapeutic potential. Here, we review the recent contributions of this simple, but powerful model organism toward our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Sandra Tenreiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Lisboa, Portugal
| | | |
Collapse
|
41
|
Duennwald ML. Monitoring polyglutamine toxicity in yeast. Methods 2010; 53:232-7. [PMID: 21144902 DOI: 10.1016/j.ymeth.2010.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 11/26/2022] Open
Abstract
Experiments in yeast have significantly contributed to our understanding of general aspects of biochemistry, genetics, and cell biology. Yeast models have also delivered deep insights in to the molecular mechanism underpinning human diseases, including neurodegenerative diseases. Many neurodegenerative diseases are associated with the conversion of a protein from a normal and benign conformation into a disease-associated and toxic conformation - a process called protein misfolding. The misfolding of proteins with abnormally expanded polyglutamine (polyQ) regions causes several neurodegenerative diseases, such as Huntington's disease and the Spinocerebellar Ataxias. Yeast cells expressing polyQ expansion proteins recapitulate polyQ length-dependent aggregation and toxicity, which are hallmarks of all polyQ-expansion diseases. The identification of modifiers of polyQ toxicity in yeast revealed molecular mechanisms and cellular pathways that contribute to polyQ toxicity. Notably, several of these findings in yeast were reproduced in other model organisms and in human patients, indicating the validity of the yeast polyQ model. Here, we describe different expression systems for polyQ-expansion proteins in yeast and we outline experimental protocols to reliably and quantitatively monitor polyQ toxicity in yeast.
Collapse
Affiliation(s)
- Martin L Duennwald
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.
| |
Collapse
|
42
|
Legleiter J, Mitchell E, Lotz GP, Sapp E, Ng C, DiFiglia M, Thompson LM, Muchowski PJ. Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J Biol Chem 2010; 285:14777-90. [PMID: 20220138 PMCID: PMC2863238 DOI: 10.1074/jbc.m109.093708] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/03/2010] [Indexed: 11/06/2022] Open
Abstract
Huntington disease (HD) is caused by an expansion of more than 35-40 polyglutamine (polyQ) repeats in the huntingtin (htt) protein, resulting in accumulation of inclusion bodies containing fibrillar deposits of mutant htt fragments. Intriguingly, polyQ length is directly proportional to the propensity for htt to form fibrils and the severity of HD and is inversely correlated with age of onset. Although the structural basis for htt toxicity is unclear, the formation, abundance, and/or persistence of toxic conformers mediating neuronal dysfunction and degeneration in HD must also depend on polyQ length. Here we used atomic force microscopy to demonstrate mutant htt fragments and synthetic polyQ peptides form oligomers in a polyQ length-dependent manner. By time-lapse atomic force microscopy, oligomers form before fibrils, are transient in nature, and are occasionally direct precursors to fibrils. However, the vast majority of fibrils appear to form by monomer addition coinciding with the disappearance of oligomers. Thus, oligomers must undergo a major structural transition preceding fibril formation. In an immortalized striatal cell line and in brain homogenates from a mouse model of HD, a mutant htt fragment formed oligomers in a polyQ length-dependent manner that were similar in size to those formed in vitro, although these structures accumulated over time in vivo. Finally, using immunoelectron microscopy, we detected oligomeric-like structures in human HD brains. These results demonstrate that oligomer formation by a mutant htt fragment is strongly polyQ length-dependent in vitro and in vivo, consistent with a causative role for these structures, or subsets of these structures, in HD pathogenesis.
Collapse
Affiliation(s)
- Justin Legleiter
- From the Gladstone Institute of Neurological Disease and
- Departments of Neurology and
| | - Emily Mitchell
- Departments of Psychiatry and Human Behavior
- Neurobiology and Behavior, and
- Biological Chemistry, University of California, Irvine, California 92697, and
| | - Gregor P. Lotz
- From the Gladstone Institute of Neurological Disease and
- Departments of Neurology and
| | - Ellen Sapp
- the Laboratory of Cellular Neurobiology, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02114
| | - Cheping Ng
- From the Gladstone Institute of Neurological Disease and
| | - Marian DiFiglia
- the Laboratory of Cellular Neurobiology, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02114
| | - Leslie M. Thompson
- Departments of Psychiatry and Human Behavior
- Neurobiology and Behavior, and
- Biological Chemistry, University of California, Irvine, California 92697, and
| | - Paul J. Muchowski
- From the Gladstone Institute of Neurological Disease and
- Departments of Neurology and
- Biochemistry and Biophysics, University of California, San Francisco, California 94158
- the Taube-Koret Center for Huntington's Disease Research and
| |
Collapse
|
43
|
Mathur V, Taneja V, Sun Y, Liebman SW. Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast. Mol Biol Cell 2010; 21:1449-61. [PMID: 20219972 PMCID: PMC2861605 DOI: 10.1091/mbc.e09-11-0927] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Various proteins, like the infectious yeast prions and the noninfectious human Huntingtin protein (with expanded polyQ), depend on a Gln or Asn (QN)-rich region for amyloid formation. Other prions, e.g., mammalian PrP and the [Het-s] prion of Podospora anserina, although still able to form infectious amyloid aggregates, do not have QN-rich regions. Furthermore, [Het-s] and yeast prions appear to differ dramatically in their amyloid conformation. Despite these differences, a fusion of the Het-s prion domain to GFP (Het-sPrD-GFP) can propagate in yeast as a prion called [Het-s](y). We analyzed the properties of two divergent prions in yeast: [Het-s](y) and the native yeast prion [PSI(+)] (prion form of translational termination factor Sup35). Curiously, the induced appearance and transmission of [PSI(+)] and [Het-s](y) aggregates is remarkably similar. Overexpression of tagged prion protein (Sup35-GFP or Het-sPrD-GFP) in nonprion cells gives rise to peripheral, and later internal, ring/mesh-like aggregates. The cells with these ring-like aggregates give rise to daughters with one (perivacuolar) or two (perivacuolar and juxtanuclear) dot-like aggregates per cell. These line, ring, mesh, and dot aggregates are not really the transmissible prion species and should only be regarded as phenotypic markers of the presence of the prions. Both [PSI(+)] and [Het-s](y) first appear in daughters as numerous tiny dot-like aggregates, and both require the endocytic protein, Sla2, for ring formation, but not propagation.
Collapse
Affiliation(s)
- Vidhu Mathur
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
44
|
F-actin binding regions on the androgen receptor and huntingtin increase aggregation and alter aggregate characteristics. PLoS One 2010; 5:e9053. [PMID: 20140226 PMCID: PMC2816219 DOI: 10.1371/journal.pone.0009053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/30/2009] [Indexed: 11/19/2022] Open
Abstract
Protein aggregation is associated with neurodegeneration. Polyglutamine expansion diseases such as spinobulbar muscular atrophy and Huntington disease feature proteins that are destabilized by an expanded polyglutamine tract in their N-termini. It has previously been reported that intracellular aggregation of these target proteins, the androgen receptor (AR) and huntingtin (Htt), is modulated by actin-regulatory pathways. Sequences that flank the polyglutamine tract of AR and Htt might influence protein aggregation and toxicity through protein-protein interactions, but this has not been studied in detail. Here we have evaluated an N-terminal 127 amino acid fragment of AR and Htt exon 1. The first 50 amino acids of ARN127 and the first 14 amino acids of Htt exon 1 mediate binding to filamentous actin in vitro. Deletion of these actin-binding regions renders the polyglutamine-expanded forms of ARN127 and Htt exon 1 less aggregation-prone, and increases the SDS-solubility of aggregates that do form. These regions thus appear to alter the aggregation frequency and type of polyglutamine-induced aggregation. These findings highlight the importance of flanking sequences in determining the propensity of unstable proteins to misfold.
Collapse
|
45
|
Distinct type of transmission barrier revealed by study of multiple prion determinants of Rnq1. PLoS Genet 2010; 6:e1000824. [PMID: 20107602 PMCID: PMC2809767 DOI: 10.1371/journal.pgen.1000824] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 12/21/2009] [Indexed: 11/23/2022] Open
Abstract
Prions are self-propagating protein conformations. Transmission of the prion state between non-identical proteins, e.g. between homologous proteins from different species, is frequently inefficient. Transmission barriers are attributed to sequence differences in prion proteins, but their underlying mechanisms are not clear. Here we use a yeast Rnq1/[PIN+]-based experimental system to explore the nature of transmission barriers. [PIN+], the prion form of Rnq1, is common in wild and laboratory yeast strains, where it facilitates the appearance of other prions. Rnq1's prion domain carries four discrete QN-rich regions. We start by showing that Rnq1 encompasses multiple prion determinants that can independently drive amyloid formation in vitro and transmit the [PIN+] prion state in vivo. Subsequent analysis of [PIN+] transmission between Rnq1 fragments with different sets of prion determinants established that (i) one common QN-rich region is required and usually sufficient for the transmission; (ii) despite identical sequences of the common QNs, such transmissions are impeded by barriers of different strength. Existence of transmission barriers in the absence of amino acid mismatches in transmitting regions indicates that in complex prion domains multiple prion determinants act cooperatively to attain the final prion conformation, and reveals transmission barriers determined by this cooperative fold. Prions, self-propagating protein conformations and causative agents of lethal neurodegenerative diseases, present a serious public health threat: they can arise sporadically and then spread by transmission to the same, as well as other, species. The risk of infecting humans with prions originating in wild and domestic animals is determined by the so-called transmission barriers. These barriers are attributed to differences in prion proteins from different species, but their underlying mechanisms are not clear. Recent findings that the prion state is transmitted through the interaction between short transmitting regions within prion domains revealed one type of transmission barrier, where productive templating is impeded by non-matching amino acids within transmitting regions. Here we present studies of the prion domain of the [PIN+]-forming protein, Rnq1, and describe a distinct type of transmission barrier not involving individual amino acid mismatches in the transmitting regions. Rnq1's prion domain is complex and encompasses four regions that can independently transmit the prion state. Our data suggest that multiple prion determinants of a complex prion domain act cooperatively to attain the prion conformation, and transmission barriers occur between protein variants that cannot form the same higher order structure, despite the identity of the region(s) driving the transmission.
Collapse
|
46
|
Giorgini F, Muchowski PJ. Exploiting yeast genetics to inform therapeutic strategies for Huntington's disease. Methods Mol Biol 2009; 548:161-74. [PMID: 19521824 DOI: 10.1007/978-1-59745-540-4_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that is inherited in an autosomal dominant fashion and is caused by a polyglutamine expansion in the protein huntingtin (htt). In recent years, modeling of various aspects of HD in the yeast Saccharomyces cerevisiae has provided insight into the conserved mechanisms of mutant htt toxicity in eukaryotic cells. The high degree of conservation of cellular and molecular processes between yeast and mammalian cells have made it a valuable system for studying basic mechanisms underlying human disease. Yeast models of HD recapitulate conserved disease-relevant phenotypes and can be used for drug discovery efforts as well as to gain mechanistic and genetic insights into candidate drugs. Here we provide a detailed overview of yeast models of mutant htt misfolding and toxicity and the molecular and phenotypic characterization of these models. We also review how these models identified novel therapeutic targets and compounds for HD and discuss the benefits and limitations of this model genetic system. Finally, we discuss how yeast may be used to provide further insight into the molecular and cellular mechanisms underlying HD and treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Flaviano Giorgini
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
47
|
Holland SL, Avery SV. Actin-mediated endocytosis limits intracellular Cr accumulation and Cr toxicity during chromate stress. Toxicol Sci 2009; 111:437-46. [PMID: 19628586 DOI: 10.1093/toxsci/kfp170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chromate toxicity is well documented, but the underlying toxic mechanism(s) has yet to be fully elucidated. Following a Cr toxicity screen against > 6000 heterozygous yeast mutants, here we show that Cr resistance requires normal function of the cortical actin cytoskeleton. Furthermore, Cr-stressed yeast cells exhibited an increased number of actin patches, the sites of endocytosis. This was coincident with a marked stimulation of endocytosis following Cr exposure. Genetic dissection of actin nucleation from endocytosis revealed that endocytosis, specifically, was required for Cr resistance. A series of further endocytosis mutants (sac6Delta, chc1Delta, end3Delta) exhibited elevated Cr sensitivity. These mutants also showed markedly elevated cellular Cr accumulation, explaining their sensitivities. In wild-type cells, an initial endocytosis-independent phase of Cr uptake was followed by an endocytosis-dependent decline in Cr accumulation. The results indicate that actin-mediated endocytosis is required to limit Cr accumulation and toxicity. It is proposed that this involves ubiquitin-dependent endocytic inactivation of a plasma membrane Cr transporter(s). We showed that such an action was not dependent on the transporters that have been characterized to date, the sulfate (and chromate) permeases Sul1p and Sul2p.
Collapse
Affiliation(s)
- Sara L Holland
- School of Biology, Institute of Genetics, The University of Nottingham, University Park, Nottingham, UK
| | | |
Collapse
|
48
|
Wang Y, Meriin AB, Zaarur N, Romanova NV, Chernoff YO, Costello CE, Sherman MY. Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB J 2008; 23:451-63. [PMID: 18854435 DOI: 10.1096/fj.08-117614] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammalian cells, abnormal proteins that escape proteasome-dependent degradation form small aggregates that can be transported into a centrosome-associated structure, called an aggresome. Here we demonstrate that in yeast a single aggregate formed by the huntingtin exon 1 with an expanded polyglutamine domain (103QP) represents a bona fide aggresome that colocalizes with the spindle pole body (the yeast centrosome) in a microtubule-dependent fashion. Since a polypeptide lacking the proline-rich region (P-region) of huntingtin (103Q) cannot form aggresomes, this domain serves as an aggresome-targeting signal. Coexpression of 103Q with 25QP, a soluble polypeptide that also carries the P-region, led to the recruitment of 103Q to the aggresome via formation of hetero-oligomers, indicating the aggresome targeting in trans. To identify additional factors involved in aggresome formation and targeting, we purified 103QP aggresomes and 103Q aggregates and identified the associated proteins using mass spectrometry. Among the aggresome-associated proteins we identified, Cdc48 (VCP/p97) and its cofactors, Ufd1 and Nlp4, were shown genetically to be essential for aggresome formation. The 14-3-3 protein, Bmh1, was also found to be critical for aggresome targeting. Its interaction with the huntingtin fragment and its role in aggresome formation required the huntingtin N-terminal N17 domain, adjacent to the polyQ domain. Accordingly, the huntingtin N17 domain, along with the P-region, plays a role in aggresome targeting. We also present direct genetic evidence for the protective role of aggresomes by demonstrating genetically that aggresome targeting of polyglutamine polypeptides relieves their toxicity.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Curing of the [URE3] prion by Btn2p, a Batten disease-related protein. EMBO J 2008; 27:2725-35. [PMID: 18833194 DOI: 10.1038/emboj.2008.198] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 09/09/2008] [Indexed: 11/09/2022] Open
Abstract
[URE3] is a prion (infectious protein), a self-propagating amyloid form of Ure2p, a regulator of yeast nitrogen catabolism. We find that overproduction of Btn2p, or its homologue Ypr158 (Cur1p), cures [URE3]. Btn2p is reported to be associated with late endosomes and to affect sorting of several proteins. We find that double deletion of BTN2 and CUR1 stabilizes [URE3] against curing by several agents, produces a remarkable increase in the proportion of strong [URE3] variants arising de novo and an increase in the number of [URE3] prion seeds. Thus, normal levels of Btn2p and Cur1p affect prion generation and propagation. Btn2p-green fluorescent protein (GFP) fusion proteins appear as a single dot located close to the nucleus and the vacuole. During the curing process, those cells having both Ure2p-GFP aggregates and Btn2p-RFP dots display striking colocalization. Btn2p curing requires cell division, and our results suggest that Btn2p is part of a system, reminiscent of the mammalian aggresome, that collects aggregates preventing their efficient distribution to progeny cells.
Collapse
|
50
|
Winderickx J, Delay C, De Vos A, Klinger H, Pellens K, Vanhelmont T, Van Leuven F, Zabrocki P. Protein folding diseases and neurodegeneration: Lessons learned from yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1381-95. [DOI: 10.1016/j.bbamcr.2008.01.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 12/29/2022]
|