1
|
Danoff JS, Page EA, Perkeybile AM, Kenkel WM, Yee JR, Ferris CF, Carter CS, Connelly JJ. Transcriptional diversity of the oxytocin receptor in prairie voles: mechanistic implications for behavioral neuroscience and maternal physiology. Front Genet 2023; 14:1225197. [PMID: 37705612 PMCID: PMC10495980 DOI: 10.3389/fgene.2023.1225197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
The neurohormone oxytocin regulates many aspects of physiology primarily by binding to its receptor, the oxytocin receptor. The oxytocin receptor gene (Oxtr) has been shown to have alternative transcripts in the mouse brain which may each have different biological functions or be used in specific contexts. A popular animal model for studying oxytocin-dependent social behaviors is the prairie vole, a biparental and monogamous rodent. Alternative transcriptional capacity of Oxtr in prairie voles is unknown. We used 5' rapid amplification of cDNA ends to identify alternative Oxtr transcription start sites in prairie vole brain tissue and uterine tissue. We then validated expression of specific transcripts in fetal brains and assessed the impact of exogenous oxytocin administration in utero on offspring brain development. We identified seven distinct Oxtr transcripts, all of which are present in both brain and uterine tissue. We then demonstrated that maternal oxytocin administration alters expression of a specific subset of Oxtr transcripts and that these different transcripts are under unique epigenetic regulation, such that in the perinatal period only one of the alternative transcripts is associated with DNA methylation in the Oxtr promoter. These data establish the existence of multiple Oxtr transcripts in prairie vole brain and uterine tissue and implicate oxytocin in the regulation of alternative transcript expression. These data have significant implications for our understanding of null mutant models in both mice and voles and translation in human birth and behavior.
Collapse
Affiliation(s)
- Joshua S. Danoff
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Emma A. Page
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Allison M. Perkeybile
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - William M. Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Jason R. Yee
- Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, WIE, Austria
| | - Craig F. Ferris
- Department of Psychology, Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - C. Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Jessica J. Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
2
|
A 2A adenosine receptor activation prevents neutrophil aging and promotes polarization from N1 towards N2 phenotype. Purinergic Signal 2022; 18:345-358. [PMID: 35838900 PMCID: PMC9391554 DOI: 10.1007/s11302-022-09884-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/02/2022] [Indexed: 01/17/2023] Open
Abstract
Extracellular adenosine is a biologically active signaling molecule that accumulates at sites of metabolic stress in sepsis. Extracellular adenosine has potent immunosuppressive effects by binding to and activating G protein-coupled A2A adenosine receptors (A2AARs) on the surface of neutrophils. A2AAR signaling reproduces many of the phenotypic changes in neutrophils that are characteristic of sepsis, including decreased degranulation, impaired chemotaxis, and diminished ability to ingest and kill bacteria. We hypothesized that A2AARs also suppress neutrophil aging, which precedes cell death, and N1 to N2 polarization. Using human neutrophils isolated from healthy subjects, we demonstrate that A2AAR stimulation slows neutrophil aging, suppresses cell death, and promotes the polarization of neutrophils from an N1 to N2 phenotype. Using genetic knockout and pharmacological blockade, we confirmed that A2AARs decrease neutrophil aging in murine sepsis induced by cecal ligation and puncture. A2AARs expression is increased in neutrophils from septic patients compared to healthy subject but A2AAR expression fails to correlate with aging or N1/N2 polarization. Our data reveals that A2AARs regulate neutrophil aging in healthy but not septic neutrophils.
Collapse
|
3
|
Moreira-de-Sá A, Lourenço VS, Canas PM, Cunha RA. Adenosine A 2A Receptors as Biomarkers of Brain Diseases. Front Neurosci 2021; 15:702581. [PMID: 34335174 PMCID: PMC8322233 DOI: 10.3389/fnins.2021.702581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular adenosine is produced with increased metabolic activity or stress, acting as a paracrine signal of cellular effort. Adenosine receptors are most abundant in the brain, where adenosine acts through inhibitory A1 receptors to decrease activity/noise and through facilitatory A2A receptors (A2AR) to promote plastic changes in physiological conditions. By bolstering glutamate excitotoxicity and neuroinflammation, A2AR also contribute to synaptic and neuronal damage, as heralded by the neuroprotection afforded by the genetic or pharmacological blockade of A2AR in animal models of ischemia, traumatic brain injury, convulsions/epilepsy, repeated stress or Alzheimer's or Parkinson's diseases. A2AR overfunction is not only necessary for the expression of brain damage but is actually sufficient to trigger brain dysfunction in the absence of brain insults or other disease triggers. Furthermore, A2AR overfunction seems to be an early event in the demise of brain diseases, which involves an increased formation of ATP-derived adenosine and an up-regulation of A2AR. This prompts the novel hypothesis that the evaluation of A2AR density in afflicted brain circuits may become an important biomarker of susceptibility and evolution of brain diseases once faithful PET ligands are optimized. Additional relevant biomarkers would be measuring the extracellular ATP and/or adenosine levels with selective dyes, to identify stressed regions in the brain. A2AR display several polymorphisms in humans and preliminary studies have associated different A2AR polymorphisms with altered morphofunctional brain endpoints associated with neuropsychiatric diseases. This further prompts the interest in exploiting A2AR polymorphic analysis as an ancillary biomarker of susceptibility/evolution of brain diseases.
Collapse
Affiliation(s)
- Ana Moreira-de-Sá
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Vanessa S Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Atif M, Alsrhani A, Naz F, Imran M, Imran M, Ullah MI, Alameen AAM, Gondal TA, Raza Q. Targeting Adenosine Receptors in Neurological Diseases. Cell Reprogram 2021; 23:57-72. [PMID: 33861641 DOI: 10.1089/cell.2020.0087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine plays a significant role in neurotransmission process by controlling the blood pressure, while adenosine triphosphate (ATP) acts as a neuromodulator and neurotransmitter and by activation of P2 receptors, regulates the contractility of the heart. Adenosine signaling is essential in the process of regeneration by regulating proliferation, differentiation, and apoptosis of stem cells. In this review, we have selected neurological disorders (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy) with clinical trials using antagonists and epigenetic tools targeting adenosine receptor as a therapeutic approach in the treatment of these disorders. Promising results have been reported from many clinical trials. It has been found that higher expression levels of A2A and P2X7 receptors in neurological disorders further complicate the disease condition. Therefore, modulations of these receptors by using antagonists of these receptors or SAM (S-adenosylmethionine) therapy as an epigenetic tool could be useful in reversing the complications of these disorders. Finally, we suggest that modulation of adenosine receptors in neurological disorders can increase the regenerative phase by increasing the rate of proliferation and differentiation in the damaged tissues.
Collapse
Affiliation(s)
- Muhmmad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Farrah Naz
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ayman A M Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Victoria, Australia
| | - Qaisar Raza
- Department of Clinical Nutrition, NUR International University, Lahore, Pakistan
| |
Collapse
|
5
|
Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020; 16:509-524. [PMID: 32641760 DOI: 10.1038/s41581-020-0304-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.
Collapse
|
6
|
Erblang M, Drogou C, Gomez-Merino D, Metlaine A, Boland A, Deleuze JF, Thomas C, Sauvet F, Chennaoui M. The Impact of Genetic Variations in ADORA2A in the Association between Caffeine Consumption and Sleep. Genes (Basel) 2019; 10:E1021. [PMID: 31817803 PMCID: PMC6947650 DOI: 10.3390/genes10121021] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
ADORA2A has been shown to be responsible for the wakefulness-promoting effect of caffeine and the 1976T>C genotype (SNP rs5751876, formerly 1083T>C) to contribute to individual sensitivity to caffeine effects on sleep. We investigate the association between six single nucleotide polymorphisms (SNP) from ADORA2A and self-reported sleep characteristics and caffeine consumption in 1023 active workers of European ancestry aged 18-60 years. Three groups of caffeine consumers were delineated: low (0-50 mg/day, less than one expresso per day), moderate (51-300 mg/day), and high (>300 mg/day). We found that at caffeine levels higher than 300 mg/day, total sleep time (TST) decreased (F = 13.9, p < 0.01), with an increase of insomnia (ORa [95%CI] = 1.5 [1.1-1.9]) and sleep complaints (ORa [95%CI] = 1.9 [1.1-3.3]), whatever the ADORA2A polymorphism. Odds ratios were adjusted (ORa) for sex, age, and tobacco. However, in low caffeine consumers, lower TST was observed in the T allele compared to homozygote rs5751876 and rs3761422 C carriers. Conversely, higher TST was observed in rs2298383 T allele compared to C and in rs4822492G allele compared to the homozygote C (p < 0.05). These 4 SNPs are in strong linkage disequilibrium. Haplotype analysis confirmed the influence of multiple ADORA2a SNPs on TST. In addition, the rs2298383 T and rs4822492 G alleles were associated with higher risk of sleep complaints (Ora = 1.9 [1.2-3.1] and Ora = 1.5 [1.1-2.1]) and insomnia (Ora = 1.5 [1.3-2.5] and Ora = 1.9 [1.3-3.2). The rs5751876 T allele was associated with a decreased risk of sleep complaints (Ora = 0.7 [0.3-0.9]) and insomnia (Ora = 0.5 [0.3-0.9]). Our results identified ADORA2A polymorphism influences in the less-than-300-mg-per-day caffeine consumers. This opens perspectives on the diagnosis and pharmacology of sleep complaints and caffeine chronic consumption.
Collapse
Affiliation(s)
- Mégane Erblang
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| | - Catherine Drogou
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| | - Danielle Gomez-Merino
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| | - Arnaud Metlaine
- EA 7330 VIFASOM, Université de Paris, APHP, Hôtel Dieu, Centre du Sommeil et de la Vigilance, 75004 Paris, France;
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France; (A.B.)
| | - Jean François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France; (A.B.)
| | - Claire Thomas
- Unité de Biologie Intégrative des Adaptations à l’Exercice, Université Evry, Université, Paris-Saclay, 91025 Evry, France;
| | - Fabien Sauvet
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| | - Mounir Chennaoui
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| |
Collapse
|
7
|
Micioni Di Bonaventura MV, Pucci M, Giusepponi ME, Romano A, Lambertucci C, Volpini R, Micioni Di Bonaventura E, Gaetani S, Maccarrone M, D'Addario C, Cifani C. Regulation of adenosine A 2A receptor gene expression in a model of binge eating in the amygdaloid complex of female rats. J Psychopharmacol 2019; 33:1550-1561. [PMID: 31161847 DOI: 10.1177/0269881119845798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited. METHODS AND AIMS Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2A Adenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes. RESULTS Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94. CONCLUSION We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.
Collapse
Affiliation(s)
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Adele Romano
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
| | - Mauro Maccarrone
- Campus Bio-Medico, University of Rome, Rome, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
8
|
Temido-Ferreira M, Coelho JE, Pousinha PA, Lopes LV. Novel Players in the Aging Synapse: Impact on Cognition. J Caffeine Adenosine Res 2019; 9:104-127. [PMID: 31559391 PMCID: PMC6761599 DOI: 10.1089/caff.2019.0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While neuronal loss has long been considered as the main contributor to age-related cognitive decline, these alterations are currently attributed to gradual synaptic dysfunction driven by calcium dyshomeostasis and alterations in ionotropic/metabotropic receptors. Given the key role of the hippocampus in encoding, storage, and retrieval of memory, the morpho- and electrophysiological alterations that occur in the major synapse of this network-the glutamatergic-deserve special attention. We guide you through the hippocampal anatomy, circuitry, and function in physiological context and focus on alterations in neuronal morphology, calcium dynamics, and plasticity induced by aging and Alzheimer's disease (AD). We provide state-of-the art knowledge on glutamatergic transmission and discuss implications of these novel players for intervention. A link between regular consumption of caffeine-an adenosine receptor blocker-to decreased risk of AD in humans is well established, while the mechanisms responsible have only now been uncovered. We review compelling evidence from humans and animal models that implicate adenosine A2A receptors (A2AR) upsurge as a crucial mediator of age-related synaptic dysfunction. The relevance of this mechanism in patients was very recently demonstrated in the form of a significant association of the A2AR-encoding gene with hippocampal volume (synaptic loss) in mild cognitive impairment and AD. Novel pathways implicate A2AR in the control of mGluR5-dependent NMDAR activation and subsequent Ca2+ dysfunction upon aging. The nature of this receptor makes it particularly suited for long-term therapies, as an alternative for regulating aberrant mGluR5/NMDAR signaling in aging and disease, without disrupting their crucial constitutive activity.
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana E. Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A. Pousinha
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne, France
| | - Luísa V. Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Huin V, Dhaenens CM, Homa M, Carvalho K, Buée L, Sablonnière B. Neurogenetics of the Human Adenosine Receptor Genes: Genetic Structures and Involvement in Brain Diseases. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Vincent Huin
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| | - Claire-Marie Dhaenens
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| | - Mégane Homa
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Kévin Carvalho
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Luc Buée
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Bernard Sablonnière
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| |
Collapse
|
10
|
Vuerich M, Harshe RP, Robson SC, Longhi MS. Dysregulation of Adenosinergic Signaling in Systemic and Organ-Specific Autoimmunity. Int J Mol Sci 2019; 20:ijms20030528. [PMID: 30691212 PMCID: PMC6386992 DOI: 10.3390/ijms20030528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Exact causes for autoimmune diseases remain unclear and no cures are available. Breakdown of immunotolerance could set the stage for unfettered immune responses that target self-antigens. Impaired regulatory immune mechanisms could have permissive roles in autoreactivity. Abnormal regulatory immune cell function, therefore, might be a major determinant of the pathogenesis of autoimmune disease. All current treatments are associated with some level of clinical toxicity. Treatment to specifically target dysregulated immunity in these diseases would be a great advance. Extracellular adenosine is a signaling mediator that suppresses inflammation through activation of P1 receptors, most active under pathological conditions. Mounting evidence has linked alterations in the generation of adenosine from extracellular nucleotides by ectonucleotidases, and associated perturbations in purinergic signaling, to the immunological disruption and loss of immunotolerance in autoimmunity. Targeted modulation of the purinergic signaling by either targeting ectonucleotidases or modulating P1 purinergic receptors could therefore restore the balance between autoreactive immune responses; and thereby allow reestablishment of immunotolerance. We review the roles of CD39 and CD73 ectoenzymes in inflammatory states and with the dysregulation of P1 receptor signaling in systemic and organ-specific autoimmunity. Correction of such perturbations could be exploited in potential therapeutic applications.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Rasika P Harshe
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Cabiati M, Svezia B, Matteucci M, Panchetti L, Burchielli S, Morales MA, Del Ry S. New cardiac expression of two adenosine-2A receptor isoforms in dysfunctioning minipigs. J Recept Signal Transduct Res 2017; 37:379-385. [PMID: 28554302 DOI: 10.1080/10799893.2017.1286677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Eight A2AR variants are reported in humans while no A2AR isoforms in pigs. The aim of this study was to evaluate potential isoforms presence in cardiac pig tissue to better define possible involvement of A2AR in the cardiovascular pathophysiology. MATERIALS AND METHODS In adult male minipigs (n = 4) left ventricular dysfunction (LVD) was induced by pacing at 200 bpm in the right ventricular (RV) apex. In these animals and in sham operated pigs (C-SHAM, n = 4) cardiac tissue was collected from LV-septal wall (LV-SW)-close to pacing site-and from lateral (opposite) site (LV-OSW). A2AR specific primers, derived from Sus scrofa AY772412 sequence, were used for Real-Time PCR. The DNA was sequenced using the Sanger method. Histological analysis was also performed. RESULTS In LV-SW of LVD minipigs the A2AR melting curves were characterized by a sharp peak between 87 and 91 °C (short isoform, 1-94 bp) on the right of the principal peak corresponding to a long A2AR isoform (GenBank: JQ229674.1) 1-213 bp. As for C-SHAM only one peak was observed in LV-OSW region of LVD animals. The short isoform had an alternative promoter region and a specific translated protein. Histology showed in LVD-LV-SW prominent Purkinje cells compared to LV-OSW and C-SHAM. No difference in A2AR expression was observed between LVD animals and C-SHAM although a slight decrease was observed in LVD-LV-OSW. CONCLUSIONS The presence of two different isoforms in the myocardium close to the insertion of pacing is suggestive of a differential state-specific expression of A2AR in cardiac tissue.
Collapse
Affiliation(s)
- Manuela Cabiati
- a CNR Institute of Clinical Physiology, Laboratory of Clinical Biochemistry and Molecular Biology , Pisa , Italy
| | - Benedetta Svezia
- b Scuola Superiore Sant'Anna , Institute of Life Sciences , Pisa , Italy
| | - Marco Matteucci
- b Scuola Superiore Sant'Anna , Institute of Life Sciences , Pisa , Italy
| | - Luca Panchetti
- c Fondazione Toscana G. Monasterio CNR-Regione Toscana , Pisa , Italy
| | - Silvia Burchielli
- c Fondazione Toscana G. Monasterio CNR-Regione Toscana , Pisa , Italy
| | - Maria-Aurora Morales
- a CNR Institute of Clinical Physiology, Laboratory of Clinical Biochemistry and Molecular Biology , Pisa , Italy
| | - Silvia Del Ry
- a CNR Institute of Clinical Physiology, Laboratory of Clinical Biochemistry and Molecular Biology , Pisa , Italy
| |
Collapse
|
12
|
Takenaka MC, Robson S, Quintana FJ. Regulation of the T Cell Response by CD39. Trends Immunol 2016; 37:427-439. [PMID: 27236363 DOI: 10.1016/j.it.2016.04.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
The ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) catalyzes the phosphohydrolysis of extracellular ATP (eATP) and ADP (eADP) released under conditions of inflammatory stress and cell injury. CD39 generates AMP, which is in turn used by the ecto-5'-nucleotidase CD73 to synthesize adenosine. These ectonucleotidases have a major impact on the dynamic equilibrium of proinflammatory eATP and ADP nucleotides versus immunosuppressive adenosine nucleosides. Indeed, CD39 plays a dominant role in the purinergic regulation of inflammation and the immune response because its expression is influenced by genetic and environmental factors. We review the specific role of CD39 in the kinetic regulation of cellular immune responses in the evolution of disease. We focus on the effects of CD39 on T cells and explore potential clinical applications in autoimmunity, chronic infections, and cancer.
Collapse
Affiliation(s)
- Maisa C Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Robson
- Divisions of Gastroenterology, Hepatology, and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension. PLoS One 2016; 11:e0150021. [PMID: 26907173 PMCID: PMC4764345 DOI: 10.1371/journal.pone.0150021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/08/2016] [Indexed: 12/02/2022] Open
Abstract
Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists.
Collapse
|
14
|
Dewing AS, Rueli RH, Robles MJ, Nguyen-Wu ED, Zeyda T, Berry MJ, Bellinger FP. Expression and regulation of mouse selenoprotein P transcript variants differing in non-coding RNA. RNA Biol 2012; 9:1361-9. [PMID: 23064117 PMCID: PMC3597576 DOI: 10.4161/rna.22290] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Selenoprotein P (Sepp1), a glycoprotein rich in selenium, is thought to function in selenium transport throughout the body. The sepp1 gene locus potentially produces three alternative transcripts that differ only in their 5' untranslated regions (5'UTRs) and not in their protein coding regions, as indicated by transcript information in genomic databases. Here we investigated the distribution, relative expression, and biological significance of these transcript variants. We confirmed the expression of Sepp1 transcript variants using PCR and sequencing. Using 5'-RACE, we identified multiple 5'-termini upstream from three different splice donor sites, and a single splice acceptor site for exon 2. We found regional and temporal changes in variant expression in select adult and neonate murine tissue and brain regions. Distribution of variants in heart and kidney varied with stage of development. Notably, the Sepp1b variant was localized specifically to the hippocampus in brain. Targeted silencing of individual variants using RNAi demonstrated the biological importance for all transcript variants in cell viability. Additionally, we determined that the Sepp1b variant is a specific target for the miR-7 microRNA by means of its unique 5'UTR structure. Our results emphasize the importance of non-coding transcript variations as a regulatory means for Sepp1 expression in different tissues and stages of development. The presence of a variant localized in the hippocampus and regulated by a microRNA may have implications for the known deficits in synaptic function caused by genetic deletion of Sepp1.
Collapse
Affiliation(s)
- Andrea S.T. Dewing
- Department of Cell and Molecular Biology; John A. Burns School of Medicine; University of Hawai’I; Honolulu, HI USA
| | - Rachel H. Rueli
- Department of Cell and Molecular Biology; John A. Burns School of Medicine; University of Hawai’I; Honolulu, HI USA
| | - Michael J. Robles
- Department of Cell and Molecular Biology; John A. Burns School of Medicine; University of Hawai’I; Honolulu, HI USA
| | - Elizabeth D. Nguyen-Wu
- Department of Cell and Molecular Biology; John A. Burns School of Medicine; University of Hawai’I; Honolulu, HI USA
| | - Thomas Zeyda
- InGenious Targeting Laboratory; Ronkonkoma, NY USA
| | - Marla J. Berry
- Department of Cell and Molecular Biology; John A. Burns School of Medicine; University of Hawai’I; Honolulu, HI USA
| | - Frederick P. Bellinger
- Department of Cell and Molecular Biology; John A. Burns School of Medicine; University of Hawai’I; Honolulu, HI USA
| |
Collapse
|
15
|
Adenosine A2A receptor upregulation in human PMNs is controlled by miRNA-214, miRNA-15, and miRNA-16. Shock 2012; 37:156-63. [PMID: 22249219 DOI: 10.1097/shk.0b013e31823f16bc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Immunosuppressive signaling via the adenosine A2A receptor (A2AR) is an important pathway to control inflammation. In immune cells, expression levels of A2ARs influence responsiveness to inflammatory stimuli. However, mechanisms driving expressional changes of A2ARs are still largely elusive. In the current study, we have investigated the impact of microRNAs (miRNAs) on A2AR expression in human polymorphonuclear leukocytes (PMNs) and T cells. Bioinformatic analyses and reporter gene assays revealed that A2AR expression is controlled by miRNA-214, miRNA-15, and miRNA-16. We detected all three miRNAs in both human PMNs and T cells. However, in PMNs, up to 10-fold higher levels of miRNA-16 and miRNA-214 were detected as compared with T cells. Upon in vitro stimulation, no significant expressional changes occurred. Expression levels of all three miRNAs strongly differed between individuals. A2AR expression also exhibited significant differences between PMNs and T cells: In PMNs, more than a 60-fold increase was seen upon LPS stimulation, whereas in T cells only a 2-fold increase was observed upon anti-CD3/CD28 activation. The extent of A2AR upregulation in PMNs strongly differed between individuals (from less than 10-fold to more than 100-fold). In PMNs, the increase in A2AR mRNA expression upon stimulation was inversely correlated with the expression levels of miRNA-214, miRNA-15, and miRNA-16 (R = -0.87, P < 0.0001); no correlation was found in human T cells. These results indicate that individual miRNA profiles gain important influence on A2AR expression regulation in PMNs upon stimulation. Determination of miRNA expression levels may help to identify patients with an increased risk for severe inflammation.
Collapse
|
16
|
Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils. BMC Res Notes 2011; 4:427. [PMID: 22011438 PMCID: PMC3229292 DOI: 10.1186/1756-0500-4-427] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The choice of reliable reference genes is a prerequisite for valid results when analyzing gene expression with real-time quantitative PCR (qPCR). This method is frequently applied to study gene expression patterns in immune cells, yet a thorough validation of potential reference genes is still lacking for most leukocyte subtypes and most models of their in vitro stimulation. In the current study, we evaluated the expression stability of common reference genes in two widely used cell culture models-anti-CD3/CD28 activated T cells and lipopolysaccharide stimulated neutrophils-as well as in unselected untreated leukocytes. RESULTS The mRNA expression of 17 (T cells), 7 (neutrophils) or 8 (unselected leukocytes) potential reference genes was quantified by reverse transcription qPCR, and a ranking of the preselected candidate genes according to their expression stability was calculated using the programs NormFinder, geNorm and BestKeeper. IPO8, RPL13A, TBP and SDHA were identified as suitable reference genes in T cells. TBP, ACTB and SDHA were stably expressed in neutrophils. TBP and SDHA were also the most stable genes in untreated total blood leukocytes. The critical impact of reference gene selection on the estimated target gene expression is demonstrated for IL-2 and FIH expression in T cells. CONCLUSIONS The study provides a shortlist of suitable reference genes for normalization of gene expression data in unstimulated and stimulated T cells, unstimulated and stimulated neutrophils and in unselected leukocytes.
Collapse
|
17
|
Brown ST, Reyes EP, Nurse CA. Chronic hypoxia upregulates adenosine 2a receptor expression in chromaffin cells via hypoxia inducible factor-2α: role in modulating secretion. Biochem Biophys Res Commun 2011; 412:466-72. [PMID: 21840298 DOI: 10.1016/j.bbrc.2011.07.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Catecholamine (CAT) release from chromaffin tissue plays an essential role in the fetus which develops in a low O₂ environment (hypoxia). To address molecular mechanisms regulating CAT secretion in low O₂, we exposed a fetal chromaffin-derived cell line (MAH cells) to chronic hypoxia (CHox; 2% O₂, 24h) and assessed gene expression using microarrays, quantitative RT-PCR, and western blot. CHox caused a dramatic ∼12× upregulation of adenosine A2a receptor (A2aR) mRNA, an effect critically dependent upon hypoxia-inducible factor (HIF)-2α which bound the promoter of the A2aR gene. In amperometric studies, acute hypoxia and high K⁺ (30 mM) evoked quantal CAT secretion that was enhanced after CHox, and further potentiated during simultaneous A2aR activation by adenosine. A2aR activation also enhanced stimulus-induced rise in intracellular Ca²⁺ in control, but not HIF-2α-deficient, MAH cells. Thus, A2aR, adenosine, and HIF-2α are key contributors to the potentiation of CAT secretion in developing chromaffin cells during chronic hypoxia.
Collapse
Affiliation(s)
- Stephen T Brown
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
18
|
Kaufmann I, Feuerecker M, Salam A, Schelling G, Thiel M, Choukèr A. Adenosine A2(A) receptor modulates the oxidative stress response of primed polymorphonuclear leukocytes after parabolic flight. Hum Immunol 2011; 72:547-52. [PMID: 21513753 DOI: 10.1016/j.humimm.2011.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 02/28/2011] [Accepted: 03/31/2011] [Indexed: 12/25/2022]
Abstract
Space flight and gravitational stress can alter innate immune function. Parabolic flights (PFs) as a model for short-term gravitational changes prime the cytotoxic capability of polymorphonuclear leukocytes (PMNs). In view of the emerging role of adenosine in the regulation of innate immune responses, we examined the potency of adenosine to control the release of cytotoxic H(2)O(2) by primed PMNs via the adenosine receptor system. During PFs, microgravity conditions (<10(-2) G) are generated for approximately 22 seconds, followed by a hypergravity (1.8 G) phase resulting in gravitational stress. We studied the ex vivo effects of adenosine on the production of H(2)O(2) by stimulated PMNs and determined adenosine plasma levels and adenosine A2(A) receptor transcripts of leukocytes of PF participants (n = 15). Increasing concentrations of adenosine dose dependently reduced tissue-toxic H(2)O(2) production by PMNs with a half-maximal inhibitory concentration (IC(50)) of 19.5 nM before takeoff and 7.6 nM at 48 hours after PF. This increase in the adenosine-mediated inhibition of PMNs' H(2)O(2) production was completely reversed by addition of the A2(A) receptor antagonist ZM241385. PF induced a nonsignificant elevation in adenosine plasma levels; A2(A) receptor mRNA from leukocytes remained almost unchanged. Adenosine limits the oxidative stress response of PMNs after PFs through an upregulation of the adenosine A2(A) receptor function. This stop signal on inflammation is stronger than that under normal physiologic states and may limit further cytotoxic damage. Pharmacologic manipulation of the adenosine A2(A) receptor pathway could be a potential target for control of unwanted exacerbations of cytotoxic PMN functions.
Collapse
Affiliation(s)
- Ines Kaufmann
- Department of Anaesthesiology, University of Munich, 81366 Munich, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Pinheiro PLC, Cardoso JCR, Gomes AS, Fuentes J, Power DM, Canário AVM. Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken. BMC Evol Biol 2010; 10:373. [PMID: 21122104 PMCID: PMC3009671 DOI: 10.1186/1471-2148-10-373] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 12/01/2010] [Indexed: 11/10/2022] Open
Abstract
Background Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken. Results The PTH-L gene is present throughout the vertebrates with the exception of placental mammals. Gene structure of PTH and PTH-L seems to be conserved in vertebrates while PTHrP gene structure is divergent and has acquired new exons and alternative promoters. Splice variants of PTHrP and PTH-L are common in Xenopus and chicken and transcripts of the former have a widespread tissue distribution, although PTH-L is more restricted. PTH is widely expressed in fish tissue but from Xenopus to mammals becomes largely restricted to the parathyroid gland. The N-terminal (1-34) region of PTH, PTHrP and PTH-L in Xenopus and chicken share high sequence conservation and the capacity to modify calcium fluxes across epithelia suggesting a conserved role in calcium metabolism possibly via similar receptors. Conclusions The parathyroid hormone family contains 3 principal members, PTH, PTHrP and the recently identified PTH-L. In teleosts there are 5 genes which encode PTHrP (2), PTH (2) and PTH-L and in tetrapods there are 3 genes (PTHrP, PTH and PTH-L), the exception is placental mammals which have 2 genes and lack PTH-L. It is hypothesized that genes of the PTH family appeared at approximately the same time during the vertebrate radiation and evolved via gene duplication/deletion events. PTH-L was lost from the genome of eutherian mammals and PTH, which has a paracrine distribution in lower vertebrates, became the product of a specific endocrine tissue in Amphibia, the parathyroid gland. The PTHrP gene organisation diverged and became more complex in vertebrates and retained its widespread tissue distribution which is congruent with its paracrine nature.
Collapse
Affiliation(s)
- Pedro L C Pinheiro
- Centre of Marine Sciences, Comparative Molecular Endocrinology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The phosphodiesterase inhibitor pentoxifylline (PTX) exerts multiple beneficial immunomodulatory effects in states of hyperinflammation. However, the exact mechanism of action still remains elusive, and the clinical effects of PTX cannot be reliably predicted. In immune cells, the G protein-coupled adenosine A2A receptor (A2AR) exerts strong anti-inflammatory effects. As PTX amplifies signaling pathways downstream of Gs protein-coupled receptors, the A2AR-signaling pathway might be involved in the mediation of immune-suppressive effects of PTX. Here, we investigated this assumption in LPS-stimulated human polymorphonuclear (PMN) leukocytes and in anti-CD3/CD28-stimulated human T cells. In stimulated PMN leukocytes, PTX treatment led to a 4.5-fold decrease of the 50% inhibitory concentrations of adenosine on the H2O2 production; i.e., for adenosine plus PTX (in clinically relevant concentrations), an overadditive increase of inhibitory effects from less than 20% (estimated for each) to 56% (+/-5%) was found. In T cells, adenosine plus PTX revealed similar synergistic inhibitory effects on proinflammatory cytokine production. Inhibition of interferon gamma and TNF-alpha production increased from 7% (+/-1%) and 31% (+/-6%) (PTX alone) to 49% (+/-2%) and 69% (+/-6%), respectively. In T cells and PMN leukocytes, mRNA transcription of the A2AR was significantly increased upon stimulation, which was not influenced by PTX. In human PMN leukocytes and T cells, clinically relevant anti-inflammatory effects of PTX can be achieved only in the presence of sufficient adenosine concentrations. Sufficient adenosine levels might be a prerequisite for the accessibility of sepsis patients to treatment with PTX.
Collapse
|
21
|
Buira SP, Albasanz JL, Dentesano G, Moreno J, Martín M, Ferrer I, Barrachina M. DNA methylation regulates adenosine A2Areceptor cell surface expression levels. J Neurochem 2010; 112:1273-85. [DOI: 10.1111/j.1471-4159.2009.06538.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Markovic D, Challiss RAJ. Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cell Mol Life Sci 2009; 66:3337-52. [PMID: 19629391 PMCID: PMC11115665 DOI: 10.1007/s00018-009-0093-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/30/2009] [Accepted: 07/03/2009] [Indexed: 12/16/2022]
Abstract
The G protein-coupled receptors (GPCRs) are a superfamily of transmembrane receptors that have a broad distribution and can collectively recognise a diverse array of ligands. Activation or inhibition of GPCR signalling can affect many (patho)physiological processes, and consequently they are a major target for existing and emerging drug therapies. A common observation has been that the pharmacological, signalling and regulatory properties of GPCRs can differ in a cell- and tissue-specific manner. Such "phenotypic" diversity might be attributable to post-translational modifications and/or association of GPCRs with accessory proteins, however, post-transcriptional mechanisms are also likely to contribute. Although approximately 50% of GPCR genes are intronless, those that possess introns can undergo alternative splicing, generating GPCR subtype isoforms that may differ in their pharmacological, signalling and regulatory properties. In this review we shall highlight recent research into GPCR splice variation and discuss the potential consequences this might have for GPCR function in health and disease.
Collapse
Affiliation(s)
- Danijela Markovic
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Leicester, UK.
| | | |
Collapse
|
23
|
Kreth S, Kaufmann I, Ledderose C, Luchting B, Thiel M. Reduced ligand affinity leads to an impaired function of the adenosine A2A receptor of human granulocytes in sepsis. J Cell Mol Med 2009; 13:985-94. [PMID: 19538256 PMCID: PMC3823413 DOI: 10.1111/j.1582-4934.2008.00530.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The enhanced release of reactive oxygen species by excessively activated polymorphonuclear leucocytes (PMN) is a key step in the pathogenesis of sepsis. Potent action of adenosine in inhibiting cytotoxic PMN functions has been documented. Recent data, however provide evidence that in sepsis a diminished capability of adenosine to inhibit the generation of oxygen radicals by PMN occurs. Here, we investigated the underlying mechanisms in an in vitro sepsis model and in PMN of sepsis patients. We report that lipopolysaccharide (LPS)-incubation of human PMN elicited the same increase in the half-maximal inhibitory concentration (IC(50)) of adenosine as observed in patients with septic shock. Coupling to adenylyl cyclase was impaired as well, as indicated by a decreased potency of adenosine to stimulate cyclic adenosine monophosphate (cAMP) accumulation. Ligand-binding studies conducted with native, LPS-stimulated PMN, and with PMN of sepsis patients revealed that, despite an increased adenosine A(2A) receptor (A(2A)R) expression, the receptor function declines due to a diminished ligand-binding affinity most likely caused by allosteric modulators within the inflammatory environment. A(2A)R function obviously is highly dependent upon the cellular environment and thus, further functional characterization of A(2A)R responses in sepsis may be a promising approach to develop new adenosine or A(2A)R agonists based therapeutic strategies.
Collapse
Affiliation(s)
- Simone Kreth
- Department of Anaesthesiology, Ludwig Maximilians University Munich, Germany
| | | | | | | | | |
Collapse
|
24
|
Sherwood TA, Nong L, Agudelo M, Newton C, Widen R, Klein TW. Identification of transcription start sites and preferential expression of select CB2 transcripts in mouse and human B lymphocytes. J Neuroimmune Pharmacol 2009; 4:476-88. [PMID: 19757078 DOI: 10.1007/s11481-009-9169-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Marijuana cannabinoids, the endocannabinoids, and cannabinoid cell receptors have been shown to play important roles in immune regulation particularly as potent modulators of anti-inflammatory cytokines. The predominant cannabinoid receptor involved in this immune regulation is cannabinoid receptor 2 (CB(2)), which is predominantly expressed in B lymphocytes. However, the promoter region and mechanisms of CB(2) gene regulation are unknown in this immune cell type. Utilizing a combination of bioinformatics, 5' rapid amplification of cDNA ends (5' RACE), real-time reverse transcription-polymerase chain reaction, DNA sequencing, and luciferase reporter assays, we show that human B cells express one CB(2) transcript while mouse B cells express three CB(2) transcripts, with specific transcript selection occurring during B cell activation by lipopolysaccharide. Alignment of our sequenced RACE products to either the mouse or human genome, along with the GenBank submitted mRNA sequences, revealed that the transcripts we isolated contained previously unidentified transcriptional start sites (TSS). In addition, expression construct testing of the genomic region containing the TSSs of the mouse CB(2) exon 1 transcripts showed an eightfold increase of promoter activity over baseline. These data show for the first time that human B cells use only one TSS for CB(2) while mouse B cells use multiple TSSs and that the mouse TSSs are in a genomic area with promoter activity, thus suggesting the location of the gene promoter region. Defining these TSSs also provides clues to the various gene regulatory factors involved in the expression of CB(2) during B cell activation.
Collapse
Affiliation(s)
- Tracy A Sherwood
- Department of Molecular Medicine, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
25
|
Focus on the splicing of secretin GPCRs transmembrane-domain 7. Trends Biochem Sci 2009; 34:443-52. [PMID: 19733082 DOI: 10.1016/j.tibs.2009.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/20/2009] [Accepted: 06/04/2009] [Indexed: 12/17/2022]
Abstract
The family of G-protein coupled receptors (GPCRs) is one of the largest protein families in the mammalian genome with a fundamental role in cell biology. GPCR activity is finely tuned by various transcriptional, post-transcriptional and post-translational mechanisms. Alternative pre-mRNA splicing is now emerging as a crucial process regulating GPCR biological function. Intriguingly, this mechanism appears to extensively target the Secretin family of GPCRs, especially the exon that encodes a 14 amino acid sequence that forms the distal part of 7th transmembrane helix, and exhibits an unusually high level of sequence conservation among most Secretin GPCRs. Do the "TMD7-short" receptor variants have a role as novel regulators of GPCR signallng and, if so, what are the implications for hormonal actions and physiology?
Collapse
|