1
|
Leow SS, Bolsinger J, Pronczuk A, Hayes KC, Sambanthamurthi R. Hepatic transcriptome implications for palm fruit juice deterrence of type 2 diabetes mellitus in young male Nile rats. GENES AND NUTRITION 2016; 11:29. [PMID: 27795741 PMCID: PMC5075206 DOI: 10.1186/s12263-016-0545-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022]
Abstract
Background The Nile rat (NR, Arvicanthis niloticus) is a model of carbohydrate-induced type 2 diabetes mellitus (T2DM) and the metabolic syndrome. A previous study found that palm fruit juice (PFJ) delayed or prevented diabetes and in some cases even reversed its early stages in young NRs. However, the molecular mechanisms by which PFJ exerts these anti-diabetic effects are unknown. In this study, the transcriptomic effects of PFJ were studied in young male NRs, using microarray gene expression analysis. Methods Three-week-old weanling NRs were fed either a high-carbohydrate diet (%En from carbohydrate/fat/protein = 70:10:20, 16.7 kJ/g; n = 8) or the same high-carbohydrate diet supplemented with PFJ (415 ml of 13,000-ppm gallic acid equivalent (GAE) for a final concentration of 5.4 g GAE per kg diet or 2.7 g per 2000 kcal; n = 8). Livers were obtained from these NRs for microarray gene expression analysis using Illumina MouseRef-8 Version 2 Expression BeadChips. Microarray data were analysed along with the physiological parameters of diabetes. Results Compared to the control group, 71 genes were up-regulated while 108 were down-regulated in the group supplemented with PFJ. Among hepatic genes up-regulated were apolipoproteins related to high-density lipoproteins (HDL) and genes involved in hepatic detoxification, while those down-regulated were related to insulin signalling and fibrosis. Conclusion The results obtained suggest that the anti-diabetic effects of PFJ may be due to mechanisms other than an increase in insulin secretion.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Julia Bolsinger
- Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | | | - K C Hayes
- Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
2
|
Clay CC, Donart N, Fomukong N, Knight JB, Overheim K, Tipper J, Van Westrienen J, Hahn F, Harrod KS. Severe acute respiratory syndrome-coronavirus infection in aged nonhuman primates is associated with modulated pulmonary and systemic immune responses. IMMUNITY & AGEING 2014; 11:4. [PMID: 24642138 PMCID: PMC3999990 DOI: 10.1186/1742-4933-11-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/06/2014] [Indexed: 12/28/2022]
Abstract
Background Many respiratory viruses disproportionately impact the elderly. Likewise, advanced age correlated with more adverse disease outcomes following severe acute respiratory syndrome coronavirus (SARS-CoV) infection in humans. We used an aged African green monkey SARS-CoV infection model to better understand age-related mechanisms of increased susceptibility to viral respiratory infections. Nonhuman primates are critical translational models for such research given their similarities to humans in immune-ageing as well as lung structure. Results Significant age- and infection-dependent differences were observed in both systemic and mucosal immune compartments. Peripheral lymphocytes, specifically CD8 T and B cells were significantly lower in aged monkeys pre- and post- SARS-CoV infection, while neutrophil and monocyte numbers were not impacted by age or infection status. Serum proinflammatory cytokines were similar in both age groups, whereas significantly lower levels of IL-1beta, IL-18, IL-6, IL-12 and IL-15 were detected in the lungs of SARS-CoV-infected aged monkeys at either 5 or 10 days post infection. Total lung leukocyte numbers and relative frequency of CD8 T cells, B cells, macrophages and dendritic cells were greatly reduced in the aged host during SARS-CoV infection, despite high levels of chemoattractants for many of these cells in the aged lung. Dendritic cells and monocytes/macrophages showed age-dependent differences in activation and chemokine receptor profiles, while the CD8 T cell and B cell responses were significantly reduced in the aged host. In examination of viral titers, significantly higher levels of SARS-CoV were detected in the nasal swabs early, at day 1 post infection, in aged as compared to juvenile monkeys, but virus levels were only slightly higher in aged animals by day 3. Although there was a trend of higher titers in respiratory tissues at day 5 post infection, this did not reach statistical significance and virus was cleared from all animals by day 10, regardless of age. Conclusions This study provides unique insight into how several parameters of the systemic and mucosal immune response to SARS-CoV infection are significantly modulated by age. These immune differences may contribute to deficient immune function and the observed trend of higher SARS-CoV replication in aged nonhuman primates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kevin S Harrod
- Work performed at Lovelace Respiratory Research Institute (LRRI), Infectious Disease Program, Albuquerque, NM, Mexico.
| |
Collapse
|
3
|
Khadem Ali M, Alamgir Hossain M, Shin CG. Comparative sequence and expression analyses of African green monkey (Cercopithecus aethiops) TNPO3 from CV-1 cells. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0102-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Lu X, Jin T, Jin Y, Wu L, Hu B, Tian Y, Fan X. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice. NANOTECHNOLOGY 2013; 24:015106. [PMID: 23221170 DOI: 10.1088/0957-4484/24/1/015106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
5
|
Expression sequence tag library derived from peripheral blood mononuclear cells of the chlorocebus sabaeus. BMC Genomics 2012; 13:279. [PMID: 22726727 PMCID: PMC3539953 DOI: 10.1186/1471-2164-13-279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/11/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND African Green Monkeys (AGM) are amongst the most frequently used nonhuman primate models in clinical and biomedical research, nevertheless only few genomic resources exist for this species. Such information would be essential for the development of dedicated new generation technologies in fundamental and pre-clinical research using this model, and would deliver new insights into primate evolution. RESULTS We have exhaustively sequenced an Expression Sequence Tag (EST) library made from a pool of Peripheral Blood Mononuclear Cells from sixteen Chlorocebus sabaeus monkeys. Twelve of them were infected with the Simian Immunodeficiency Virus. The mononuclear cells were or not stimulated in vitro with Concanavalin A, with lipopolysacharrides, or through mixed lymphocyte reaction in order to generate a representative and broad library of expressed sequences in immune cells. We report here 37,787 sequences, which were assembled into 14,410 contigs representing an estimated 12% of the C. sabaeus transcriptome. Using data from primate genome databases, 9,029 assembled sequences from C. sabaeus could be annotated. Sequences have been systematically aligned with ten cDNA references of primate species including Homo sapiens, Pan troglodytes, and Macaca mulatta to identify ortholog transcripts. For 506 transcripts, sequences were quasi-complete. In addition, 6,576 transcript fragments are potentially specific to the C. sabaeus or corresponding to not yet described primate genes. CONCLUSIONS The EST library we provide here will prove useful in gene annotation efforts for future sequencing of the African Green Monkey genomes. Furthermore, this library, which particularly well represents immunological and hematological gene expression, will be an important resource for the comparative analysis of gene expression in clinically relevant nonhuman primate and human research.
Collapse
|
6
|
Chang JJ, Altfeld M. Innate immune activation in primary HIV-1 infection. J Infect Dis 2010; 202 Suppl 2:S297-301. [PMID: 20846036 DOI: 10.1086/655657] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There is growing evidence that highlights the role of the immune response during acute human immunodeficiency virus type 1 (HIV-1) infection in the control or development of disease. The adaptive immune responses do not appear until after HIV-1 infection is already well established, so the role of earlier and faster-responding innate immunity needs to be more closely scrutinized. In particular, 2 aspects of innate immunity for which there are growing research developments will be examined in this review: the actions of type I interferons and natural killer cells. These two components of the innate immune response contribute to viral control both by killing infected cells and by modulating other immune cells that develop. However, the role of interferon α in immune activation is a double-edged sword, causing recruitment of adaptive immune cells that can assist in viral control but concurrently contributing to immune activation-dependent disease progression. Understanding the complexity of how innate responses affect the outcome of HIV-1 infection will help in the development of vaccines that can use innate immunity to enhance viral control with minimal pathogenesis.
Collapse
Affiliation(s)
- J Judy Chang
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
7
|
Brysbaert G, Pellay FX, Noth S, Benecke A. Quality assessment of transcriptome data using intrinsic statistical properties. GENOMICS PROTEOMICS & BIOINFORMATICS 2010; 8:57-71. [PMID: 20451162 PMCID: PMC5054119 DOI: 10.1016/s1672-0229(10)60006-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In view of potential application to biomedical diagnosis, tight transcriptome data quality control is compulsory. Usually, quality control is achieved using labeling and hybridization controls added at different stages throughout the processing of the biologic RNA samples. These control measures, however, only reflect the performance of the individual technical manipulations during the entire process and have no bearing as to the continued integrity of the RNA sample itself. Here we demonstrate that intrinsic statistical properties of the resulting transcriptome data signal and signal-variance distributions and their invariance can be identified independently of the animal species studied and the labeling protocol used. From these invariant properties we have developed a data model, the parameters of which can be estimated from individual experiments and used to compute relative quality measures based on similarity with large reference datasets. These quality measures add supplementary, non-redundant information to standard quality control estimates based on spike-in and hybridization controls, and are exploitable in data analysis. A software application for analyzing datasets as well as a reference dataset for AB1700 arrays are provided. They should allow AB1700 users to easily integrate this method into their analysis pipeline, and might instigate similar developments for other transcriptome platforms.
Collapse
Affiliation(s)
- Guillaume Brysbaert
- Institut des Hautes Etudes Scientifiques & Institut de Recherche Interdisciplinaire (CNRS USR3078, Université de Lille1), 91440 Bures-sur-Yvette, France
| | | | | | | |
Collapse
|
8
|
In vivo expansion of naive and activated CD4+CD25+FOXP3+ regulatory T cell populations in interleukin-2-treated HIV patients. Proc Natl Acad Sci U S A 2010; 107:10632-7. [PMID: 20498045 DOI: 10.1073/pnas.1000027107] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
HIV-1 infection is characterized by a progressive decline in CD4(+) T cells leading to a state of profound immunodeficiency. IL-2 therapy has been shown to improve CD4(+) counts beyond that observed with antiretroviral therapy. Recent phase III trials revealed that despite a sustained increase in CD4(+) counts, IL-2-treated patients did not experience a better clinical outcome [Abrams D, et al. (2009) N Engl J Med 361(16):1548-1559]. To explain these disappointing results, we have studied phenotypic, functional, and molecular characteristics of CD4(+) T cell populations in IL-2-treated patients. We found that the principal effect of long-term IL-2 therapy was the expansion of two distinct CD4(+)CD25(+) T cell populations (CD4(+)CD25(lo)CD127(lo)FOXP3(+) and CD4(+)CD25(hi)CD127(lo)FOXP3(hi)) that shared phenotypic markers of Treg but could be distinguished by the levels of CD25 and FOXP3 expression. IL-2-expanded CD4(+)CD25(+) T cells suppressed proliferation of effector cells in vitro and had gene expression profiles similar to those of natural regulatory CD4(+)CD25(hi)FOXP3(+) T cells (Treg) from healthy donors, an immunosuppressive T cell subset critically important for the maintenance of self-tolerance. We propose that the sustained increase of the peripheral Treg pool in IL-2-treated HIV patients may account for the unexpected clinical observation that patients with the greatest expansion of CD4(+) T cells had a higher relative risk of clinical progression to AIDS.
Collapse
|
9
|
Jacquelin B, Mayau V, Targat B, Liovat AS, Kunkel D, Petitjean G, Dillies MA, Roques P, Butor C, Silvestri G, Giavedoni LD, Lebon P, Barré-Sinoussi F, Benecke A, Müller-Trutwin MC. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest 2010; 119:3544-55. [PMID: 19959873 DOI: 10.1172/jci40093] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/19/2009] [Indexed: 01/12/2023] Open
Abstract
African green monkeys (AGMs) infected with the AGM type of SIV (SIVagm) do not develop chronic immune activation and AIDS, despite viral loads similar to those detected in humans infected with HIV-1 and rhesus macaques (RMs) infected with the RM type of SIV (SIVmac). Because chronic immune activation drives progressive CD4+ T cell depletion and immune cell dysfunctions, factors that characterize disease progression, we sought to understand the molecular basis of this AGM phenotype. To this end, we longitudinally assessed the gene expression profiles of blood- and lymph node-derived CD4+ cells from AGMs and RMs in response to SIVagm and SIVmac infection, respectively, using a genomic microarray platform. The molecular signature of acute infection was characterized, in both species, by strong upregulation of type I IFN-stimulated genes (ISGs). ISG expression returned to basal levels after postinfection day 28 in AGMs but was sustained in RMs, especially in the lymph node-derived cells. We also found that SIVagm induced IFN-alpha production by AGM cells in vitro and that low IFN-alpha levels were sufficient to induce strong ISG responses. In conclusion, SIV infection triggered a rapid and strong IFN-alpha response in vivo in both AGMs and RMs, with this response being efficiently controlled only in AGMs, possibly as a result of active regulatory mechanisms.
Collapse
Affiliation(s)
- Béatrice Jacquelin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fukuoka T, Sumida K, Yamada T, Higuchi C, Nakagaki K, Nakamura K, Kohsaka S, Saito K, Oeda K. Gene expression profiles in the common marmoset brain determined using a newly developed common marmoset-specific DNA microarray. Neurosci Res 2010; 66:62-85. [DOI: 10.1016/j.neures.2009.09.1709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/28/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
|
11
|
Jasinska AJ, Service S, Choi OW, DeYoung J, Grujic O, Kong SY, Jorgensen MJ, Bailey J, Breidenthal S, Fairbanks LA, Woods RP, Jentsch JD, Freimer NB. Identification of brain transcriptional variation reproduced in peripheral blood: an approach for mapping brain expression traits. Hum Mol Genet 2009; 18:4415-27. [PMID: 19692348 PMCID: PMC2766297 DOI: 10.1093/hmg/ddp397] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genome-wide gene expression studies may provide substantial insight into gene activities and biological pathways differing between tissues and individuals. We investigated such gene expression variation by analyzing expression profiles in brain tissues derived from eight different brain regions and from blood in 12 monkeys from a biomedically important non-human primate model, the vervet (Chlorocebus aethiops sabaeus). We characterized brain regional differences in gene expression, focusing on transcripts for which inter-individual variation of expression in brain correlates well with variation in blood from the same individuals. Using stringent criteria, we identified 29 transcripts whose expression is measurable, stable, replicable, variable between individuals, relevant to brain function and heritable. Polymorphisms identified in probe regions could, in a minority of transcripts, confound the interpretation of the observed inter-individual variation. The high heritability of levels of these transcripts in a large vervet pedigree validated our approach of focusing on transcripts that showed higher inter-individual compared with intra-individual variation. These selected transcripts are candidate expression Quantitative Trait Loci, differentially regulating transcript levels in the brain among individuals. Given the high degree of conservation of tissue expression profiles between vervets and humans, our findings may facilitate the understanding of regional and individual transcriptional variation and its genetic mechanisms in humans. The approach employed here—utilizing higher quality tissue and more precise dissection of brain regions than is usually possible in humans—may therefore provide a powerful means to investigate variation in gene expression relevant to complex brain related traits, including human neuropsychiatric diseases.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|