1
|
Guo Q, Li W, Niu Y, Dai X, Chen L. Culex quinquefasciatus membrane-bound alkaline phosphatase is a putative receptor for Lysinibacillus sphaericus Tpp49Aa1 toxin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104044. [PMID: 38036275 DOI: 10.1016/j.ibmb.2023.104044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The binary toxin Cry48Aa1/Tpp49Aa1 produced by Lysinibacillus sphaericus exhibits potent toxicity against Culicidae larvae. Both Cry48Aa1 and Tpp49Aa1 toxins are crucial for binding to the toxin receptor in Culex quinquefasciatus larvae, albeit with different binding sites. Previous studies have identified Glu71, a membrane-bound α-glucosidase, as a putative binding protein for the Cry48Aa1 toxin, involved in the Cry48Aa1/Tpp49Aa1 toxicity. In this study, we employed pulldown assays to identify a group of Tpp49Aa1-binding proteins from C. quinquefasciatus solubilized midgut brush-border membrane proteins (BBMFs). RNA interference assays revealed that the silencing of an alkaline phosphatase gene (referred to as ALP1263) in C. quinquefasciatus resulted in a significant reduction in larval mortality upon exposure to Cry48Aa1/Tpp49Aa1 toxin in vivo. Furthermore, the ALP1263 protein exhibited specific and high-affinity binding to the Tpp49Aa1 toxin, with a dissociation constant (Kd) of approximately 57.3 nM. The dot blot analysis demonstrated that Tpp49Aa1 C-terminal region was essential for its interaction with the ALP1263 protein. In summary, our findings establish ALP1263 as a functional receptor for Tpp49Aa1 and emphasize its role in the toxicity of Cry48Aa1/Tpp49Aa1.
Collapse
Affiliation(s)
- Qingyun Guo
- College of Life Sciences, Gannan Normal University, Ganzhou City, Jiangxi Province, 341000, PR China.
| | - Wei Li
- College of Life Sciences, Gannan Normal University, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Yingchao Niu
- College of Life Sciences, Gannan Normal University, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Xiaohua Dai
- College of Life Sciences, Gannan Normal University, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Lin Chen
- College of Life Sciences, Gannan Normal University, Ganzhou City, Jiangxi Province, 341000, PR China
| |
Collapse
|
2
|
Rezende TMT, Menezes HSG, Rezende AM, Cavalcanti MP, Silva YMG, de-Melo-Neto OP, Romão TP, Silva-Filha MHNL. Culex quinquefasciatus Resistant to the Binary Toxin from Lysinibacillus sphaericus Displays a Consistent Downregulation of Pantetheinase Transcripts. Biomolecules 2023; 14:33. [PMID: 38254633 PMCID: PMC10813629 DOI: 10.3390/biom14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Culex quinquefasciatus resistance to the binary (Bin) toxin, the major larvicidal component from Lysinibacillus sphaericus, is associated with mutations in the cqm1 gene, encoding the Bin-toxin receptor. Downregulation of the cqm1 transcript was found in the transcriptome of larvae resistant to the L. sphaericus IAB59 strain, which produces both the Bin toxin and a second binary toxin, Cry48Aa/Cry49Aa. Here, we investigated the transcription profiles of two other mosquito colonies having Bin resistance only. These confirmed the cqm1 downregulation and identified transcripts encoding the enzyme pantetheinase as the most downregulated mRNAs in both resistant colonies. Further quantification of these transcripts reinforced their strong downregulation in Bin-resistant larvae. Multiple genes were found encoding this enzyme in Cx. quinquefasciatus and a recombinant pantetheinase was then expressed in Escherichia coli and Sf9 cells, with its presence assessed in the midgut brush border membrane of susceptible larvae. The pantetheinase was expressed as a ~70 kDa protein, potentially membrane-bound, which does not seem to be significantly targeted by glycosylation. This is the first pantetheinase characterization in mosquitoes, and its remarkable downregulation might reflect features impacted by co-selection with the Bin-resistant phenotype or potential roles in the Bin-toxin mode of action that deserve to be investigated.
Collapse
Affiliation(s)
- Tatiana M. T. Rezende
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Heverly S. G. Menezes
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Antonio M. Rezende
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Milena P. Cavalcanti
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Yuri M. G. Silva
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Osvaldo P. de-Melo-Neto
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Tatiany P. Romão
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Maria Helena N. L. Silva-Filha
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
- National Institute for Molecular Entomology, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
3
|
Williamson LJ, Galchenkova M, Best HL, Bean RJ, Munke A, Awel S, Pena G, Knoska J, Schubert R, Dörner K, Park HW, Bideshi DK, Henkel A, Kremling V, Klopprogge B, Lloyd-Evans E, Young MT, Valerio J, Kloos M, Sikorski M, Mills G, Bielecki J, Kirkwood H, Kim C, de Wijn R, Lorenzen K, Xavier PL, Rahmani Mashhour A, Gelisio L, Yefanov O, Mancuso AP, Federici BA, Chapman HN, Crickmore N, Rizkallah PJ, Berry C, Oberthür D. Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated from natural crystals using MHz-SFX. Proc Natl Acad Sci U S A 2023; 120:e2203241120. [PMID: 38015839 PMCID: PMC10710082 DOI: 10.1073/pnas.2203241120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.
Collapse
Affiliation(s)
| | - Marina Galchenkova
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Hannah L. Best
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Anna Munke
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Salah Awel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Gisel Pena
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Juraj Knoska
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | | | | | - Hyun-Woo Park
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Dennis K. Bideshi
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Alessandra Henkel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Viviane Kremling
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Bjarne Klopprogge
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Mark T. Young
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Marco Kloos
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | - Grant Mills
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Chan Kim
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Paul Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Max-Planck Institute for the Structure and Dynamics of Matter, 22761Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Luca Gelisio
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, 22869Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Brian A. Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Henry N. Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Centre for Ultrafast Imaging, Universität Hamburg, 22761Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761Hamburg, Germany
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, BrightonBN1 9QG, United Kingdom
| | | | - Colin Berry
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Dominik Oberthür
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| |
Collapse
|
4
|
Cao B, Sun X, Shu C, Geng L, Zhang J. Identification and functional characterization of eight novel tpp family genes from Bacillus thuringiensis. PEST MANAGEMENT SCIENCE 2023; 79:4244-4253. [PMID: 37340998 DOI: 10.1002/ps.7620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) and its transgenic crops are widely used as biological control agents for agricultural pests. The tpp family is a branch of Bt insecticidal genes and consists of a few members. Research on the Tpp family proteins has focused on the binary toxins Gpp34Ab/Tpp35Ab and Tpp1/Tpp2, which need to function together to achieve insecticidal activity. However, only a few tpp family genes have been reported to exert insecticidal activity independently. This study aimed to identify and characterize tpp family genes that independently perform insecticidal functions. RESULTS A total of 162 nucleotide sequences homologous to the single component Bt insecticidal gene tpp78Aa were obtained from the genome data of 1368 wild-type Bt strains, and 25 new full-length tpp family genes were identified. Eight new tpp family genes were successfully cloned and expressed, and bioassays of the expressed products were performed against five different pests. Bioassay results showed that these proteins exerted high insecticidal activity only against Laodelphax striatellus, a globally important rice pest, and were named Tpp78Ab1, Tpp78Bb1, Tpp78Ca1, Tpp78Da1, Tpp80Aa3, Tpp80Ac1, Tpp80Ad1, and Tpp80Ae1. The LC50 values of Tpp78Ab1, Tpp78Bb1, Tpp78Ca1, and Tpp80Ae1 against L. striatum were 8.1, 8.6, 10.1, and 9.6 μg mL-1 , respectively. The phylogenetic tree and conserved motifs indicated that the Tpp family had a common evolutionary ancestor. During evolution, the C-terminal pore-forming domain of the Tpp family adopted a similar arrangement; however, the N-terminal conserved motif showed high variability. CONCLUSION Twenty-five full-length tpp family genes were identified. Eight new tpp family genes were cloned successfully, which could independently achieve insecticidal activity against L. striatellus. This provides abundant genetic resources for the biological control of important rice pests. In this study, we found that the relative conservation of the Tpp family proteins in the lengthy evolutionary process and the diversity generated for adapting to the environment can lay a theoretical foundation for an in-depth analysis of the function and evolution of the Tpp family. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beibei Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoni Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Katak RDM, Cintra AM, Burini BC, Marinotti O, Souza-Neto JA, Rocha EM. Biotechnological Potential of Microorganisms for Mosquito Population Control and Reduction in Vector Competence. INSECTS 2023; 14:718. [PMID: 37754686 PMCID: PMC10532289 DOI: 10.3390/insects14090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Mosquitoes transmit pathogens that cause human diseases such as malaria, dengue fever, chikungunya, yellow fever, Zika fever, and filariasis. Biotechnological approaches using microorganisms have a significant potential to control mosquito populations and reduce their vector competence, making them alternatives to synthetic insecticides. Ongoing research has identified many microorganisms that can be used effectively to control mosquito populations and disease transmission. However, the successful implementation of these newly proposed approaches requires a thorough understanding of the multipronged microorganism-mosquito-pathogen-environment interactions. Although much has been achieved in discovering new entomopathogenic microorganisms, antipathogen compounds, and their mechanisms of action, only a few have been turned into viable products for mosquito control. There is a discrepancy between the number of microorganisms with the potential for the development of new insecticides and/or antipathogen products and the actual available products, highlighting the need for investments in the intersection of basic research and biotechnology.
Collapse
Affiliation(s)
- Ricardo de Melo Katak
- Malaria and Dengue Laboratory, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus 69060-001, AM, Brazil;
| | - Amanda Montezano Cintra
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Bianca Correa Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA;
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Elerson Matos Rocha
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| |
Collapse
|
6
|
Rabha M, Das D, Konwar T, Acharjee S, Sarmah BK. Whole genome sequencing of a novel Bacillus thuringiensis isolated from Assam soil. BMC Microbiol 2023; 23:91. [PMID: 37003972 PMCID: PMC10064770 DOI: 10.1186/s12866-023-02821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Bacillus thuringiensis (Bt) is a gram-positive ubiquitous saprophytic bacterium that produces proteins (Crystal protein, Vegetative insecticidal protein, and Secreted insecticidal protein) toxic to insects during its growth cycle. In the present study, the whole genome of a locally isolated B. thuringiensis strain BA04 was sequenced to explore the genetic makeup and to identify the genes responsible to produce insecticidal proteins including the virulence factors. The strain was isolated from the soil sample of the Kaziranga National Park, Assam, North-Eastern part of India (Latitude: 26°34'39.11''N and Longitude: 93°10'16.04''E). RESULTS The whole genome sequencing (WGS) of the BA04 strain revealed that it has a circular genome of size 6,113,005 bp with four numbers of plasmids. A total of 6,111 genes including two novel crystal protein-encoding genes (MH753362.1 and MH753363.1) were identified. The BLASTn analysis of MH753362.1 showed 84% similarities (maximum identity) with Cry1Ia (KJ710646.1) gene, whereas MH753363.1 exhibited 66% identity with Insecticidal Crystal Protein (ICP)-6 gene (KM053257.1). At the protein level, MH753362.1 and MH753363.1 shared 79% identity with Cry1Ia (AIW52613.1) and 40% identity with Insecticidal Crystal Protein (ICP)-6 (AJW76687.1) respectively. Three-dimensional structures of these two novel protein sequences revealed that MH753362.1 have 48% structural similarity with Cry8ea1 protein, whereas MH753363.1 showed only 20% structural similarity with Cry4Aa protein. Apart from these insecticidal genes, the strain was also found to contain virulence and virulence-associated factors including the antibiotic resistance genes and Clustered regularly interspaced short palindromic repeat (CRISPR) sequences. CONCLUSION This is the first report on the whole genome sequence of Bt strain BA04 isolated from Assam, a North-Eastern state of India. The WGS of strain BA04 unveils the presence of two novel types of insecticidal crystal protein-encoding genes which can be used for the development of insect-resistant transgenic crops. Additionally, the strain could be used for the formulations of effective biopesticides. The WGS provides the fastest and cheapest platform for a better understanding of the genetic makeup of a strain and helps to explore the role of virulence genes in pathogenicity against the insect host.
Collapse
Affiliation(s)
- Mihir Rabha
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Silkworm Pathology Section, Central Sericultural Research and Training Institute, Central Silk Board, Ministry of Textile, Govt of India, Berhampore, West Bengal, 7421 01, India
| | - Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India
| | - Trishna Konwar
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India.
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India.
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India.
| |
Collapse
|
7
|
Interspecies Horizontal Transfer and Specific Integration of the Mosquitocidal Toxin-Encoding Plasmid pTAND672-2 from Bacillus thuringiensis subsp. israelensis to Lysinibacillus sphaericus. Appl Environ Microbiol 2023; 89:e0165222. [PMID: 36749061 PMCID: PMC9973010 DOI: 10.1128/aem.01652-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
pTAND672-2, a 144-kb resident plasmid of Bacillus thuringiensis serovar israelensis strain TAND672, was sequenced and characterized. This extrachromosomal element carries mosquitocidal toxin-, conjugation-, and recombinase-encoding genes, together with a putative arbitrium system, a genetic module recently discovered in temperate phages controlling lysogeny-lysis transition and in mobile genetic elements (MGEs) where its function remains clarified. Using conjugation experiments, pTAND672-2 is shown to be a novel integrative and conjugative element (ICE), which can horizontally transfer from B. thuringiensis serovar israelensis to Lysinibacillus sphaericus, another mosquitocidal bacterium, where it integrates into the chromosome. Its integration and circularization are reversible and involve a single-cross recombination between 33-bp specific sites, attB in the chromosome of L. sphaericus and attP in pTAND672-2. CDS143, coding for the putative tyrosine integrase Int143 distantly related to site-specific tyrosine Xer recombinases and phage integrases, can mediate the integration of pTAND672-2 to attB. The B. thuringiensis mosquito-killing genes carried by pTAND672-2 are efficiently transcribed and expressed in L. sphaericus, displaying a slight increased toxicity in this bacterium against Aedes albopictus larvae. The occurrence of pTAND672-2-like plasmids within the Bacillus cereus group was also explored and indicated that they all share a similar genetic backbone with diverse plasmid sizes, ranging from 58 to 225 kb. Interestingly, among them, the pEFR-4-4 plasmid of Bacillus paranthracis EFR-4 and p5 of B. thuringiensis BT-59 also display conjugative capability; moreover, like pTAND672-2 displays a chimeric structure between the pCH_133-e- and pBtoxis-like plasmids, pBTHD789-3 also appears to be mosaic of two plasmids. IMPORTANCE Horizontal transfer of mobile genetic elements carrying mosquitocidal toxin genes may play a driving role in the diversity of mosquitocidal bacteria. Here, the 144-kb mosquitocidal toxin-encoding plasmid pTAND672-2 is the first verified integrative and conjugative element (ICE) identified in Bacillus thuringiensis serovar israelensis. The key tyrosine integrase Int143, involved in the specific integration, is distantly related to other tyrosine recombinases. The study also reports the occurrence and potential interspecies transmission of pTAND672-2-like plasmids with varied sizes in B. thuringiensis, Bacillus paranthracis, and Bacillus wiedmannii isolates belonging to the Bacillus cereus group. This study is important for further understanding the evolution and ecology of mosquitocidal bacteria, as well as for providing new direction for the genetic engineering of biopesticides in the control of disease-transmitting mosquitoes.
Collapse
|
8
|
Best HL, Williamson LJ, Lipka-Lloyd M, Waller-Evans H, Lloyd-Evans E, Rizkallah PJ, Berry C. The Crystal Structure of Bacillus thuringiensis Tpp80Aa1 and Its Interaction with Galactose-Containing Glycolipids. Toxins (Basel) 2022; 14:863. [PMID: 36548760 PMCID: PMC9784298 DOI: 10.3390/toxins14120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Tpp80Aa1 from Bacillus thuringiensis is a Toxin_10 family protein (Tpp) with reported action against Culex mosquitoes. Here, we demonstrate an expanded target range, showing Tpp80Aa1 is also active against the larvae of Anopheles gambiae and Aedes aegypti mosquitoes. We report the first crystal structure of Tpp80Aa1 at a resolution of 1.8 Å, which shows Tpp80Aa1 consists of two domains: an N-terminal β-trefoil domain resembling a ricin B lectin and a C-terminal putative pore-forming domain sharing structural similarity with the aerolysin family. Similar to other Tpp family members, we observe Tpp80Aa1 binds to the mosquito midgut, specifically the posterior midgut and the gastric caecum. We also identify that Tpp80Aa1 can interact with galactose-containing glycolipids and galactose, and this interaction is critical for exerting full insecticidal action against mosquito target cell lines.
Collapse
Affiliation(s)
- Hannah L. Best
- School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, UK
| | | | | | - Helen Waller-Evans
- School of Pharmacy, Cardiff University, Park Place, Cardiff CF10 3AX, UK
| | - Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, UK
| | | | - Colin Berry
- School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, UK
| |
Collapse
|
9
|
Guo Q, Gao Y, Xing C, Niu Y, Ding L, Dai X. Culex quinquefasciatus alpha-glucosidase serves as a putative receptor of the Cry48Aa toxin from Lysinibacillus sphaericus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103799. [PMID: 35662624 DOI: 10.1016/j.ibmb.2022.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The Cry48Aa/Cry49Aa toxin of Lysinibacillus sphaericus shows specific toxicity towards larvae of Culex spp. Individual Cry48Aa and Cry49Aa subunits interact with distinct target sites in the larval midgut and overcome the resistance of Culex to the Bin toxin. However, the toxin-binding proteins have not yet been identified. The present study aimed to identify Cry48Aa-binding proteins in Culex quinquefasciatus. Pulldown assays using C. quinquefasciatus midgut brush-border membrane fractions (BBMFs) identified a class of proteins, including aminopeptidases (APNs), protease m1 zinc metalloproteases, alkaline phosphatases (ALPs), and maltases, that could be potentially involved in the mode of action of this toxin. RNA interference analysis showed that silenced larvae treated with dsRNA of the alpha-glucosidase (named Glu71) gene were more tolerant of the Cry48Aa/Cry49Aa toxin, which induced less than 20% mortality. The amino acid sequence of Glu71 exhibited 42% identity with Cqm1/Cpm1, which acted as a Bin toxin receptor. Toxin binding assays showed that Cry48Aa had a high specific binding capacity for the Glu71 protein, whereas Cry49Aa exhibited no specific binding. Overall, our results showed that Glu71 is a Cry48-binding protein involved in Cry48Aa/Cry49Aa toxicity.
Collapse
Affiliation(s)
- Qingyun Guo
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China.
| | - Yuan Gao
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Chong Xing
- School of Information Engineering, Gannan Medical University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Yingchao Niu
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Lu Ding
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Xiaohua Dai
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| |
Collapse
|
10
|
Identification and characterization of a new cry-like gene found in a Bacillus cereus strain. Antonie van Leeuwenhoek 2021; 114:1759-1770. [PMID: 34491485 DOI: 10.1007/s10482-021-01635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Bacillus thuringiensis is the most successful microbial insecticide against different pests in agriculture and vectors of diseases. Its activity is mostly attributed to the Cry proteins expressed during its sporulation phase. However, these proteins are not exclusive to B. thuringiensis. Some cry genes have been found in other Bacillus species, or even in other genera. In this work, cry genes were searched in 223 acrystalliferous bacillaceous strains. From these strains 13 amplicons were obtained, cloned, and sequenced; however, only 6 amplicons tested positive for cry-like genes, and the 6 isolates showed to be the same strain. We report the characterization of an unusual strain of B. cereus (LBIC-004) which is unable to form protein inclusions during the sporulation phase. LBIC-004 showed a high identity to B. cereus using the sequences of 16S rRNA, gyrB and hag genes; in addition, a unique plasmid pattern of the strain was obtained. A 1953-bp cry gene was identified, coding for a 651 amino acid protein with a molecular weight of 74.9 kDa. This protein showed a predicted three-domain structure, similar to all Cry proteins. However, the amino acid sequence of the protein showed only 41% identity its highest hit: the Cry8Ca1 protein, indicating the uniqueness of this cry-like gene. It was cloned and transferred into a mutant acrystalliferous B. thuringiensis strain which was used in bioassays against Caenorhabditis elegans, Aedes aegypti, Manduca sexta and Phyllophaga sp. The recombinant strain showed no crystal formation and no toxicity to the tested species.
Collapse
|
11
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|
12
|
Guo Q, Ding L, Gao Y, Niu Y, Dai X. Cys183 and Cys258 in Cry49Aa toxin from Lysinibacillus sphaericus are essential for toxicity to Culex quinquefasciatus larvae. Arch Microbiol 2021; 203:4587-4592. [PMID: 34160628 DOI: 10.1007/s00203-021-02436-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
The two-component Cry48Aa/Cry49Aa toxin produced by Lysinibacillus sphaericus shows specifically toxic to Culex quinquefasciatus mosquito larvae. Cry49Aa C-terminal domain is responsible for specific binding to the larval gut cell membrane, while its N-terminal domain is required for interaction with Cry48Aa. To investigate functional role of cysteine in Cry49Aa, four cysteine residues at positions 70, 91, 183, and 258 were substituted by alanine. All mutants showed similar crystalline morphology and comparable yield to that of the wild type except that the yield of the C91A mutant was low. Four cysteine residues did not involve in disulfide bond formation within or between Cry49Aa molecules. Cys91, Cys183, and Cys258 are essential for larvicidal activity against C. quinquefasciatus larvae, while Cys70 is not. Substitution at C91, C183, and C258 caused weaker Cry48Aa- Cry49Aa interaction, while mutations at C183 and C258 reduced the binding capacities to the larval gut cell membrane. Thus, Cysteine residues at position 91, 183, and 258 in Cry49Aa are required for full toxicity of Cry48Aa/Cry49Aa toxin.
Collapse
Affiliation(s)
- Qingyun Guo
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China.
| | - Lu Ding
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Yuan Gao
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Yingchao Niu
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Xiaohua Dai
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| |
Collapse
|
13
|
Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins (Basel) 2020; 12:toxins12120773. [PMID: 33291447 PMCID: PMC7762171 DOI: 10.3390/toxins12120773] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The control of dipteran pests is highly relevant to humans due to their involvement in the transmission of serious diseases including malaria, dengue fever, Chikungunya, yellow fever, zika, and filariasis; as well as their agronomic impact on numerous crops. Many bacteria are able to produce proteins that are active against insect species. These bacteria include Bacillus thuringiensis, the most widely-studied pesticidal bacterium, which synthesizes proteins that accumulate in crystals with insecticidal properties and which has been widely used in the biological control of insects from different orders, including Lepidoptera, Coleoptera, and Diptera. In this review, we summarize all the bacterial proteins, from B. thuringiensis and other entomopathogenic bacteria, which have described insecticidal activity against dipteran pests, including species of medical and agronomic importance.
Collapse
|
14
|
Azizoglu U, Jouzani GS, Yilmaz N, Baz E, Ozkok D. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139169. [PMID: 32460068 DOI: 10.1016/j.scitotenv.2020.139169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Entomopathogenic bacteria (EPBs), insect pathogens that produce pest-specific toxins, are environmentally-friendly alternatives to chemical insecticides. However, the most important problem with EPBs application is their limited field stability. Moreover, environmental factors such as solar radiation, leaf temperature, and vapor pressure can affect the pathogenicity of these pathogens and their toxins. Scientists have conducted intensive research to overcome such problems. Genetic engineering has great potential for the development of new engineered entomopathogens with more resistance to adverse environmental factors. Genetically modified entomopathogenic bacteria (GM-EPBs) have many advantages over wild EPBs, such as higher pathogenicity, lower spraying requirements and longer-term persistence. Genetic manipulations have been mostly applied to members of the bacterial genera Bacillus, Lysinibacillus, Pseudomonas, Serratia, Photorhabdus and Xenorhabdus. Although many researchers have found that GM-EPBs can be used safely as plant protection bioproducts, limited attention has been paid to their potential ecological impacts. The main concerns about GM-EPBs and their products are their potential unintended effects on beneficial insects (predators, parasitoids, pollinators, etc.) and rhizospheric bacteria. This review address recent update on the significant role of GM-EPBs in biological control, examining them through different perspectives in an attempt to generate critical discussion and aid in the understanding of their potential ecological impacts.
Collapse
Affiliation(s)
- Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey.
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nihat Yilmaz
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Ethem Baz
- Laboratory and Veterinary Health Department, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Duran Ozkok
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| |
Collapse
|
15
|
Hernández-Martínez P, Khorramnejad A, Prentice K, Andrés-Garrido A, Vera-Velasco NM, Smagghe G, Escriche B. The Independent Biological Activity of Bacillus thuringiensis Cry23Aa Protein Against Cylas puncticollis. Front Microbiol 2020; 11:1734. [PMID: 32793170 PMCID: PMC7387505 DOI: 10.3389/fmicb.2020.01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
The Cry23Aa/Cry37Aa proteins from Bacillus thuringiensis (Bt) have been described toxic to Cylas puncticollis larvae. In general, it is believed that Cry23Aa and Cry37Aa act jointly to exert the insecticidal activity, while there is no evidence of their toxicity individually. Therefore, in the present study, the contribution of each protein in the insecticidal activity toward C. puncticollis larvae has been assessed. The results showed that both proteins were toxic for C. puncticollis larvae when tested individually. Contrary to what was claimed previously, our results suggest that the presence of both proteins is not necessary to exert toxicity against C. puncticollis larvae. Also, the binding behavior of Cry23Aa protein to midgut receptors of C. puncticollis larvae has been determined. According to our results, Cry23Aa binds to C. puncticollis brush border membrane vesicles (BBMV) specifically and independently of Cry37Aa. Due to the lack of common binding sites, Cry23Aa can be pyramided with Cry3Aa protein for better management of C. puncticollis.
Collapse
Affiliation(s)
- Patricia Hernández-Martínez
- Laboratory of Biotechnological Control of Pest, ERI de Biotecnología y Biomedicina, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ayda Khorramnejad
- Laboratory of Biotechnological Control of Pest, ERI de Biotecnología y Biomedicina, Department of Genetics, Universitat de València, Burjassot, Spain
- Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Katterine Prentice
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ascensión Andrés-Garrido
- Laboratory of Biotechnological Control of Pest, ERI de Biotecnología y Biomedicina, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Natalia Mara Vera-Velasco
- Laboratory Membrane Proteins, ERI de Biotecnología y Biomedicina, Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Baltasar Escriche
- Laboratory of Biotechnological Control of Pest, ERI de Biotecnología y Biomedicina, Department of Genetics, Universitat de València, Burjassot, Spain
- *Correspondence: Baltasar Escriche,
| |
Collapse
|
16
|
Zhou Y, Wu Z, Zhang J, Wan Y, Jin W, Li Y, Fang X. Cry80Aa1, a novel Bacillus thuringiensis toxin with mosquitocidal activity to Culex pipiens pallens. J Invertebr Pathol 2020; 173:107386. [PMID: 32325072 DOI: 10.1016/j.jip.2020.107386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
Bacillus thuringiensis (Bt) can synthesize insecticides to efficiently control insects. In this study, Bt strain S3580-1 with mosquitocidal activity was subjected to whole genome sequencing using an Illumina HiSeq 2000 system. A novel toxin, Cry80Aa1, was identified based on the resulting data. A conserved domain analysis revealed that Cry80Aa1 includes the Ricin_B_lectin domain (located at 10-150) and the Toxin_10 domain (located at 155-353). Phylogenetic tree analysis showed that Cry80Aa1 was in a distinct clade significantly distinguished from the known Cry proteins containing the Toxin_10 domain. Bioassays demonstrated that the Cry80Aa1 protein exhibited toxicity to third instar larvae of Culex pipiens pallens (LC50: 71.9 μg/mL; 95% FL: 59.5-122.7 μg/mL).
Collapse
Affiliation(s)
- Yan Zhou
- College of Life Science and Technology/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China(2)
| | - Zhongqi Wu
- Institute of Life Science, Jiyang College of Zhejiang A&F University, Zhuji 311800, China(2); Hainan Institute of Tropical Agricultural Resources, Sanya 572025, China(2); Cuixi Academy of Biotechnology, Zhuji 311800, China
| | - Jie Zhang
- Institute of Life Science, Jiyang College of Zhejiang A&F University, Zhuji 311800, China(2)
| | - Yusong Wan
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Wujun Jin
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Youzhi Li
- College of Life Science and Technology/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China(2)
| | - Xuanjun Fang
- College of Life Science and Technology/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China(2); Institute of Life Science, Jiyang College of Zhejiang A&F University, Zhuji 311800, China(2); Hainan Institute of Tropical Agricultural Resources, Sanya 572025, China(2); Cuixi Academy of Biotechnology, Zhuji 311800, China.
| |
Collapse
|
17
|
Enterococcus durans with mosquito larvicidal toxicity against Culex quinquefasciatus, elucidated using a Proteomic and Metabolomic approach. Sci Rep 2020; 10:4774. [PMID: 32179781 PMCID: PMC7075886 DOI: 10.1038/s41598-020-61245-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/12/2020] [Indexed: 12/03/2022] Open
Abstract
Various bacteria from the Bacillus species have been used as pesticides against mosquito larvae for more than a decade. The prolonged use of these bacterial species by little alteration within their genome, using various permutations and combinations of mosquito-cidal toxins, has proven unsuccessful in controlling the mosquito population. In our current study we report Enterococcus sp. to be exhibiting similar kind of mosquito-cidal toxins alike those which are present in the mainly used Bacillus strains. Three Enterococcus species were isolated on a rich media selective for gram- positive bacteria from the mid-gut of dead mosquito larvae which were collected from the wild locations within and around the city of Mumbai, India. Their surface morphologies were studied by Scanning Electron Microscopy (SEM) and their identity was confirmed using the standard 16S rRNA sequencing method. Upon performing several repetitive toxicity assays of these three strains on the laboratory cultured third instar stage of Culex quinquefasciatus larvae, showed differential toxicities from a minimum of 20% (LC50: 59.6 CFU/ml), intermediate 35% (LC50: 48.4 CFU/ml) and a maximum of 60% (LC50: 35.7 CFU/ml). To justify the data in all the three similar strains of Enterococcus durans, we followed the differential proteomics using LCMS 6540 UHD Accurate Mass QTOF and differential metabolomics approach using both LCMS 6540 UHD Accurate Mass QTOF and 1H-NMR. The presence and significance of the obtained toxins were studied to elucidate the plausible reason for showing differential toxicities. This work helped in identifying Enterococcus durans as a new, potential and alternative strain to the Bacillus species in terms of mosquito larvicidal toxicity against Culex quinquefasciatus.
Collapse
|
18
|
The Cry48Aa N-terminal Domain is Responsible for Cry48Aa–Cry49Aa Interaction in Lysinibacillus sphaericus Toxin. Curr Microbiol 2020; 77:1217-1222. [DOI: 10.1007/s00284-020-01907-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/29/2020] [Indexed: 10/24/2022]
|
19
|
Rezende TMT, Rezende AM, Luz Wallau G, Santos Vasconcelos CR, de-Melo-Neto OP, Silva-Filha MHNL, Romão TP. A differential transcriptional profile by Culex quinquefasciatus larvae resistant to Lysinibacillus sphaericus IAB59 highlights genes and pathways associated with the resistance phenotype. Parasit Vectors 2019; 12:407. [PMID: 31429782 PMCID: PMC6702717 DOI: 10.1186/s13071-019-3661-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/09/2019] [Indexed: 01/17/2023] Open
Abstract
Background The study of the mechanisms by which larvae of the Culex quinquefasciatus mosquito survive exposure to the entomopathogen Lysinibacillus sphaericus has benefited substantially from the generation of laboratory-selected colonies resistant to this bacterium. One such colony, RIAB59, was selected after regular long-term exposure of larvae to the L. sphaericus IAB59 strain. This strain is characterized by its ability to produce the well known Binary (Bin) toxin, and the recently characterized Cry48Aa/Cry49Aa toxin, able to kill Bin-resistant larvae. Resistance to Bin is associated with the depletion of its receptor, Cqm1 α-glucosidase, from the larvae midgut. This study aimed to identify novel molecules and pathways associated with survival of the RIAB59 larvae and the resistance phenotype. Methods A transcriptomic approach and bioinformatic tools were used to compare the profiles derived from the midguts of larvae resistant and susceptible to L. sphaericus IAB59. Results The RNA-seq profiles identified 1355 differentially expressed genes (DEGs), with 673 down- and 682 upregulated transcripts. One of the most downregulated DEGs was cqm1, which validates the approach. Other strongly downregulated mRNAs encode the enzyme pantetheinase, apolipoprotein D, lipases, heat-shock proteins and a number of lesser known and hypothetical polypeptides. Among the upregulated DEGs, the top most encodes a peroxisomal enzyme involved in lipid metabolism, while others encode enzymes associated with juvenile hormone synthesis, ion channels, DNA binding proteins and defense polypeptides. Further analyses confirmed a strong downregulation of several enzymes involved in lipid catabolism while the assignment of DEGs into metabolic pathways highlighted the upregulation of those related to DNA synthesis and maintenance, confirmed by their clustering into related protein networks. Several other pathways were also identified with mixed profiles of down- and upregulated transcripts. Quantitative RT-PCR confirmed the changes in levels seen for selected mRNAs. Conclusions Our transcriptome-wide dataset revealed that the RIAB59 colony, found to be substantially more resistant to Bin than to the Cry48Aa/Cry49Aa toxin, developed a differential expression profile as well as metabolic features co-selected during the long-term adaptation to IAB59 and that are most likely linked to Bin resistance.![]() Electronic supplementary material The online version of this article (10.1186/s13071-019-3661-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Antonio Mauro Rezende
- Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Gabriel Luz Wallau
- Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| | | | | | | | - Tatiany Patrícia Romão
- Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n Cidade Universitária, Recife, PE, 50740-465, Brazil.
| |
Collapse
|
20
|
Glare TR, Durrant A, Berry C, Palma L, Ormskirk MM, Cox MP. Phylogenetic determinants of toxin gene distribution in genomes of Brevibacillus laterosporus. Genomics 2019; 112:1042-1053. [PMID: 31226484 PMCID: PMC6978878 DOI: 10.1016/j.ygeno.2019.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/16/2019] [Accepted: 06/17/2019] [Indexed: 11/24/2022]
Abstract
Brevibacillus laterosporus is a globally ubiquitous, spore forming bacterium, strains of which have shown toxic activity against invertebrates and microbes and several have been patented due to their commercial potential. Relatively little is known about this bacterium. Here, we examined the genomes of six published and five newly determined genomes of B. laterosporus, with an emphasis on the relationships between known and putative toxin encoding genes, as well as the phylogenetic relationships between strains. Phylogenetically, strain relationships are similar using average nucleotide identity (ANI) values and multi-gene approaches, although PacBio sequencing revealed multiple copies of the 16S rDNA gene which lessened utility at the strain level. Based on ANI values, the New Zealand isolates were distant from other isolates and may represent a new species. While all of the genomes examined shared some putative toxicity or virulence related proteins, many specific genes were only present in a subset of strains. We examined genomes of 11 Brevibacillus laterosporus, a bacterium which is antagonistic to invertebrates and/or microbes Multiple phylogenetic methods showed New Zealand isolates more distant than all other isolates Each genome could contain 11–13 copies of the 16S rDNA gene, some of which were not identical Many putative toxin encoding genes were present in the genomes, but the toxin complement varied from isolate to isolate Variation in occurrence of toxin-encoding genes indicates the potential to find strains with new combinations of activities
Collapse
Affiliation(s)
- Travis R Glare
- Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln, New Zealand.
| | - Abigail Durrant
- Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln, New Zealand
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Leopoldo Palma
- Universidad Nacional de Villa María, Instituto A.P. de Ciencias Básicas y Aplicadas, Av. Arturo Jauretche 1555, Villa María 5900, Córdoba, Argentina
| | - M Marsha Ormskirk
- Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln, New Zealand
| | - Murray P Cox
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
21
|
Search for Cry proteins expressed by Bacillus spp. genomes, using hidden Markov model profiles. 3 Biotech 2019; 9:13. [PMID: 30622851 DOI: 10.1007/s13205-018-1533-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
This report focuses on a systematic search for Cry proteins in Bacillus spp. other than B. thuringiensis by analyzing reported Bacillus spp. genomes, using conserved sequences from the C-terminal half of reported Cry proteins in hidden Markov model profiles. A high-throughput model based on the use of HMMER and CD-HIT tools was designed, which identified Cry proteins. This model was used on 857 reported Bacillus spp. genomes, where 174 Cry protein sequences were identified, mostly, as expected, in B. thuringiensis genomes but, interestingly, 42 were identified on other species. Despite including 89 species of Bacillus in the HMMER analysis, Cry protein sequences were found only in genomes from species within the B. cereus group. According to the species registered at the NCBI database containing each genome, this group was formed by 18 non-B. thuringiensis strains. However, when sequences in those genomes were analyzed by multilocus sequence typing, the number of non-B. thuringiensis strains increased to 39, indicating that as many as 119 Cry protein sequences were found in four non-B. thuringiensis species. Therefore, dispersion of Cry proteins is much wider and frequent than previously thought, questioning its role in nature.
Collapse
|
22
|
Short SM, van Tol S, MacLeod HJ, Dimopoulos G. Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in Anopheles gambiae mosquito larvae. Sci Rep 2018; 8:8358. [PMID: 29844510 PMCID: PMC5974309 DOI: 10.1038/s41598-018-26680-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Mosquito larvae continuously encounter microbes in their aquatic environment, which serve as food and play a critical role in successful development. In previous work, we isolated a Chromobacterium sp. (C.sp_P) with larvicidal activity from the midgut of dengue vector Aedes mosquitoes in Panama. In this study, we found a positive correlation between initial concentrations of C.sp_P and larval mortality rates, and that C.sp_P is more efficient at inducing larval mortality in a high nutrient environment. Multiple Chromobacterium species induce larval mortality with similar efficacy to C.sp_P except for C. subtsugae. We also found that a non-lethal dose of C.sp_P lengthens development time and increases mortality over multiple developmental stages, suggesting persistent effects of exposure. Additionally, we showed that larvicidal activity persists in the larval breeding water after removal of live bacteria, and that the larvicidal factor in C.sp_P-treated water is smaller than 3 kDa, heat resistant to 90 °C, and lost after vacuum centrifugation. We showed that C.sp_P produces hydrogen cyanide in culture and in larval water at concentrations sufficient to kill An. gambiae larvae, and treatment of the larval water with a cyanide antidote eliminated larvicidal activity. We conclude that a potential mechanism by which C.sp_P can induce larval mortality is via production of hydrogen cyanide.
Collapse
Affiliation(s)
- Sarah M Short
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah van Tol
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hannah J MacLeod
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
Garcia‐Ramon DC, Berry C, Tse C, Fernández‐Fernández A, Osuna A, Vílchez S. The parasporal crystals of Bacillus pumilus strain 15.1: a potential virulence factor? Microb Biotechnol 2018; 11:302-316. [PMID: 29027367 PMCID: PMC5812249 DOI: 10.1111/1751-7915.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Bacillus pumilus strain 15.1 was previously found to cause larval mortality in the Med-fly Ceratitis capitata and was shown to produce crystals in association with the spore. As parasporal crystals are well-known as invertebrate-active toxins in entomopathogenic bacteria such as Bacillus thuringiensis (Cry and Cyt toxins) and Lysinibacillus sphaericus (Bin and Cry toxins), the B. pumilus crystals were characterized. The crystals were composed of a 45 kDa protein that was identified as an oxalate decarboxylase by peptide mass fingerprinting, N-terminal sequencing and by comparison with the genome sequence of strain 15.1. Synthesis of crystals by a plasmid-cured derivative of strain 15.1 (produced using a novel curing strategy), demonstrated that the oxalate decarboxylase was encoded chromosomally. Crystals spontaneously solubilized when kept at low temperatures, and the protein produced was resistant to trypsin treatment. The insoluble crystals produced by B. pumilus 15.1 did not show significant toxicity when bioassayed against C. capitata larvae, but once the OxdD protein was solubilized, an increase of toxicity was observed. We also demonstrate that the OxdD present in the crystals has oxalate decarboxylate activity as the formation of formate was detected, which suggests a possible mechanism for B. pumilus 15.1 activity. To our knowledge, the characterization of the B. pumilus crystals as oxalate decarboxylase is the first report of the natural production of parasporal inclusions of an enzyme.
Collapse
Affiliation(s)
- Diana C. Garcia‐Ramon
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Present address:
Medical SchoolFaculty of Life, Health and Medical SciencesUniversidad Internacional del EcuadorQuitoEcuador
| | - Colin Berry
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Carmen Tse
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | | | - Antonio Osuna
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
| | - Susana Vílchez
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Department of Biochemistry and Molecular Biology ICampus FuentenuevaUniversity of GranadaGranadaSpain
| |
Collapse
|
24
|
Molecular Characterization and Evaluation of Two Potential Mosquitocidal Lysinibacillus Strains from Himalayan Valley Kashmir. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Rezende TMT, Romão TP, Batista M, Berry C, Adang MJ, Silva-Filha MHNL. Identification of Cry48Aa/Cry49Aa toxin ligands in the midgut of Culex quinquefasciatus larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:63-70. [PMID: 28780070 DOI: 10.1016/j.ibmb.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/15/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
A binary mosquitocidal toxin composed of a three-domain Cry-like toxin (Cry48Aa) and a binary-like toxin (Cry49Aa) was identified in Lysinibacillus sphaericus. Cry48Aa/Cry49Aa has action on Culex quinquefasciatus larvae, in particular, to those that are resistant to the Bin Binary toxin, which is the major insecticidal factor from L. sphaericus-based biolarvicides, indicating that Cry48Aa/Cry49Aa interacts with distinct target sites in the midgut and can overcome Bin toxin resistance. This study aimed to identify Cry48Aa/Cry49Aa ligands in C. quinquefasciatus midgut through binding assays and mass spectrometry. Several proteins, mostly from 50 to 120 kDa, bound to the Cry48Aa/Cry49Aa toxin were revealed by toxin overlay and pull-down assays. These proteins were identified against the C. quinquefasciatus genome and after analysis a set of 49 proteins were selected which includes midgut bound proteins such as aminopeptidases, amylases, alkaline phosphatases in addition to molecules from other classes that can be potentially involved in this toxin's mode of action. Among these, some proteins are orthologs of Cry receptors previously identified in mosquito larvae, as candidate receptors for Cry48Aa/Cry49Aa toxin. Further investigation is needed to evaluate the specificity of their interactions and their possible role as receptors.
Collapse
Affiliation(s)
| | | | - Michel Batista
- Instituto Carlos Chagas-FIOCRUZ, Curitiba, PR 81350-010, Brazil
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | | | | |
Collapse
|
26
|
Naureen Z, Rehman NU, Hussain H, Hussain J, Gilani SA, Al Housni SK, Mabood F, Khan AL, Farooq S, Abbas G, Harrasi AA. Exploring the Potentials of Lysinibacillus sphaericus ZA9 for Plant Growth Promotion and Biocontrol Activities against Phytopathogenic Fungi. Front Microbiol 2017; 8:1477. [PMID: 28861045 PMCID: PMC5563071 DOI: 10.3389/fmicb.2017.01477] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/21/2017] [Indexed: 11/13/2022] Open
Abstract
There is an ongoing hunt for biologically active compounds that can combat phytopathogenic fungi and improve plant growth without causing any hazards to the environment. Consequently the present study aims at deciphering the plant growth promotion and antifungal capability of Lysinibacillus sphaericus ZA9. The bacterium was previously isolated and identified in our laboratory from maize rhizosphere using 16S rRNA gene sequencing. The test bacterium L. sphaericus ZA9 was found to produce high quantity of IAA (697 μg/ mL); siderophores (195.79 μg/ mL), HCN and hydrolytic enzyme as compared to the reference strain Bacillus sphaericus Z2-7. The bacterium was also capable of solubilizing silicates (Si), phosphates (P), and potassium (K). The bacterium enhanced the seedling vigor and germination of seeds pretreated with it and promoted the shoot length of both cucumber and tomato seeds in greenhouse experiment. L. sphaericus ZA9 and its cell free culture supernatant showed varied antagonistic behavior against Alternaria alternata, Curvularia lunata, Aspergillus sp., Sclerotinia sp., Bipolaris spicifera, Trichophyton sp. Fermentation broth culture of L. sphaericus ZA9 was then used to isolate antifungal metabolites by silica column chromatography. Identification and determination of antifungal compounds was carried out by Thin-layer chromatography (TLC) followed by NMR spectroscopy. Two compounds were isolated and identified as 2-pentyl-4-quinolinecarboxylic acid (C15H17NO2) which is a quinoline alkaloid and 1- methylcyclohexene which is a cycloalkene. Compound 1; 2-Penthyl-4-quinolinecarboxylic acid was found to be highly antagonistic against most of the fungi tested as compared to the bacterium itself. Its activity was comparable to that of fungicide Benlate, while compound 2; 1- methylcyclohexene did not show any antifungal activity.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of NizwaNizwa, Oman
| | - Najeeb Ur Rehman
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of NizwaNizwa, Oman
| | - Syed A Gilani
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of NizwaNizwa, Oman
| | - Saif K Al Housni
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of NizwaNizwa, Oman.,UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Fazal Mabood
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of NizwaNizwa, Oman
| | - Abdul L Khan
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Saima Farooq
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of NizwaNizwa, Oman
| | - Ghulam Abbas
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of NizwaNizwa, Oman
| | - Ahmed A Harrasi
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| |
Collapse
|
27
|
Fu P, Xiang X, Ge Y, Yuan Z, Hu X. Differential expression of duplicated binary toxin genesbinA/binBinLysinibacillus sphaericusC3-41. Lett Appl Microbiol 2017; 65:90-97. [DOI: 10.1111/lam.12752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/28/2022]
Affiliation(s)
- P. Fu
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
- University of Chinese Academy of Sciences; Beijing China
| | - X. Xiang
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - Y. Ge
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - Z. Yuan
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - X. Hu
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| |
Collapse
|
28
|
Structural classification of insecticidal proteins – Towards an in silico characterisation of novel toxins. J Invertebr Pathol 2017; 142:16-22. [DOI: 10.1016/j.jip.2016.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 07/28/2016] [Indexed: 11/23/2022]
|
29
|
Dementiev A, Board J, Sitaram A, Hey T, Kelker MS, Xu X, Hu Y, Vidal-Quist C, Chikwana V, Griffin S, McCaskill D, Wang NX, Hung SC, Chan MK, Lee MM, Hughes J, Wegener A, Aroian RV, Narva KE, Berry C. The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins. BMC Biol 2016; 14:71. [PMID: 27576487 PMCID: PMC5004264 DOI: 10.1186/s12915-016-0295-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/10/2016] [Indexed: 12/02/2022] Open
Abstract
Background The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action. Results The two forms of the toxin were resolved to 2.7 Å and 2.0 Å respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non-hemolytic toxin (pfam05791). Cry6Aa also shows atypical features compared to other members of this family, including internal repeat sequences and small loop regions within major alpha helices. Trypsin processing was found to result in the loss of some internal sequences while the C-terminal region remains disulfide-linked to the main core of the toxin. Based on the structural similarity of Cry6Aa to other toxins, the mechanism of action of the toxin was probed and its ability to form pores in vivo in Caenorhabditis elegans was demonstrated. A non-toxic mutant was also produced, consistent with the proposed pore-forming mode of action. Conclusions Cry6 proteins are members of the alpha helical pore-forming toxins – a structural class not previously recognized among the Cry toxins of B. thuringiensis and representing a new paradigm for nematocidal and insecticidal proteins. Elucidation of both the structure and the pore-forming mechanism of action of Cry6Aa now opens the way to more detailed analysis of toxin specificity and the development of new toxin variants with novel activities. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0295-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jason Board
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK
| | - Anand Sitaram
- University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605-2377, USA
| | - Timothy Hey
- Dow AgroSciences, LLC, Indianapolis, IN, USA.,Present address: Indiana State Department of Health Laboratories, Indianapolis, IN, USA
| | - Matthew S Kelker
- Dow AgroSciences, LLC, Indianapolis, IN, USA.,Present address: Xylogenics, LLC, Indianapolis, IN, USA
| | - Xiaoping Xu
- Dow AgroSciences, LLC, Indianapolis, IN, USA
| | - Yan Hu
- University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605-2377, USA
| | - Cristian Vidal-Quist
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK.,Present address: Laboratorio de Interacción Planta-Insecto, Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas - CSIC, Madrid, Spain
| | | | | | | | - Nick X Wang
- Dow AgroSciences, LLC, Indianapolis, IN, USA
| | | | - Michael K Chan
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, HK SAR, China
| | - Marianne M Lee
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, HK SAR, China
| | - Jessica Hughes
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK.,Present address: Antimicrobial Reference Laboratory, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK
| | - Alice Wegener
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK
| | - Raffi V Aroian
- University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605-2377, USA
| | | | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK.
| |
Collapse
|
30
|
Guo QY, Hu XM, Cai QX, Yan JP, Yuan ZM. Interaction of Lysinibacillus sphaericus Cry48Aa/Cry49Aa toxin with midgut brush-border membrane fractions from Culex quinquefasciatus larvae. INSECT MOLECULAR BIOLOGY 2016; 25:163-170. [PMID: 26748768 DOI: 10.1111/imb.12209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Cry48Aa/Cry49Aa mosquitocidal toxin from Lysinibacillus sphaericus was uniquely composed of a three-domain (Cry) toxin and binary (Bin) toxin-like protein, with high toxicity against Culex spp. However, its mode of action against the target mosquitoes is still unknown. In this study, Cry48Aa, Cry49Aa and its N- and C-terminal truncated proteins were expressed and purified, and the binding affinities of the purified proteins with midgut brush-border membrane fractions (BBMFs) from Culex quin-quefasciatus larvae were performed. The results showed that both Cry48Aa and Cry49Aa have specific and high binding affinity to BBMFs, with dissociation constants of 9.5 ± 1.8 and 25.4 ± 3.8 nM, respectively. Competition assays demonstrated that Cry49Aa C-terminal derivatives were able to bind to the BBMFs, whereas Far-Western dot blot analysis revealed that its N-terminal constructs interacted with Cry48Aa. Nevertheless, larvicidal activity was almost lost when Cry49Aa truncated proteins, either individually or in pairs, combined with Cry48Aa. It is concluded that Cry49Aa is responsible for receptor binding and interaction with Cry48Aa and plays an important role in the mechanism of action of these two-component toxins.
Collapse
Affiliation(s)
- Q-Y Guo
- College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - X-M Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Q-X Cai
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - J-P Yan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Z-M Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
31
|
Xu K, Yuan Z, Rayner S, Hu X. Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics 2015; 16:140. [PMID: 25888315 PMCID: PMC4363355 DOI: 10.1186/s12864-015-1359-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/19/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lysinibacillus sphaericus (formerly named Bacillus sphaericus) is incapable of polysaccharide utilization and some isolates produce active insecticidal proteins against mosquito larvae. Its taxonomic status was changed to the genus Lysinibacillus in 2007 with some other organisms previously regarded as members of Bacillus. However, this classification is mainly based on physiology and phenotype and there is limited genomic information to support it. RESULTS In this study, four genomes of L. sphaericus were sequenced and compared with those of 24 representative strains belonging to Lysinibacillus and Bacillus. The results show that Lysinibacillus strains are phylogenetically related based on the genome sequences and composition of core genes. Comparison of gene function indicates the major difference between Lysinibacillus and the two Bacillus species is related to metabolism and cell wall/membrane biogenesis. Although L. sphaericus mosquitocidal isolates are highly conserved, other Lysinibacillus strains display a large heterogeneity. It was observed that mosquitocidal toxin genes in L. sphaericus were in close proximity to genome islands (GIs) and mobile genetic elements (MGEs). Furthermore, different copies and varying genomic location of the GIs containing binA/binB was observed amongst the different isolates. In addition, a plasmid highly similar to pBsph, but lacking the GI containing binA/binB, was found in L. sphaericus SSII-1. CONCLUSIONS Our results confirm the taxonomy of the new genus Lysinibacillus at the genome level and suggest a new species for mosquito-toxic L. sphaericus. Based on our findings, we hypothesize that (1) Lysinibacillus strains evolved from a common ancestor and the mosquitocidal L. sphaericus toxin genes were acquired by horizontal gene transfer (HGT), and (2) capture and loss of plasmids occurs in the population, which plays an important role in the transmission of binA/binB.
Collapse
Affiliation(s)
- Kai Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100039, China.
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Simon Rayner
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiaomin Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
32
|
Peña-Montenegro TD, Lozano L, Dussán J. Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Stand Genomic Sci 2015; 10:2. [PMID: 25685257 PMCID: PMC4317669 DOI: 10.1186/1944-3277-10-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/21/2014] [Indexed: 12/18/2022] Open
Abstract
Lysinibacillus sphaericus CBAM5, was isolated from subsurface soil of oil well explorations in the Easter Planes of Colombia. This strain has potential in bioremediation of heavy-metal polluted environments and biological control of Culex quinquefasciatus. According to the phylogenetic analysis of 16S rRNA gene sequences, the strain CBAM5 was assigned to the Lysinibacillus sphaericus taxonomic group 1 that comprises mosquito pathogenic strains. After a combination assembly-integration, alignment and gap-filling steps, we propose a 4,610,292 bp chromosomal scaffold. The whole genome (consisting of 5,146,656 bp long, 60 contigs and 5,209 predicted-coding sequences) revealed strong functional and syntenial similarities to the L. sphaericus C3-41 genome. Mosquitocidal (Mtx), binary (Bin) toxins, cereolysin O, and heavy metal resistance clusters from nik, ars, czc, mnt, ter, cop, cad, and znu operons were identified.
Collapse
Affiliation(s)
| | - Lucía Lozano
- Centro de Investigaciones Microbiológicas - CIMIC, Universidad de los Andes, Bogotá, Colombia
| | - Jenny Dussán
- Centro de Investigaciones Microbiológicas - CIMIC, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
33
|
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 2014; 6:3296-325. [PMID: 25514092 PMCID: PMC4280536 DOI: 10.3390/toxins6123296] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| |
Collapse
|
34
|
Kelker MS, Berry C, Evans SL, Pai R, McCaskill DG, Wang NX, Russell JC, Baker MD, Yang C, Pflugrath JW, Wade M, Wess TJ, Narva KE. Structural and biophysical characterization of Bacillus thuringiensis insecticidal proteins Cry34Ab1 and Cry35Ab1. PLoS One 2014; 9:e112555. [PMID: 25390338 PMCID: PMC4229197 DOI: 10.1371/journal.pone.0112555] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of ∼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a ∼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Å and 1.80 Å resolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins.
Collapse
Affiliation(s)
- Matthew S. Kelker
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Steven L. Evans
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Reetal Pai
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | | | - Nick X. Wang
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Joshua C. Russell
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Matthew D. Baker
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Cheng Yang
- Rigaku Americas Corporation, The Woodlands, Texas, United States of America
| | - J. W. Pflugrath
- Rigaku Americas Corporation, The Woodlands, Texas, United States of America
| | - Matthew Wade
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Tim J. Wess
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kenneth E. Narva
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| |
Collapse
|
35
|
Kale A, Hire RS, Hadapad AB, D'Souza SF, Kumar V. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: analysis of complex formation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1045-1054. [PMID: 23974012 DOI: 10.1016/j.ibmb.2013.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5×10(3) M(-1) s(-1) and 0.8 s(-1), resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL(-1)) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases.
Collapse
Affiliation(s)
- Avinash Kale
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | |
Collapse
|
36
|
Wirth MC, Berry C, Walton WE, Federici BA. Mtx toxins from Lysinibacillus sphaericus enhance mosquitocidal cry-toxin activity and suppress cry-resistance in Culex quinquefasciatus. J Invertebr Pathol 2013; 115:62-7. [PMID: 24144574 DOI: 10.1016/j.jip.2013.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
The interaction of Mtx toxins from Lysinibacillus sphaericus (formerly Bacillus sphaericus) with Bacillus thuringiensis subsp. israelensis Cry toxins and the influence of such interactions on Cry-resistance were evaluated in susceptible and Cry-resistant Culex quinquefasciatus larvae. Mtx-1 and Mtx-2 were observed to be active against both susceptible and resistant mosquitoes; however varying levels of cross-resistance toward Mtx toxins were observed in the resistant mosquitoes. A 1:1 mixture of either Mtx-1 or Mtx-2 with different Cry toxins generally showed moderate synergism, but some combinations were highly toxic to resistant larvae and suppressed resistance. Toxin synergy has been demonstrated to be a powerful tool for enhancing activity and managing Cry-resistance in mosquitoes, thus Mtx toxins may be useful as components of engineered bacterial larvicides.
Collapse
Affiliation(s)
- Margaret C Wirth
- Department of Entomology, University of California, Riverside, CA 92521, United States.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Cardiff Wales CF10 3AT, United Kingdom
| | - William E Walton
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, CA 92521, United States; Interdepartmental Graduate Programs in Microbiology and Genetics, Genomics and Bioinformatics University of California, Riverside, CA 92521, United States
| |
Collapse
|
37
|
Peña-Montenegro TD, Dussán J. Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31. Stand Genomic Sci 2013; 9:42-56. [PMID: 24501644 PMCID: PMC3910547 DOI: 10.4056/sigs.4227894] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lysinibacillus sphaericus strain OT4b.31 is a native Colombian strain having no larvicidal activity against Culex quinquefasciatus and is widely applied in the bioremediation of heavy-metal polluted environments. Strain OT4b.31 was placed between DNA homology groups III and IV. By gap-filling and alignment steps, we propose a 4,096,672 bp chromosomal scaffold. The whole genome (consisting of 4,856,302 bp long, 94 contigs and 4,846 predicted protein-coding sequences) revealed differences in comparison to the L. sphaericus C3-41 genome, such as syntenial relationships, prophages and putative mosquitocidal toxins. Sphaericolysin B354, the coleopteran toxin Sip1A and heavy metal resistance clusters from nik, ars, czc, cop, chr, czr and cad operons were identified. Lysinibacillus sphaericus OT4b.31 has applications not only in bioremediation efforts, but also in the biological control of agricultural pests.
Collapse
Affiliation(s)
| | - Jenny Dussán
- Centro de Investigaciones Microbiológicas - CIMIC, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
38
|
Guidi V, Lehner A, Lüthy P, Tonolla M. Dynamics of Bacillus thuringiensis var. israelensis and Lysinibacillus sphaericus spores in urban catch basins after simultaneous application against mosquito larvae. PLoS One 2013; 8:e55658. [PMID: 23390547 PMCID: PMC3563526 DOI: 10.1371/journal.pone.0055658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/28/2012] [Indexed: 11/23/2022] Open
Abstract
Bacillus thuringiensis var. israelensis (Bti) and Lysinibacillus sphaericus (Lsph) are extensively used in mosquito control programs. These biocides are the active ingredients of a commercial larvicide. Quantitative data on the fate of both Bti and Lsph applied together for the control of mosquitoes in urban drainage structures such as catch basins are lacking. We evaluated the dynamics and persistence of Bti and Lsph spores released through their concomitant application in urban catch basins in southern Switzerland. Detection and quantification of spores over time in water and sludge samples from catch basins were carried out using quantitative real-time PCR targeting both cry4A and cry4B toxin genes for Bti and the binA gene for Lsph. After treatment, Bti and Lsph spores attained concentrations of 3.76 (±0.08) and 4.13 (±0.09) log ml−1 in water, then decreased progressively over time, reaching baseline values. For both Bti and Lsph, spore levels in the order of 105 g−1 were observed in the bottom sludge two days after the treatment and remained constant for the whole test period (275 days). Indigenous Lsph strains were isolated from previously untreated catch basins. A selection of those was genotyped using pulsed field gel electrophoresis of SmaI-digested chromosomal DNA, revealing that a subset of isolates were members of the clonal population of strain 2362. No safety issues related to the use of this biopesticide in the environment have been observed during this study, because no significant increase in the number of spores was seen during the long observation period. The isolation of native Lysinibacillus sphaericus strains belonging to the same clonal population as strain 2362 from catch basins never treated with Lsph-based products indicates that the use of a combination of Bti and Lsph for the control of mosquitoes does not introduce non-indigenous microorganisms in this area.
Collapse
Affiliation(s)
- Valeria Guidi
- Microbial Ecology Group, Microbiology Unit, Plant Biology Department, University of Geneva, Genève, Switzerland
- Institute of Microbiology, Bellinzona, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Peter Lüthy
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Mauro Tonolla
- Microbial Ecology Group, Microbiology Unit, Plant Biology Department, University of Geneva, Genève, Switzerland
- Institute of Microbiology, Bellinzona, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Transgenic approaches to western corn rootworm control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 136:135-62. [PMID: 23604211 DOI: 10.1007/10_2013_195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a significant corn pest throughout the United States corn belt. Rootworm larvae feed on corn roots causing yield losses and control expenditures that are estimated to exceed US$1 billion annually. Traditional management practices to control rootworms such as chemical insecticides or crop rotation have suffered reduced effectiveness due to the development of physiological and behavioral resistance. Transgenic maize expressing insecticidal proteins are very successful in protecting against rootworm damage and preserving corn yield potential. However, the high rate of grower adoption and early reliance on hybrids expressing a single mode of action and low-dose traits threatens the durability of commercialized transgenic rootworm technology for rootworm control. A summary of current transgenic approaches for rootworm control and the corresponding insect resistance management practices is included. An overview of potential new modes of action based on insecticidal proteins, and especially RNAi targeting mRNA coding for essential insect proteins is provided.
Collapse
|
40
|
Rashad FM, Saleh WD, Nasr M, Fathy HM. Identification of mosquito larvicidal bacterial strains isolated from north Sinai in Egypt. AMB Express 2012; 2:9. [PMID: 22280528 PMCID: PMC3293722 DOI: 10.1186/2191-0855-2-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 01/26/2012] [Indexed: 11/17/2022] Open
Abstract
In the present study, two of the most toxic bacterial strains of Bacillus sphaericus against mosquito were identified with the most recent genetic techniques. The PCR product profiles indicated the presence of genes encoding Bin A, Bin B and Mtx1 in all analyzed strains; they are consistent with protein profiles. The preliminary bioinformatics analysis of the binary toxin genes sequence revealed that the open reading frames had high similarities when matched with nucleotides sequence in the database of other B. sphaericus strains. The biological activity of B. sphaericus strains varied according to growing medium, and cultivation time. The highest yield of viable counts, spores and larvicidal protein were attained after 5 days. Poly (P) medium achieved the highest yield of growth, sporulation, protein and larvicidal activity for all tested strains compared to the other tested media. The larvicidal protein produced by local strains (B. sphaericus EMCC 1931 and EMCC 1932) in P medium was more lethal against the 3rd instar larvae of Culex pipiens than that of reference strains (B. sphaericus 1593 and B. sphaericus 2297). The obtained results revealed that P medium was the most effective medium and will be used in future work in order to optimize large scale production of biocide by the locally isolated Bacillus sphaericus strains.
Collapse
Affiliation(s)
- Ferial M Rashad
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Waleed D Saleh
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - M Nasr
- Department of Microbiology, National Center for Radiation Research and Technology, Nasr city 11371, Egypt
| | - Hayam M Fathy
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
41
|
Berry C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J Invertebr Pathol 2011; 109:1-10. [PMID: 22137877 DOI: 10.1016/j.jip.2011.11.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/12/2011] [Indexed: 10/15/2022]
Abstract
Since the first bacteria with insecticidal activity against mosquito larvae were reported in the 1960s, many have been described, with the most potent being isolates of Bacillus thuringiensis or Lysinibacillus sphaericus (formerly and best known as Bacillus sphaericus). Given environmental concerns over the use of broad spectrum synthetic chemical insecticides and the evolution of resistance to these, industry placed emphasis on the development of bacteria as alternative control agents. To date, numerous commercial formulations of B. thuringiensis subsp. israelensis (Bti) are available in many countries for control of nuisance and vector mosquitoes. Within the past few years, commercial formulations of L. sphaericus (Ls) have become available. Because Bti has been in use for more than 30 years, its properties are well know, more so than those of Ls. Thus, the purpose of this review is to summarise the most critical aspects of Ls and the various proteins that account for its insecticidal properties, especially the mosquitocidal activity of the most common isolates studied. Data are reviewed for the binary toxin, which accounts for the activity of sporulated cells, as well as for other toxins produced during vegetative growth, including sphaericolysin (active against cockroaches and caterpillars) and the different mosquitocidal Mtx and Cry toxins. Future studies of these could well lead to novel potent and environmentally compatible insecticidal products for controlling a range of insect pests and vectors of disease.
Collapse
Affiliation(s)
- Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
42
|
Allelic diversity and population structure of Bacillus sphaericus as revealed by multilocus sequence typing. Appl Environ Microbiol 2011; 77:5553-6. [PMID: 21685170 DOI: 10.1128/aem.00207-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genetic diversity of 35 Bacillus sphaericus strains was analyzed by a newly developed multilocus sequence typing (MLST) scheme, toxin gene pool survey, and mosquito bioassay. The results demonstrated that strains assigned to the same sequence type (ST) had the same occurrence of toxin genes. Further sequence analysis revealed that toxic strains presented a nearly clonal population structure, whereas nontoxic strains had a high level of heterogeneity and were significantly distinct from toxic strains.
Collapse
|
43
|
Lozano LC, Ayala JA, Dussán J. Lysinibacillus sphaericus S-layer protein toxicity against Culex quinquefasciatus. Biotechnol Lett 2011; 33:2037-41. [DOI: 10.1007/s10529-011-0666-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
44
|
Park HW, Bideshi DK, Federici BA. Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus. JOURNAL OF ASIA-PACIFIC ENTOMOLOGY 2010; 13:159-168. [PMID: 28883761 PMCID: PMC5584542 DOI: 10.1016/j.aspen.2010.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Strains of Bacillus sphaericus exhibit varying levels of virulence against mosquito larvae. The most potent strain, B. sphaericus 2362, which is the active ingredient in the commercial product VectoLex®, together with another well-known larvicide Bacillus thuringiensis subsp. israelensis, are used to control vector and nuisance mosquito larvae in many regions of the world. Although not all strains of B. sphaericus are mosquitocidal, lethal strains produce one or two combinations of three different types of toxins. These are (1) the binary toxin (Bin) composed of two proteins of 42 kDa (BinA) and 51 kDa (BinB), which are synthesized during sporulation and co-crystallize, (2) the soluble mosquitocidal toxins (Mtx1, Mtx2 and Mtx3) produced during vegetative growth, and (3) the two-component crystal toxin (Cry48Aa1/Cry49Aa1). Non-mosquitocidal toxins are also produced by certain strains of B. sphaericus, for examples sphaericolysin, a novel insecticidal protein toxic to cockroaches. Larvicides based on B. sphaericus-based have the advantage of longer persistence in treated habitats compared to B. thuringiensis subsp. israelensis. However, resistance is a much greater threat, and has already emerged at significant levels in field populations in China and Thailand treated with B. sphaericus. This likely occurred because toxicity depends principally on Bin rather than various combinations of crystal (Cry) and cytolytic (Cyt) toxins present in B. thuringiensis subsp. israelensis. Here we review both the general characteristics of B. sphaericus, particularly as they relate to larvicidal isolates, and strategies or considerations for engineering more potent strains of this bacterium that contain built-in mechanisms that delay or overcome resistance to Bin in natural mosquito populations.
Collapse
Affiliation(s)
- Hyun-Woo Park
- Department of Natural and Mathematical Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis K. Bideshi
- Department of Natural and Mathematical Sciences, California Baptist University, Riverside, CA 92504, USA
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Brian A. Federici
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
- Interdepartmental graduate programs in Genetics, Genomics and Bioinformatics and Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
45
|
Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Appl Environ Microbiol 2010; 76:6150-5. [PMID: 20656876 DOI: 10.1128/aem.00797-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On the basis of the known cry gene sequences of Bacillus thuringiensis, three sets of primers were designed from four conserved blocks found in the delta-endotoxin-coding region. The primer pairs designed amplify the regions between blocks 1 and 5, 2 and 5, and 1 and 4. In silico analyses indicated that 100% of the known three-domain cry gene sequences can be amplified by these sets of primers. To test their ability to amplify known and unknown cry gene sequences, 27 strains from the CINVESTAV (LBIT series) collection showing atypical crystal morphology were selected. Their DNA was used as the template with the new primer system, and after a systematic amplification and sequencing of the amplicons, each strain showed one or more cry-related sequences, totaling 54 different sequences harbored by the 27 strains. Seven sequences were selected on the basis of their low level of identity to the known cry sequences, and once cloning and sequencing of the complete open reading frames were done, three new cry-type genes (primary ranks) were identified and the toxins that they encode were designated Cry57Aa1, Cry58Aa1, and Cry59Aa1 by the B. thuringiensis Toxin Nomenclature Committee. The rest of the seven sequences were classified Cry8Ka2, Cry8-like, Cry20Ba1, and Cry1Ma1 by the committee. The crystal morphology of the selected strains and analysis of the new Cry protein sequences showed interesting peculiarities.
Collapse
|
46
|
Amorim LB, de Barros RA, Chalegre KDDM, de Oliveira CMF, Regis LN, Silva-Filha MHNL. Stability of Culex quinquefasciatus resistance to Bacillus sphaericus evaluated by molecular tools. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:311-316. [PMID: 20211258 DOI: 10.1016/j.ibmb.2010.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/09/2010] [Accepted: 02/15/2010] [Indexed: 05/28/2023]
Abstract
Bacillus sphaericus binary toxin action on Culex quinquefasciatus larvae relies on the binding to Cqm1alpha-glucosidases, which act as midgut receptors. Resistance of two laboratory-selected colonies is associated with the allele cqm1(REC) that prevents Cqm1 expression as membrane-bound molecules. This study evaluated stability of resistance after the interruption of selection pressure and introduction of susceptible individuals in these colonies. Bioassays showed that frequency of resistant larvae did not decrease throughout 11 generations, under these conditions, and it was associated to a similar frequency of larvae lacking the Cqm1alpha-glucosidase receptor, detected by in gel enzymatic assays. Direct screening of the cqm1(REC) allele, by specific PCR, showed that its frequency remained stable throughout 11 generations. Parental resistant colony did not display biological costs regarding fecundity, fertility and pupal weight and data from susceptibility assays, enzymatic assays and PCR screening showed that cqm1(REC) was not disfavored in competition with the susceptible allele and persisted in the progenies, in the lack of selection pressure. Characterization of molecular basis of resistance is essential for developing diagnostic tools and data have relevant implication for the establishment of strategies for resistance management.
Collapse
Affiliation(s)
- Liliane Barbosa Amorim
- Departament of Entomology, Centro de Pesquisas Aggeu Magalhães/FIOCRUZ, Av. Moraes Rego s/n, Cidade Universitária, Recife-PE 50670-420, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Genetic basis for alkaline activation of germination in Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2009; 75:6410-3. [PMID: 19648359 DOI: 10.1128/aem.00962-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differences in activation between spores from strains of Bacillus thuringiensis subsp. israelensis with and without the toxin-encoding plasmid pBtoxis are demonstrated. Following alkaline activation, the strain bearing pBtoxis shows a significantly greater germination rate. Expression of just three genes constituting a previously identified, putative ger operon from this plasmid is sufficient to produce the same phenotype and characterizes this operon as a genetic determinant of alkaline activation.
Collapse
|
48
|
Cytopathological effects of Bacillus sphaericus Cry48Aa/Cry49Aa toxin on binary toxin-susceptible and -resistant Culex quinquefasciatus larvae. Appl Environ Microbiol 2009; 75:4782-9. [PMID: 19502449 DOI: 10.1128/aem.00811-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cry48Aa/Cry49Aa mosquitocidal two-component toxin was recently characterized from Bacillus sphaericus strain IAB59 and is uniquely composed of a three-domain Cry protein toxin (Cry48Aa) and a binary (Bin) toxin-like protein (Cry49Aa). Its mode of action has not been elucidated, but a remarkable feature of this protein is the high toxicity against species from the Culex complex, besides its capacity to overcome Culex resistance to the Bin toxin, the major insecticidal factor in B. sphaericus-based larvicides. The goal of this work was to investigate the ultrastructural effects of Cry48Aa/Cry49Aa on midgut cells of Bin-toxin-susceptible and -resistant Culex quinquefasciatus larvae. The major cytopathological effects observed after Cry48Aa/Cry49Aa treatment were intense mitochondrial vacuolation, breakdown of endoplasmic reticulum, production of cytoplasmic vacuoles, and microvillus disruption. These effects were similar in Bin-toxin-susceptible and -resistant larvae and demonstrated that Cry48Aa/Cry49Aa toxin interacts with and displays toxic effects on cells lacking receptors for the Bin toxin, while B. sphaericus IAB59-resistant larvae did not show mortality after treatment with Cry48Aa/Cry49Aa toxin. The cytopathological alterations in Bin-toxin-resistant larvae provoked by Cry48Aa/Cry49Aa treatment were similar to those observed when larvae were exposed to a synergistic mixture of Bin/Cry11Aa toxins. Such effects seemed to result from a combined action of Cry-like and Bin-like toxins. The complex effects caused by Cry48Aa/Cry49Aa provide evidence for the potential of these toxins as active ingredients of a new generation of biolarvicides that conjugate insecticidal factors with distinct sites of action, in order to manage mosquito resistance.
Collapse
|
49
|
A 1.1-kilobase region downstream of the bin operon in Bacillus sphaericus strain 2362 decreases bin yield and crystal size in strain 2297. Appl Environ Microbiol 2008; 75:878-81. [PMID: 19060165 DOI: 10.1128/aem.01444-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2297 strain of Bacillus sphaericus produces a crystal of the Bin (binary) toxin that is approximately fourfold larger than that of strain 2362, the strain currently used in VectoLex, a commercial mosquito larvicide. Comparison of the regions downstream from the bin operon in these two strains showed that strain 2362 contained a 1.6-kb region with four orf genes not found in strain 2297. Insertion of a 1.1-kb portion of this region from strain 2362 by homologous recombination downstream from the bin operon in strain 2297 reduced Bin toxin production by 50 to 70% and toxicity to fourth-instar larvae of Culex quinquefasciatus by 68%. These results suggest that the 1.6-kb region downstream from the bin operon in B. sphaericus 2362 is responsible for the lower Bin yield and smaller crystal size characteristic of this strain.
Collapse
|
50
|
Jones GW, Wirth MC, Monnerat RG, Berry C. The Cry48Aa-Cry49Aa binary toxin from Bacillus sphaericus exhibits highly restricted target specificity. Environ Microbiol 2008; 10:2418-24. [PMID: 18484999 PMCID: PMC3638318 DOI: 10.1111/j.1462-2920.2008.01667.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Cry48Aa/Cry49Aa binary toxin of Bacillus sphaericus was recently discovered by its ability to kill Culex quinquefasciatus mosquito larvae through a novel interaction between its two components. We have investigated the target specificity of this toxin and show it to be non-toxic to coleopteran, lepidopteran and other dipteran insects, including closely related Aedes and Anopheles mosquitoes. This represents an unusually restricted target range for crystal toxins from either B. sphaericus or Bacillus thuringiensis. Gut extracts from Culex and Aedes larvae show differential processing of the Cry48Aa protein, with the location of cleavage sites in Culex reflecting those previously shown for the activation of Cry4 toxins in mosquitoes. Pre-activation of Cry48Aa/Cry49Aa with Culex extracts, however, fails to induce toxicity to Aedes larvae. Co-administration of Cry49Aa with Cry4Aa gives higher than predicted toxicity, perhaps suggesting weak synergism against Culex larvae between Cry49Aa and other three-domain Cry toxins.
Collapse
Affiliation(s)
- Gareth W Jones
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK
| | | | | | | |
Collapse
|