1
|
Zhang W, Cao L, Yang J, Zhang S, Zhao J, Shi Z, Liao K, Wang H, Chen B, Qian Z, Xu H, Wu L, Liu H, Wang H, Ma C, Qiu Y, Ge J, Chen J, Lin Y. AEP-cleaved DDX3X induces alternative RNA splicing events to mediate cancer cell adaptation in harsh microenvironments. J Clin Invest 2023; 134:e173299. [PMID: 37988165 PMCID: PMC10849765 DOI: 10.1172/jci173299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Oxygen and nutrient deprivation are common features of solid tumors. Although abnormal alternative splicing (AS) has been found to be an important driving force in tumor pathogenesis and progression, the regulatory mechanisms of AS that underly the adaptation of cancer cells to harsh microenvironments remain unclear. Here, we found that hypoxia- and nutrient deprivation-induced asparagine endopeptidase (AEP) specifically cleaved DDX3X in a HIF1A-dependent manner. This cleavage yields truncated carboxyl-terminal DDX3X (tDDX3X-C), which translocates and aggregates in the nucleus. Unlike intact DDX3X, nuclear tDDX3X-C complexes with an array of splicing factors and induces AS events of many pre-mRNAs; for example, enhanced exon skipping (ES) in exon 2 of the classic tumor suppressor PRDM2 leads to a frameshift mutation of PRDM2. Intriguingly, the isoform ARRB1-Δexon 13 binds to glycolytic enzymes and regulates glycolysis. By utilizing in vitro assays, glioblastoma organoids, and animal models, we revealed that AEP/tDDX3X-C promoted tumor malignancy via these isoforms. More importantly, high AEP/tDDX3X-C/ARRB1-Δexon 13 in cancerous tissues was tightly associated with poor patient prognosis. Overall, our discovery of the effect of AEP-cleaved DDX3X switching on alternative RNA splicing events identifies a mechanism in which cancer cells adapt to oxygen and nutrient shortages and provides potential diagnostic and/or therapeutic targets.
Collapse
Affiliation(s)
- Wenrui Zhang
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Zhang
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianyi Zhao
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonggang Shi
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keman Liao
- Brain Injury Center, Shanghai Institute of Head Trauma and
| | - Haiwei Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Binghong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhongrun Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China
| | - Haoping Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linshi Wu
- Department of Biliary-Pancreatic Surgery and
| | - Hua Liu
- Department of General Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Wang
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Qiu
- Brain Injury Center, Shanghai Institute of Head Trauma and
| | - Jianwei Ge
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Lin
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Liu T, Ma Y, Yin Q, Zhou H, Fang Y. Association of β-arrestin1 and p53-Mdm2 signaling in the development of missed abortion. J Obstet Gynaecol Res 2021; 47:1675-1685. [PMID: 33611816 DOI: 10.1111/jog.14643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Missed abortion is a peculiar form of spontaneous abortion before 20 weeks' gestation. The definite etiology and pathogenesis are not fully understood. Recent studies have demonstrated that p53/Mdm2-mediated ubiquitination of the IGF-1R may be closely related to G-protein-coupled receptor kinases (GRK)/β-arrestin1 system. Our previous studies have confirmed that the elevated expression of p53 and Mdm2 may be responsible for apoptosis during missed abortion. However, there was no information surrounding β-arrestin1 in missed abortion. METHODS The mRNA levels of β-arrestin1 in villous samples of 30 missed abortion patients and 31 healthy controls were determined by real-time quantitative polymerase chain reaction (PCR). Immunohistochemistry was used to explore the expression and location of β-arrestin1, p53, Mdm2, VEGF and HIF-lα in trophoblasts. Transwell assays were performed to examine the influences of β-arrestin1 expression on cell invasion. Furthermore, we tested the effect of β-arrestin1 on the expression of p53, Mdm2, ERK, AKT and NF-κB. RESULTS The expression of β-arrestin1 in the villous samples of missed abortion group was dramatically lower than control group by quantitative real-time-PCR and immunohistochemistry. Furthermore, the patients with missed abortion showed significantly higher levels of p53, Mdm2, HIF-lα and lower level of VEGF than healthy controls by immunohistochemistry. Functional studies showed that suppression of β-arrestin1 in HTR-8 cells inhibited cell invasion. The protein expressions of ERK and AKT in HTR-8 cells were significantly downregulated by reducing the expression of β-arrestin1, while the expressions of p53, Mdm2, NF-κB were enhanced. Overexpression of β-arrestin1 exhibited the adverse effect. CONCLUSION Our data indicated that β-arrestin1 play an important role in maintaining the maternal-fetal tolerance, the decreased expression of β-arrestin1 in the villous samples may be related with the development of missed abortion.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuyan Ma
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qihui Yin
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huanyu Zhou
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Fang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
4
|
Identification of beta-arrestin-1 as a diagnostic biomarker in lung cancer. Br J Cancer 2018; 119:580-590. [PMID: 30078843 PMCID: PMC6162208 DOI: 10.1038/s41416-018-0200-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023] Open
Abstract
Background Distinguishing lung adenocarcinoma (ADC) from squamous cell carcinoma (SCC) has a tremendous therapeutic implication. Sometimes, the commonly used immunohistochemistry (IHC) markers fail to discriminate between them, urging for the identification of new diagnostic biomarkers. Methods We performed IHC on tissue microarrays from two cohorts of lung cancer patients to analyse the expression of beta-arrestin-1, beta-arrestin-2 and clinically used diagnostic markers in ADC and SCC samples. Logistic regression models were applied for tumour subtype prediction. Parallel reaction monitoring (PRM)-based mass spectrometry was used to quantify beta-arrestin-1 in plasma from cancer patients and healthy donors. Results Beta-arrestin-1 expression was significantly higher in ADC versus SCC samples. Beta-arrestin-1 displayed high sensitivity, specificity and negative predictive value. Its usefulness in an IHC panel was also shown. Plasma beta-arrestin-1 levels were considerably higher in lung cancer patients than in healthy donors and were higher in patients who later experienced a progressive disease than in patients showing complete/partial response following EGFR inhibitor therapy. Conclusions Our data identify beta-arrestin-1 as a diagnostic marker to differentiate ADC from SCC and indicate its potential as a plasma biomarker for non-invasive diagnosis of lung cancer. Its utility to predict response to EGFR inhibitors is yet to be confirmed.
Collapse
|
5
|
Masannat J, Purayil HT, Zhang Y, Russin M, Mahmud I, Kim W, Liao D, Daaka Y. βArrestin2 Mediates Renal Cell Carcinoma Tumor Growth. Sci Rep 2018; 8:4879. [PMID: 29559707 PMCID: PMC5861056 DOI: 10.1038/s41598-018-23212-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
Renal Cell Carcinoma (RCC) is one of the most lethal urological cancers worldwide. The disease does not present early clinical symptoms and is commonly diagnosed at an advanced stage. Limited molecular drivers have been identified for RCC, resulting in the lack of effective treatment for patients with progressive disease. Ubiquitous βArrestin2 (βArr2) is well established for its function in the desensitization and trafficking of G protein-coupled receptors. More recently, βArr2 has been implicated in the regulation of fundamental cellular functions, including proliferation and invasion. We used bioinformatic and genetic approaches to determine role of βArr2 in RCC tumor growth. Analysis of published human datasets shows that ARRB2 (gene encoding βArr2) expression is increased in RCC tumor compared to normal tissue and that high levels of ARRB2 correlate with worse patient survival. Experimentally, we show that knockout of ARRB2 decreases rate of RCC cell proliferation and migration in vitro and xenograft tumor growth in animals. Mechanistically, βArr2 regulates c-Src activity, Cyclin A expression and cell cycle progression that are involved in tumor growth. These results show that βArr2 is a critical regulator of RCC tumor growth and suggest its utility as a potential marker and drug target to treat advanced disease.
Collapse
Affiliation(s)
- Jude Masannat
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.,Moffitt Cancer Center, Tampa, FL, USA
| | - Hamsa Thayele Purayil
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Yushan Zhang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.,Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Michelle Russin
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Iqbal Mahmud
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Wanju Kim
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
|
7
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Seo SK, Kim N, Lee JH, Kim SM, Lee SY, Bae JW, Hwang KK, Kim DW, Koch WJ, Cho MC. β-arrestin2 Affects Cardiac Progenitor Cell Survival through Cell Mobility and Tube Formation in Severe Hypoxia. Korean Circ J 2018; 48:296-309. [PMID: 29625512 PMCID: PMC5889979 DOI: 10.4070/kcj.2017.0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives β-arrestin2 (β-arr2) basically regulates multiple signaling pathways in mammalian cells by desensitization and internalization of G-protein coupled receptors (GPCRs). We investigated impacts of β-arr2 on survival, mobility, and tube formation of cardiac progenitor cells (CPCs) obtained from wild-type (WT) mouse (CPC-WT), and β-arr2 knock-out (KO) mouse (CPC-KO) cultured in presence or absence of serum and oxygen as non-canonical roles in GPCR system. Methods CPCs were cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 -based media containing fetal bovine serum and growth factors. Survival of 2 types of CPCs in hypoxia and/or serum deprivation was measured by fluorescence-activated cell sorting. Wound healing ability, and tube formation ability on Matrigel of 2 kinds of CPCs were compared in normoxic and hypoxic cultures. Protein expression related to survival and mobility were measured with the Western blot for each culture conditions. Results CPC-KO showed significantly worse mobility in the wound healing assay and in tube formation on Matrigel especially in hypoxic culture than did the CPC-WT. Also, CPC-KO showed significantly higher apoptosis fraction in both normoxic and hypoxic cultures than did the CPC-WT. Expression of proteins associated with cell survival and mobility, e.g., protein kinase B (Akt), β-catenin, and glycogen synthase kinase-3β (GSK-3β) was significantly worse in CPC-KO. Conclusions The CPC-KO had significantly worse cell mobility, tube formation ability, and survival than the CPC-WT, especially in the hypoxic cultures. Apparently, β-arr2 is important on CPC survival by means of mobility and tube formation in myocardial ischemia.
Collapse
Affiliation(s)
- Seul Ki Seo
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Nari Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ju Hee Lee
- Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Min Kim
- Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Yeub Lee
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Jang Whan Bae
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea. .,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Kyung Kuk Hwang
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Dong Woon Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Myeong Chan Cho
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
9
|
Shankar S, Faheem MM, Nayak D, Wani NA, Farooq S, Koul S, Goswami A, Rai R. Cyclodipeptide c(Orn-Pro) Conjugate with 4-Ethylpiperic Acid Abrogates Cancer Cell Metastasis through Modulating MDM2. Bioconjug Chem 2017; 29:164-175. [DOI: 10.1021/acs.bioconjchem.7b00670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sudha Shankar
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| | | | - Debasis Nayak
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| | | | | | | | - Anindya Goswami
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| | - Rajkishor Rai
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| |
Collapse
|
10
|
Song Q, Ji Q, Li Q. The role and mechanism of β‑arrestins in cancer invasion and metastasis (Review). Int J Mol Med 2017; 41:631-639. [PMID: 29207104 PMCID: PMC5752234 DOI: 10.3892/ijmm.2017.3288] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 01/30/2023] Open
Abstract
β-arrestins are a family of adaptor proteins that regulate the signaling and trafficking of various G protein-coupled receptors (GPCRs). They consist of β-arrestin1 and β-arrestin2 and are considered to be scaffolding proteins. β-arrestins regulate cell proliferation, promote cell invasion and migration, transmit anti-apoptotic survival signals and affect other characteristics of tumors, including tumor growth rate, angiogenesis, drug resistance, invasion and metastatic potential. It has been demonstrated that β-arrestins serve roles in various physiological and pathological processes and exhibit a similar function to GPCRs. β-arrestins serve primary roles in cancer invasion and metastasis via various signaling pathways. The present review assessed the function and mechanism of β-arrestins in cancer invasion and metastasis via multiple signaling pathways, including mitogen-activated protein kinase/extracellular signal regulated kinase, Wnt/β-catenin, nuclear factor-κB and phosphoinositide-3 kinase/Akt.
Collapse
Affiliation(s)
- Qing Song
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
11
|
Yan H, Li H, Denney J, Daniels C, Singh K, Chua B, Stuart C, Caudle Y, Hamdy R, LeSage G, Yin D. β-arrestin 2 attenuates cardiac dysfunction in polymicrobial sepsis through gp130 and p38. Biochem Biophys Rep 2016; 7:130-137. [PMID: 27957549 PMCID: PMC5147748 DOI: 10.1016/j.bbrep.2016.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sepsis is an exaggerated systemic inflammatory response to persistent bacteria infection with high morbidity and mortality rate clinically. β-arrestin 2 modulates cell survival and cell death in different systems. However, the effect of β-arrestin 2 on sepsis-induced cardiac dysfunction is not yet known. Here, we show that β-arrestin 2 overexpression significantly enhances animal survival following cecal ligation and puncture (CLP)-induced sepsis. Importantly, overexpression of β-arrestin 2 in mice prevents CLP-induced cardiac dysfunction. Also, β-arrestin 2 overexpression dramatically attenuates CLP-induced myocardial gp130 and p38 mitogen-activated protein kinase (MAPK) phosphorylation levels following CLP. Therefore, β-arrestin 2 prevents CLP-induced cardiac dysfunction through gp130 and p38. These results suggest that modulation of β-arrestin 2 might provide a novel therapeutic approach to prevent cardiac dysfunction in patients with sepsis.
Collapse
Affiliation(s)
- Hui Yan
- Departments of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Hui Li
- Departments of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - James Denney
- Departments of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Christopher Daniels
- Biomedical Sciences, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Krishna Singh
- Biomedical Sciences, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Balvin Chua
- Cecile Cox Quillen Laboratory of Geriatrics, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Charles Stuart
- Departments of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yi Caudle
- Departments of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ronald Hamdy
- Cecile Cox Quillen Laboratory of Geriatrics, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Gene LeSage
- Departments of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Deling Yin
- Departments of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Corresponding author.
| |
Collapse
|
12
|
Yang Y, Guo Y, Tan S, Ke B, Tao J, Liu H, Jiang J, Chen J, Chen G, Wu B. β-Arrestin1 enhances hepatocellular carcinogenesis through inflammation-mediated Akt signalling. Nat Commun 2015; 6:7369. [PMID: 26077142 DOI: 10.1038/ncomms8369] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/01/2015] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCR) constitute the largest known superfamily for signal transduction and transmission, and they control a variety of physiological and pathological processes. GPCR adaptor β-arrestins (ARRBs) play a role in cancerous proliferation. However, the effect of ARRBs in inflammation-mediated hepatocellular carcinogenesis is unknown. Here we show that ARRB1, but not ARRB2, is upregulated in inflammation-associated hepatocellular carcinoma (HCC) and paracancerous tissues in humans. A genotoxic carcinogen, diethylnitrosamine (DEN), significantly induces hepatic inflammation, TNF-α production and ARRB1 expression. Although ARRB1 deficiency does not affect hepatic inflammation and TNF-α production, it markedly represses hepatocellular carcinogenesis by suppressing malignant proliferation in DEN-treated mice. Furthermore, TNF-α directly induces hepatic ARRB1 expression and enhances ARRB1 interaction with Akt by binding to boost Akt phosphorylation, resulting in malignant proliferation of liver cells. Our data suggest that ARRB1 enhances hepatocellular carcinogenesis by inflammation-mediated Akt signalling and that ARRB1 may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yidong Yang
- 1] Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China [2] Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, 510630, China
| | - Yunwei Guo
- 1] Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China [2] Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, 510630, China
| | - Siwei Tan
- 1] Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China [2] Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, 510630, China
| | - Bilun Ke
- 1] Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China [2] Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, 510630, China
| | - Jin Tao
- 1] Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China [2] Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, 510630, China
| | - Huiling Liu
- 1] Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China [2] Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, 510630, China
| | - Jie Jiang
- 1] Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China [2] Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, 510630, China
| | - Jianning Chen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China
| | - Guihua Chen
- 1] Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, 510630, China [2] Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China
| | - Bin Wu
- 1] Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, 510630, China [2] Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, 510630, China
| |
Collapse
|
13
|
Comparative analysis of cigarette smoke induced cellular proteome distributions on bovine aortic endothelial cells. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Arrestin2 modulates androgen receptor activation. Oncogene 2014; 34:3144-51. [PMID: 25109335 DOI: 10.1038/onc.2014.252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/15/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022]
Abstract
Androgen receptor (AR) has a pivotal role in the growth and survival of prostate cancer (PCa). Arrestin2 (Arr2) is a ubiquitous scaffolding/adaptor protein first characterized as a regulator of G protein-coupled receptor signaling. In this study, we report that Arr2 additionally functions as a positive regulator of AR expression and function in PCa cells. Expression level of Arr2 correlates with that of AR, and knockdown of Arr2 inhibits the expression of AR and its effectors prostate-specific antigen, transmembrane protease serine 2, FK506-binding protein 51 and fatty acid synthase. Mechanistically, the knockdown of Arr2 attenuates the binding of AR to androgen response elements and consequently decreases transcription of AR-regulated genes. The inhibition of AR by Arr2 knockdown occurs in both androgen-dependent and castration-resistant PCa (CRPC) cells, although the effect is more prominent in CRPC. Arr2 knockdown inhibits the in vitro CRPC cell proliferation, prostasphere growth and invasion, as well as the in vivo prostate tumor formation, local invasion and distant metastasis. These results illustrate a new role for Arr2 in the expression and activation of AR and its potential relevance as a target for therapeutic intervention and monitoring of disease progression.
Collapse
|
15
|
β-Arrestin1 promotes the progression of chronic myeloid leukaemia by regulating BCR/ABL H4 acetylation. Br J Cancer 2014; 111:568-76. [PMID: 24937675 PMCID: PMC4119990 DOI: 10.1038/bjc.2014.335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/31/2014] [Accepted: 05/15/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND β-Arrestins are scaffold proteins that interact with various cellular signals. Although β-arrestin2 mediates the initiation and progression of myeloid leukaemia, the critical role of β-arrestin1 in the chronic myeloid leukaemia (CML) is still unknown. The aim of this study is to investigate the essential function of β-arrestin1 in CML. METHODS The expressions of β-arrestin1 and BCR/ABL in CML patients, animal models and K562 cells were measured by RT-PCR, immunofluorescence and western blotting. The effect of β-arrestin1 on CML animal models and K562 cells by colony formation, MTT and survival analysis were assessed. BCR/ABL H4 acetylation was analysed through the use of Chromatin-immunoprecipitation (ChIP) -on-chip and confirmed by ChIP respectively. Co-immunoprecipitation and confocal were examined for the binding of β-arrestin1 with enhancer of zeste homologue 2 (EZH2). RESULTS The higher expression of β-arrestin1 is positively correlated with clinical phases of CML patients. Depletion of β-arrestin1 decelerates progression of K562 and primary cells, and increases survival of CML mice. Importantly, silenced β-arrestin1 results in the decrease of BCR/ABL H4 acetylation level in K562 cells. Further data illustrate that nuclear β-arrestin1 binds to EZH2 to mediate BCR/ABL acetylation and thus regulates cell progression in K562 cells and the survival of CML mice. CONCLUSIONS Our findings reveal a novel function of β-arrestin1 binding to EZH2 to promote CML progression by regulating BCR/ABL H4 acetylation.
Collapse
|
16
|
Abstract
Non-visual arrestins were initially appreciated for the roles they play in the negative regulation of G protein-coupled receptors through the processes of desensitisation and endocytosis. The arrestins are also now known as protein scaffolding platforms that act downstream of multiple types of receptors, ensuring relevant transmission of information for an appropriate cellular response. They function as regulatory hubs in several important signalling pathways that are often dysregulated in human cancers. Interestingly, several recent studies have documented changes in expression and localisation of arrestins that occur during cancer progression and that correlate with clinical outcome. Here, we discuss these advances and how changes in expression/localisation may affect functional outputs of arrestins in cancer biology.
Collapse
|
17
|
MDM2 promotes invasion and metastasis in invasive ductal breast carcinoma by inducing matrix metalloproteinase-9. PLoS One 2013; 8:e78794. [PMID: 24236052 PMCID: PMC3827260 DOI: 10.1371/journal.pone.0078794] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/16/2013] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanisms that underpin invasive ductal breast cancer (IDC) invasion and metastasis are incompletely understood. The oncogene, mouse double minute 2 (MDM2), has been implicated in the pathogenesis of numerous cancers, where it stimulates the expression of matrix metalloproteinase 9 (MMP9), an important enzyme in the breakdown of the extracellular matrix. However, its role in breast cancer remains poorly understood. This study assessed the clinical significance of MDM2 expression in IDC and used in vitro expression assays to determine the molecular roles of MDM2. Immunohistochemical staining for MMP9 and MDM2 was performed using archived tumor blocks from 321 women who underwent surgical resection for IDC at the First Affiliated Hospital of Nanjing Medical University, China between January 2002 and December 2003. MCF-7 and MDA-MD-231 cell lines were transfected with siRNA targeted against MDM2, or MDM2 was overexpressed using transiently expressed vectors. The invasion, cell migration and proteolytic capabilities of cells that over- or underexpressed MDM2 was then assessed and compared against control cells, in addition to the consequent effects on MMP9 expression using RT-PCR. In vivo, 54.9% and 49.6% of samples were positive for MMP9 and MDM2 expression, respectively, and their expression was significantly correlated (r2 = 0.171, P = 0.012). Moreover, MDM2 expression was markedly correlated with disease-free survival (HR 2.56, 95% CI 1.02–6.40, P = 0.038). In vitro, MDM2 overexpression significantly enhanced cell invasion, migration and proteolysis compared with control cells, and the converse effects were observed after MDM2-siRNA treatment. MDM2 overexpression induced MMP9 expression in a dose-dependent manner. Taken together, these results suggest that high levels of MDM2 are associated with a poorer prognosis in IDC. This might result from increased tumor invasiveness due to enhanced MMP9 expression causing increased extracellular matrix breakdown.
Collapse
|
18
|
Philip B, Ito K, Moreno-Sánchez R, Ralph SJ. HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis 2013; 34:1699-707. [PMID: 23740838 DOI: 10.1093/carcin/bgt209] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hypoxic microenvironments frequently exist in many solid tumours with oxygen levels fluctuating temporally and spatially from normoxia to hypoxia. The response to hypoxia in human cells is mainly regulated by hypoxia-inducible factors (HIFs), a family of transcription factors which orchestrate signalling events leading to angiogenesis and tumorigenesis. Several events conspire together to lead to the stabilization of HIF-α, commonly expressed in many cancer cell types. These events can result from low oxygen tensions occurring within the expanding tumour mass to produce hypoxic microenvironments or from mutations whereby the HIFs cause changes in expression of genes involved in several cellular functions. Hypoxia-mediated HIF-α regulation has gained significant prominence in tumour biology over recent years, and the hypoxic microenvironments have been shown to facilitate and trigger major molecular and immunological processes necessary to drive the progression of tumours to malignancy. More recently, it has been realized that the hypoxic microenvironments also play significant roles in shielding tumour cells from immune attack by promoting immune suppression. In addition, the hypoxic microenvironment promotes many other oncogenic events, such as the metabolic reconfiguration of tumour cells, neovascularization, epithelial to mesenchymal transition (EMT), and cancer stem cell renewal and accumulation. This article reviews the molecular mechanisms underlying tumour hypoxia and their pro-tumour contributions, such as immune suppression, development of nascent and more permeable tumour vasculature, selective cancer stem cell renewal, accumulation, mobilization and promotion of EMT leading to tumour cell metastasis.
Collapse
Affiliation(s)
- Beatrice Philip
- School of Medical Sciences, Griffith University, Gold Coast Campus, Parklands, Queensland 4222, Australia
| | | | | | | |
Collapse
|
19
|
Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, Babwah AV, Bhattacharya M. β-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One 2013; 8:e56174. [PMID: 23405264 PMCID: PMC3566084 DOI: 10.1371/journal.pone.0056174] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/07/2013] [Indexed: 12/29/2022] Open
Abstract
β-Arrestins play critical roles in chemotaxis and cytoskeletal reorganization downstream of several receptor types, including G protein-coupled receptors (GPCRs), which are targets for greater than 50% of all pharmaceuticals. Among them, receptors for lysophosphatidic acid (LPA), namely LPA(1) are overexpressed in breast cancer and promote metastatic spread. We have recently reported that β-arrestin2 regulates LPA(1)-mediated breast cancer cell migration and invasion, although the underlying molecular mechanisms are not clearly understood. We show here that LPA induces activity of the small G protein, Rap1 in breast cancer cells in a β-arrestin2-dependent manner, but fails to activate Rap1 in non-malignant mammary epithelial cells. We found that Rap1A mRNA levels are higher in human breast tumors compared to healthy patient samples and Rap1A is robustly expressed in human ductal carcinoma in situ and invasive tumors, in contrast to the normal mammary ducts. Rap1A protein expression is also higher in aggressive breast cancer cells (MDA-MB-231 and Hs578t) relative to the weakly invasive MCF-7 cells or non-malignant MCF10A mammary cells. Depletion of Rap1A expression significantly impaired LPA-stimulated migration of breast cancer cells and invasiveness in three-dimensional Matrigel cultures. Furthermore, we found that β-arrestin2 associates with the actin binding protein IQGAP1 in breast cancer cells, and is necessary for the recruitment of IQGAP1 to the leading edge of migratory cells. Depletion of IQGAP1 blocked LPA-stimulated breast cancer cell invasion. Finally, we have identified that LPA enhances the binding of endogenous Rap1A to β-arrestin2, and also stimulates Rap1A and IQGAP1 to associate with LPA(1). Thus our data establish novel roles for Rap1A and IQGAP1 as critical regulators of LPA-induced breast cancer cell migration and invasion.
Collapse
MESH Headings
- Apoptosis/drug effects
- Arrestins/genetics
- Arrestins/metabolism
- Blotting, Western
- Breast/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Adhesion/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chemotaxis/drug effects
- Female
- Humans
- Immunoenzyme Techniques
- Lysophospholipids/pharmacology
- Neoplasm Invasiveness
- Neoplasm Staging
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Shelterin Complex
- Signal Transduction/drug effects
- Telomere-Binding Proteins/genetics
- Telomere-Binding Proteins/metabolism
- beta-Arrestins
- ras GTPase-Activating Proteins/antagonists & inhibitors
- ras GTPase-Activating Proteins/genetics
- ras GTPase-Activating Proteins/metabolism
Collapse
Affiliation(s)
- Mistre Alemayehu
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Magdalena Dragan
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Cynthia Pape
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Iram Siddiqui
- Department of Pathology, Western University, London, Ontario, Canada
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Andy V. Babwah
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- The Children’s Health Research Institute, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynecology, Western University, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Sobolesky PM, Moussa O. The Role of β-Arrestins in Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:395-411. [DOI: 10.1016/b978-0-12-394440-5.00015-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Baker M, Robinson SD, Lechertier T, Barber PR, Tavora B, D'Amico G, Jones DT, Vojnovic B, Hodivala-Dilke K. Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 2011; 7:89-104. [PMID: 22193302 DOI: 10.1038/nprot.2011.435] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here we provide a protocol for quantitative three-dimensional ex vivo mouse aortic ring angiogenesis assays, in which developing microvessels undergo many key features of angiogenesis over a timescale similar to that observed in vivo. The aortic ring assay allows analysis of cellular proliferation, migration, tube formation, microvessel branching, perivascular recruitment and remodeling-all without the need for cellular dissociation-thus providing a more complete picture of angiogenic processes compared with traditional cell-based assays. Our protocol can be applied to aortic rings from embryonic stage E18 through to adulthood and can incorporate genetic manipulation, treatment with growth factors, drugs or siRNA. This robust assay allows assessment of the salient steps in angiogenesis and quantification of the developing microvessels, and it can be used to identify new modulators of angiogenesis. The assay takes 6-14 d to complete, depending on the age of the mice, treatments applied and whether immunostaining is performed.
Collapse
Affiliation(s)
- Marianne Baker
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu JG, Song SW, Shu H, Fan SJ, Liu AJ, Liu C, Guo W, Guo JM, Miao CY, Su DF. Baroreflex deficiency hampers angiogenesis after myocardial infarction via acetylcholine-α7-nicotinic ACh receptor in rats. Eur Heart J 2011; 34:2412-20. [PMID: 21849351 DOI: 10.1093/eurheartj/ehr299] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Angiogenesis is critical for re-establishing blood supply to ischaemic myocardium after myocardial infarction (MI). Human studies have associated arterial baroreflex (ABR) deficiency with higher rate of sudden death after MI. The present work was designed to examine whether ABR deficiency affects angiogenesis in MI rats. METHODS AND RESULTS Baroreflex sensitivity (BRS) was determined in conscious rats at 1 month after occlusion of the left anterior descending coronary artery. The survival time was significantly shorter in Sprague-Dawley rats with BRS <0.60 ms/mmHg vs. those with BRS ≥0.60 ms/mmHg. Sinoaortic denervation destroyed ABR, and decreased capillary density, regional blood flow and vascular endothelial growth factor (VEGF) concentration after MI. Ketanserin (0.6 mg/kg/day) enhanced BRS, and increased capillary density, regional blood flow, and VEGF. Sinoaortic denervation also reduced the expression of vesicular acetylcholine (ACh) transporter and α7-nicotinic ACh receptor (α7-nAChR). Angiogenesis after MI was significantly attenuated in α7-nAChR knockout mice. In contrast, increase in endogenous ACh with cholinesterase inhibitor pyridostigmine (30 mg/kg/day) increased angiogenesis after MI. In cultured cardiac microvascular endothelial cells, ACh stimulated the expression of VEGF, phosphorylation of VEGF receptor 2, and tube formation in a manner dependent upon α7-nAChR. CONCLUSION Our results demonstrated that ABR deficiency could attenuate angiogenesis in ischaemic myocardium. These findings provide further mechanistic basis for enhancing baroreflex function in the treatment of MI.
Collapse
Affiliation(s)
- Jian-Guang Yu
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stromal expression of β-arrestin-1 predicts clinical outcome and tamoxifen response in breast cancer. J Mol Diagn 2011; 13:340-51. [PMID: 21497294 DOI: 10.1016/j.jmoldx.2011.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/28/2010] [Accepted: 01/31/2011] [Indexed: 12/28/2022] Open
Abstract
The G-protein coupled receptor associated protein β-arrestin-1 is crucial for the regulation of numerous biological processes involved in cancer progression, such as intracellular signaling and cell motility. The encoding gene ARRB1 is harbored in the same chromosomal region as the CCND1 gene (11q13). Amplification of CCND1, frequently encountered in breast cancer, often involves coamplification of additional oncogenes, as well as deletion of distal 11q genes. We investigated the clinical relevance of β-arrestin-1 in breast cancer and elucidated a potential link between β-arrestin-1 expression and CCND1 amplification. β-Arrestin-1 protein expression was evaluated in two breast cancer patient cohorts, comprising 179 patients (cohort I) and 500 patients randomized to either tamoxifen or no adjuvant treatment (cohort II). Additionally, migration after β-arrestin-1 overexpression or silencing was monitored in two breast cancer cell lines. Overexpression of β-arrestin-1 reduced the migratory propensity of both cell lines, whereas silencing increased migration. In cohort I, high expression of stromal β-arrestin-1 was linked to reduced patient survival, whereas in cohort II both high and absent stromal expression predicted a poor clinical outcome. Patients exhibiting low or moderate levels of stromal β-arrestin-1 did not benefit from tamoxifen, in contrast to patients exhibiting absent or high expression. Furthermore, CCND1 amplification was inversely correlated with tumor cell expression of β-arrestin-1, indicating ARRB1 gene deletion in CCND1-amplified breast cancers.
Collapse
|
24
|
Zajac M, Law J, Cvetkovic DD, Pampillo M, McColl L, Pape C, Di Guglielmo GM, Postovit LM, Babwah AV, Bhattacharya M. GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One 2011; 6:e21599. [PMID: 21738726 PMCID: PMC3125256 DOI: 10.1371/journal.pone.0021599] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 06/04/2011] [Indexed: 11/25/2022] Open
Abstract
Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness.
Collapse
Affiliation(s)
- Mateusz Zajac
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Jeffrey Law
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Dragana Donna Cvetkovic
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Macarena Pampillo
- The Children's Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | - Lindsay McColl
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Cynthia Pape
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Lynne M. Postovit
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Andy V. Babwah
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- The Children's Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
β-arrestin1 mediates metastatic growth of breast cancer cells by facilitating HIF-1-dependent VEGF expression. Oncogene 2011; 31:282-92. [PMID: 21685944 PMCID: PMC3179824 DOI: 10.1038/onc.2011.238] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β-Arrestins 1 and 2 are multifunctional adaptor proteins originally discovered for their role in desensitizing seven-transmembrane receptor signaling via the heterotrimeric guanine nucleotide-binding proteins. Recently identified roles of β-arrestins include regulation of cancer cell chemotaxis and proliferation. Herein, we report that β-arrestin1 expression regulates breast tumor colonization in nude mice and cancer cell viability during hypoxia. β-Arrestin1 robustly interacts with nuclear hypoxia-induced factor-1α (HIF-1α) that is stabilized during hypoxia and potentiates HIF-1-dependent transcription of the angiogenic factor vascular endothelial growth factor-A (VEGF-A). Increased expression of β-arrestin1 in human breast cancer (infiltrating ductal carcinoma or IDC and metastatic IDC) correlates with increased levels of VEGF-A. While the anti-angiogenic drug thalidomide inhibits HIF-1-dependent VEGF transcription in breast carcinoma cells, it does not prevent HIF-1α stabilization, but leads to aberrant localization of HIF-1α to the perinuclear compartments and surprisingly stimulates nuclear export of β-arrestin1. Additionally, imatinib mesylate that inhibits release of VEGF induces nuclear export of β-arrestin1-HIF-1α complexes. Our findings suggest that β-arrestin1 regulates nuclear signaling during hypoxia to promote survival of breast cancer cells via VEGF signaling and that drugs that induce its translocation from the nucleus to the cytoplasm could be useful in anti-angiogenic and breast cancer therapies.
Collapse
|
26
|
Elevated β-arrestin1 expression correlated with risk stratification in acute lymphoblastic leukemia. Int J Hematol 2011; 93:494-501. [PMID: 21479985 DOI: 10.1007/s12185-011-0824-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/22/2011] [Accepted: 03/22/2011] [Indexed: 01/15/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the main subtype of childhood leukemia. Risk stratification is pivotal for ALL prognosis and individualized therapy. The current factors for risk stratification include clinical and laboratory features, cytogenetic characteristics of the blast, early response to chemotherapy, and genetic factors. Analyses of gene expression are becoming increasingly important in ALL risk stratification. β-Arrestin1, a multifunctional scaffold protein mediating many intracellular signaling networks, has been shown to be involved in many tumors. However, little is known of β-arrestin1 in leukemia. In this study, we found that β-arrestin1 was significantly elevated in 155 newly diagnosed ALL patients, compared with 51 controls. Further analysis showed that β-arrestin1 expression was positively related with risk classification and white blood cell count in ALL. Moreover, expression of Notch1, an essential gene for developing hematological cells and T-ALL, was found to be negatively correlated with β-arrestin1 in ALL. In conclusion, β-arrestin1 may be a useful predictor of risk stratification and prognosis of ALL, and thus of potential use in the design of individualized therapy strategies.
Collapse
|
27
|
Differential expression of arrestins is a predictor of breast cancer progression and survival. Breast Cancer Res Treat 2011; 130:791-807. [PMID: 21318602 DOI: 10.1007/s10549-011-1374-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/23/2011] [Indexed: 01/15/2023]
Abstract
Emerging evidence has implicated G protein-coupled receptors, such as CXCR4 and PAR2, in breast cancer progression and the development of metastatic breast cancer. However, the role of proteins that regulate the function of these receptors, such as arrestins, in breast cancer has yet to be determined. Examination of the expression of the two nonvisual arrestins, arrestin2 and 3, in various breast cancer cell lines revealed comparable expression of arrestin3 in basal and luminal lines while arrestin2 expression was much higher in the luminal lines compared to the more aggressive basal lines. Analysis of normal human breast tissue revealed that arrestin2 and 3 were expressed in both luminal and myoepithelial cells of mammary epithelia with arrestin2 highest in myoepithelial cells and arrestin3 comparable in both cell types. Quantitative immunofluorescence-based examination of primary breast tumors revealed that arrestin2 expression significantly decreased with cancer progression from ductal carcinoma in situ to invasive carcinoma and further to lymph node metastasis (P < 0.001). Moreover, decreased arrestin2 expression was associated with decreased survival (P = 0.0007) as well as positive lymph node status and increased tumor size and nuclear grade. In contrast, arrestin3 expression significantly increased during breast cancer progression (P < 0.001) and increased expression was associated with decreased survival (P = 0.014). Arrestin3 was also an independent prognostic marker of breast cancer with a hazard ratio of 1.65. Overall, these studies demonstrate that arrestin2 levels decrease while arrestin3 levels increase during breast cancer progression and these changes correlate with a poor clinical outcome.
Collapse
|
28
|
Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med 2010; 17:126-39. [PMID: 21183406 DOI: 10.1016/j.molmed.2010.11.004] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/13/2010] [Accepted: 11/17/2010] [Indexed: 12/21/2022]
Abstract
Members of the seven-transmembrane receptor (7TMR), or G protein-coupled receptor (GPCR), superfamily represent some of the most successful targets of modern drug therapy, with proven efficacy in the treatment of a broad range of human conditions and disease processes. It is now appreciated that β-arrestins, once viewed simply as negative regulators of traditional 7TMR-stimulated G protein signaling, act as multifunctional adapter proteins that regulate 7TMR desensitization and trafficking and promote distinct intracellular signals in their own right. Moreover, several 7TMR biased agonists, which selectively activate these divergent signaling pathways, have been identified. Here we highlight the diversity of G protein- and β-arrestin-mediated functions and the therapeutic potential of selective targeting of these in disease states.
Collapse
Affiliation(s)
- Erin J Whalen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
29
|
Wu ZJ, Zhu Y, Huang DR, Wang ZQ. Constructing the HBV-human protein interaction network to understand the relationship between HBV and hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:146. [PMID: 21078198 PMCID: PMC2999591 DOI: 10.1186/1756-9966-29-146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/16/2010] [Indexed: 12/22/2022]
Abstract
Background Epidemiological studies have clearly validated the association between hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). Patients with chronic HBV infection are at increased risk of HCC, in particular those with active liver disease and cirrhosis. Methods We catalogued all published interactions between HBV and human proteins, identifying 250 descriptions of HBV and human protein interactions and 146 unique human proteins that interact with HBV proteins by text mining. Results Integration of this data set into a reconstructed human interactome showed that cellular proteins interacting with HBV are made up of core proteins that are interconnected with many pathways. A global analysis based on functional annotation highlighted the enrichment of cellular pathways targeted by HBV. Conclusions By connecting the cellular proteins targeted by HBV, we have constructed a central network of proteins associated with hepatocellular carcinoma, which might be to regard as the basis of a detailed map for tracking new cellular interactions, and guiding future investigations.
Collapse
Affiliation(s)
- Zhong-Jun Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | | | | | | |
Collapse
|
30
|
Zhang M, Liu X, Zhang Y, Zhao J. Loss of betaarrestin1 and betaarrestin2 contributes to pulmonary hypoplasia and neonatal lethality in mice. Dev Biol 2010; 339:407-17. [PMID: 20060823 DOI: 10.1016/j.ydbio.2009.12.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 12/25/2009] [Accepted: 12/30/2009] [Indexed: 12/13/2022]
Abstract
Less is known about the connection between the malfunction of betaarrestins and developmental defects as the mice with either of two betaarrestin isoforms knockout appear normal. In order to address the biological function of betaarrestins during developmental process, we generate betaarrestin1/2 double knockout mice. We found that betaarrestin1/2 dual-null mice developed respiratory distress and atelectasis that subsequently caused neonatal death. Morphological examination revealed type II pneumocyte immaturity. Our results indicate that not only betaarrestin1/2 double knockout lung tissue show disturbances in cell proliferation but betaarrestin1 and betaarrestin2 contribute to pulmonary surfactant complex generation during pulmonary maturation. Intra-amniotic delivery of recombinant adenovirus expressing betaarrestin1 or betaarrestin2 enhances surfactant-associated proteins synthesis in vivo. Our mRNA microarray data further reveal that betaarrestin1/2 double knockout results in downregulation of a significant proportion of genes involved in several lung morphogenesis processes. Together, our study demonstrates that betaarrestin1 and betaarrestin2 collaborate in embryonic development processes for epithelial pneumocyte differentiation and lung maturation.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, PR China
| | | | | | | |
Collapse
|
31
|
Borlido J, Zecchini V, Mills IG. Nuclear Trafficking and Functions of Endocytic Proteins Implicated in Oncogenesis. Traffic 2009; 10:1209-20. [DOI: 10.1111/j.1600-0854.2009.00922.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Li TT, Alemayehu M, Aziziyeh AI, Pape C, Pampillo M, Postovit LM, Mills GB, Babwah AV, Bhattacharya M. Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells. Mol Cancer Res 2009; 7:1064-77. [PMID: 19609003 DOI: 10.1158/1541-7786.mcr-08-0578] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The lipid mediator lysophosphatidic acid (LPA) plays a role in cancer progression and signals via specific G protein-coupled receptors, LPA(1-3). LPA has been shown to enhance the metastasis of breast carcinoma cells to bone. However, the mechanisms by which LPA receptors regulate breast cancer cell migration and invasion remain unclear. Breast cancer cell proliferation has been shown to be stimulated by Ral GTPases, a member of the Ras superfamily. Ral activity can be regulated by the multifunctional protein beta-arrestin. We now show that HS578T and MDA-MB-231 breast cancer cells and MDA-MB-435 melanoma cells have higher expression of beta-arrestin 1 mRNA compared with the nontumorigenic mammary MCF-10A cells. Moreover, we found that the mRNA levels of LPA1, LPA2, beta-arrestin 2, and Ral GTPases are elevated in the advanced stages of breast cancer. LPA stimulates the migration and invasion of MDA-MB-231 cells, but not of MCF-10A cells, and this is mediated by pertussis toxin-sensitive G proteins and LPA1. However, ectopic expression of LPA1 in MCF-10A cells caused these cells to acquire an invasive phenotype. Gene knockdown of either beta-arrestin or Ral proteins significantly impaired LPA-stimulated migration and invasion. Thus, our data show a novel role for beta-arrestin/Ral signaling in mediating LPA-induced breast cancer cell migration and invasion, two important processes in metastasis.
Collapse
Affiliation(s)
- Timothy T Li
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Beta-arrestin links endothelin A receptor to beta-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proc Natl Acad Sci U S A 2009; 106:2806-11. [PMID: 19202075 DOI: 10.1073/pnas.0807158106] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The activation of endothelin-A receptor (ET(A)R) by endothelin-1 (ET-1) has a critical role in ovarian tumorigenesis and progression. To define the molecular mechanism in ET-1-induced tumor invasion and metastasis, we focused on beta-arrestins as scaffold and signaling proteins of G protein-coupled receptors. Here, we demonstrate that, in ovarian cancer cells, beta-arrestin is recruited to ET(A)R to form two trimeric complexes: one through the interaction with Src leading to epithelial growth factor receptor (EGFR) transactivation and beta-catenin Tyr phosphorylation, and the second through the physical association with axin, contributing to release and inactivation of glycogen synthase kinase (GSK)-3beta and beta-catenin stabilization. The engagement of beta-arrestin in these two signaling complexes concurs to activate beta-catenin signaling pathways. We then demonstrate that silencing of both beta-arrestin-1 and beta-arrestin-2 inhibits ET(A)R-driven signaling, causing suppression of Src, mitogen-activated protein kinase (MAPK), AKT activation, as well as EGFR transactivation and a complete inhibition of ET-1-induced beta-catenin/TCF transcriptional activity and cell invasion. ET(A)R blockade with the specific ET(A)R antagonist ZD4054 abrogates the engagement of beta-arrestin in the interplay between ET(A)R and the beta-catenin pathway in the invasive program. Finally, ET(A)R is expressed in 85% of human ovarian cancers and is preferentially co-expressed with beta-arrestin-1 in the advanced tumors. In a xenograft model of ovarian metastasis, HEY cancer cells expressing beta-arrestin-1 mutant metastasize at a reduced rate, highlighting the importance of this molecule in promoting metastases. ZD4054 treatment significantly inhibits metastases, suggesting that specific ET(A)R antagonists, by disabling multiple signaling activated by ET(A)R/beta-arrestin, may represent new therapeutic opportunities for ovarian cancer.
Collapse
|
35
|
beta-Arrestin1 interacts with the G-protein subunits beta1gamma2 and promotes beta1gamma2-dependent Akt signalling for NF-kappaB activation. Biochem J 2009; 417:287-96. [PMID: 18729826 DOI: 10.1042/bj20081561] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
beta-Arrestins are known to regulate G-protein signalling through interactions with their downstream effectors. In the present study, we report that beta-arrestin1 associates with the G-protein beta1gamma2 subunits in transfected cells, and purified beta-arrestin1 interacts with G(beta1gamma2) derived from in vitro translation. Deletion mutagenesis of beta-arrestin1 led to the identification of a region, comprising amino acids 181-280, as being responsible for its interaction with G(beta1gamma2). Overexpression of beta-arrestin1 facilitates G(beta1gamma2)-mediated Akt phosphorylation, and inhibition of endogenous beta-arrestin1 expression by siRNA (small interfering RNA) diminishes this effect. Through investigation of NF-kappaB (nuclear factor kappaB), a transcription factor regulated by Akt signalling, we have found that overexpression of beta-arrestin1 significantly enhances G(beta1gamma2)-mediated nuclear translocation of NF-kappaB proteins and expression of a NF-kappaB-directed luciferase reporter. Overexpression of beta-arrestin1 also promotes bradykinin-induced, G(betagamma)-mediated NF-kappaB luciferase-reporter expression, which is reverted by silencing the endogenous beta-arrestin1 with a specific siRNA. These results identify novel functions of beta-arrestin1 in binding to the beta1gamma2 subunits of heterotrimeric G-proteins and promoting G(betagamma)-mediated Akt signalling for NF-kappaB activation.
Collapse
|
36
|
An essential function for beta-arrestin 2 in the inhibitory signaling of natural killer cells. Nat Immunol 2008; 9:898-907. [PMID: 18604210 DOI: 10.1038/ni.1635] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 06/17/2008] [Indexed: 11/09/2022]
Abstract
The inhibitory signaling of natural killer (NK) cells is crucial in the regulation of innate immune responses. Here we show that the association of KIR2DL1, an inhibitory receptor of NK cells, with beta-arrestin 2 mediated recruitment of the tyrosine phosphatases SHP-1 and SHP-2 to KIR2DL1 and facilitated 'downstream' inhibitory signaling. Consequently, the cytotoxicity of NK cells was higher in beta-arrestin 2-deficient mice but was inhibited in beta-arrestin 2-transgenic mice. Moreover, beta-arrestin 2-deficient mice were less susceptible than wild-type mice to mouse cytomegalovirus infection, an effect that was abolished by depletion of NK cells. Our findings identify a previously unknown mechanism by which the inhibitory signaling in NK cells is regulated.
Collapse
|