1
|
Brown DA. Norman Bowery's discoveries about extrasynaptic and asynaptic GABA systems and their significance. Neuropharmacology 2017; 136:3-9. [PMID: 29128306 DOI: 10.1016/j.neuropharm.2017.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/04/2017] [Indexed: 11/26/2022]
Abstract
Before discovering the GABA-B receptor, Norman Bowery completed a series of studies on an extrasynaptic or asynaptic "GABA system" in the rat superior cervical sympathetic ganglion. First, he discovered an uptake system for GABA in neuroglial cells in the ganglia and in peripheral nerves, with a different substrate specificity than that in neurons. Second, he showed that accumulated GABA in sympathetic glial cells was metabolized to succinate by a transaminase enzyme. Third, he provided detailed structure-activity information about compounds activating an extrasynaptic GABA-A receptor on neurons in the rat sympathetic ganglion. Fourth, he showed that some amino acid substrates for the neuroglial transporter could indirectly stimulate neurons by releasing GABA from adjacent glial cells, and that GABA could also be released from neuroglial cells by membrane depolarization. In this review, these discoveries are briefly described and updated and some of their implications assessed. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Differential regenerative ability of sensory and motor neurons. Neurosci Lett 2016; 652:35-40. [PMID: 27818349 DOI: 10.1016/j.neulet.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/22/2022]
Abstract
After injury, the adult mammalian central nervous system (CNS) lacks long-distance axon regeneration. This review discusses the similarities and differences of sensory and motor neurons, seeking to understand how to achieve functional sensory and motor regeneration. As these two types of neurons respond differently to axotomy, growth environment and treatment, the future challenge will be on how to achieve full recovery in a way that allows regeneration of both types of fibres simultaneously.
Collapse
|
3
|
Deba F, Bessac BF. Anoctamin-1 Cl(-) channels in nociception: activation by an N-aroylaminothiazole and capsaicin and inhibition by T16A[inh]-A01. Mol Pain 2015; 11:55. [PMID: 26364309 PMCID: PMC4567824 DOI: 10.1186/s12990-015-0061-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/07/2015] [Indexed: 11/29/2022] Open
Abstract
Background Anoctamin 1 (ANO1 or TMEM16A) Ca2+-gated Cl− channels of nociceptor neurons are emerging as important molecular components of peripheral pain transduction. At physiological intracellular Cl− concentrations ([Cl−]i) sensory neuronal Cl− channels are excitatory. The ability of sensory neuronal ANO1 to trigger action potentials and subsequent nocifensive (pain) responses were examined by direct activation with an N-aroylaminothiazole. ANO1 channels are also activated by intracellular Ca2+ ([Ca2+]i) from sensory neuronal TRPV1 (transient-receptor-potential vallinoid 1) ion channels and other noxicant receptors. Thus, sensory neuronal ANO1 can facilitate TRPV1 triggering of action potentials, resulting in enhanced nociception. This was investigated by reducing ANO1 facilitation of TRPV1 effects with: (1) T16A[inh]-A01 ANO1-inhibitor reagent at physiological [Cl−]i and (2) by lowering sensory neuronal [Cl−]i to switch ANO1 to be inhibitory. Results ANO1 effects on action potential firing of mouse dorsal root ganglia (DRG) neurons in vitro and mouse nocifensive behaviors in vivo were examined with an N-aroylaminothiazole ANO1-activator (E-act), a TRPV1-activator (capsaicin) and an ANO1-inhibitor (T16A[inh]-A01). At physiological [Cl−]i (40 mM), E-act (10 µM) increased current sizes (in voltage-clamp) and action potential firing (in current-clamp) recorded in DRG neurons using whole-cell electrophysiology. To not disrupt TRPV1 carried-Ca2+ activation of ANO1 in DRG neurons, ANO1 modulation of capsaicin-induced action potentials was measured by perforated-patch (Amphotericin–B) current-clamp technique. Subsequently, at physiological [Cl−]i, capsaicin (15 µM)-induced action potential firing was diminished by co-application with T16A[inh]-A01 (20 µM). Under conditions of low [Cl−]i (10 mM), ANO1 actions were reversed. Specifically, E-act did not trigger action potentials; however, capsaicin-induced action potential firing was inhibited by co-application of E-act, but was unaffected by co-application of T16A[inh]-A01. Nocifensive responses of mice hind paws were dramatically induced by subcutaneous injections of E-act (5 mM) or capsaicin (50 µM). The nocifensive responses were attenuated by co-injection with T16A[inh]-A01 (1.3 mM). Conclusions An ANO1-activator (E-act) induced [Cl−]i-dependent sensory neuronal action potentials and mouse nocifensive behaviors; thus, direct ANO1 activation can induce pain perception. ANO1-inhibition attenuated capsaicin-triggering of action potentials and capsaicin-induced nocifensive behaviors. These results indicate ANO1 channels are involved with TRPV1 actions in sensory neurons and inhibition of ANO1 could be a novel means of inducing analgesia. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, I. L. Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B MSC 131, Kingsville, TX, 78363, USA.
| | - Bret F Bessac
- Department of Pharmaceutical Sciences, I. L. Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B MSC 131, Kingsville, TX, 78363, USA.
| |
Collapse
|
4
|
Chabwine JN, Talavera K, Van Den Bosch L, Callewaert G. NKCC1 downregulation induces hyperpolarizing shift of GABA responsiveness at near term fetal stages in rat cultured dorsal root ganglion neurons. BMC Neurosci 2015; 16:41. [PMID: 26169500 PMCID: PMC4501047 DOI: 10.1186/s12868-015-0180-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background GABAA receptor-mediated neurotransmission is greatly influenced by cation-chloride cotransporter activity during developmental stages. In embryonic neurons Na–K–2Cl (NKCC1) cotransporters mediate active chloride uptake, thus increasing the intracellular chloride concentration associated with GABA-induced depolarization. At fetal stages near term, oxytocin-induced NKCC1 downregulation has been implicated in the developmental shift from depolarizing to hyperpolarizing GABA action. Mature dorsal root ganglion neurons (DRGN), however, express high NKCC1 levels and maintain high intracellular chloride levels with consequent GABA-induced depolarization. Results Gramicidin-perforated patch-clamp recordings were used to assess the developmental change in chloride homeostasis in rat cultured small DRGN at the embryonic day 16 (E16) and 19 (E19). The results were compared to data previously obtained in fetal DRGN at E14 and in mature cells. A significant NKCC1 downregulation, leading to reduction in excitatory GABAergic transmission, was observed at E16 and E19. Conclusion These results indicate that NKCC1 activity transiently decreases in DRGN at fetal stages near term. This developmental shift in GABAergic transmission may contribute to fetal analgesia and neuroprotection at birth.
Collapse
Affiliation(s)
- Joelle N Chabwine
- Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Louvain, Belgium. .,Neurology Unit, Department of Medicine, Faculty of Sciences, University of Fribourg, Chemin du Musée, 5, Fribourg, 1700, Switzerland.
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Channel Research Platform (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium.
| | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Louvain, Belgium. .,VIB, Vesalius Research Center, KU Leuven, Louvain, Belgium.
| | - Geert Callewaert
- Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Louvain, Belgium.
| |
Collapse
|
5
|
Du X, Gamper N. Potassium channels in peripheral pain pathways: expression, function and therapeutic potential. Curr Neuropharmacol 2013; 11:621-40. [PMID: 24396338 PMCID: PMC3849788 DOI: 10.2174/1570159x113119990042] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Pitcher MH, Nieto FR, Cervero F. Stimulation of Cutaneous Low Threshold Mechanoreceptors in Mice After Intracolonic Capsaicin Increases Spinal c-Fos Labeling in an NKCC1-Dependent Fashion. THE JOURNAL OF PAIN 2013. [DOI: 10.1016/j.jpain.2012.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Bertollini C, Murana E, Mosca L, D'Erme M, Scala F, Francioso A, Catalano M, Limatola C, Bregestovski P, Di Angelantonio S, Ragozzino D. Transient increase in neuronal chloride concentration by neuroactive aminoacids released from glioma cells. Front Mol Neurosci 2012. [PMID: 23189038 PMCID: PMC3505843 DOI: 10.3389/fnmol.2012.00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuronal chloride concentration ([Cl−]i) is known to be dynamically modulated and alterations in Cl− homeostasis may occur in the brain at physiological and pathological conditions, being also likely involved in glioma-related seizures. However, the mechanism leading to changes in neuronal [Cl−]i during glioma invasion are still unclear. To characterize the potential effect of glioma released soluble factors on neuronal [Cl−]i, we used genetically encoded CFP/YFP-based ratiometric Cl-(apical) Sensor transiently expressed in cultured hippocampal neurons. Exposition of neurons to glioma conditioned medium (GCM) caused rapid and transient elevation of [Cl−]i, resulting in the increase of fluorescence ratio, which was strongly reduced by blockers of ionotropic glutamate receptors APV and NBQX. Furthermore, in HEK cells expressing GluR1-AMPA receptors, GCM activated ionic currents with efficacy similar to those caused by glutamate, supporting the notion that GCM contains glutamate or glutamatergic agonists, which cause neuronal depolarization, activation of NMDA and AMPA/KA receptors leading to elevation of [Cl−]i. Chromatographic analysis of the GCM showed that it contained several aminoacids, including glutamate, whose release from glioma cells did not occur via the most common glial mechanisms of transport, or in response to hypoosmotic stress. GCM also contained glycine, whose action contrasted the glutamate effect. Indeed, strychnine application significantly increased GCM-induced depolarization and [Cl−]i rise. GCM-evoked [Cl−]i elevation was not inhibited by antagonists of Cl− transporters and significantly reduced in the presence of anion channels blocker NPPB, suggesting that Cl− selective channels are a major route for GCM-induced Cl− influx. Altogether, these data show that glioma released aminoacids may dynamically alter Cl− equilibrium in surrounding neurons, deeply interfering with their inhibitory balance, likely leading to physiological and pathological consequences.
Collapse
Affiliation(s)
- Cristina Bertollini
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lucas O, Hilaire C, Delpire E, Scamps F. KCC3-dependent chloride extrusion in adult sensory neurons. Mol Cell Neurosci 2012; 50:211-20. [PMID: 22609694 DOI: 10.1016/j.mcn.2012.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/09/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022] Open
Abstract
The cation-Cl(-) cotransporters participate to neuronal Cl(-) balance and are responsible for the post-natal Cl(-) switch in central neurons. In the adult peripheral nervous system, it is not well established whether a Cl(-) transition occurs during maturation. We investigated the contribution of cation-Cl(-) cotransporters in the Cl(-) handling of sensory neurons derived from the dorsal root ganglia (DRG) of neonatal mice (postnatal days 1-6) and adult mice. Gramicidin-perforated patch-clamp recordings in wild-type neurons revealed that Cl(-) accumulated to very high values in P1-6 sensory neurons and decreased in adulthood. In post-natal sensory neurons, quantitative RT-PCR showed that NKCC1, KCC1 and KCC3 had a higher transcript expression level compared to KCC2 and KCC4. NKCC1 was the main cation-Cl(-) cotransporter controlling Cl(-) accumulation at this developmental stage. In adulthood, the KCC3 transcript was produced in larger amounts than the other cation-Cl(-) cotransporter transcripts and RT-PCR shows larger expression of the shorter KCC3a isoform in adult DRG. Pharmacological inhibitors of cation-Cl(-) cotransporters and the use of KCC3(-/-) mice demonstrated that NKCC1 sustained Cl(-) accumulation in the majority of adult sensory neurons while KCC3 contributed to Cl(-) extrusion in a subset of these neurons. Beta-galactosidase detection in adult KCC3(-/-) DRG showed that KCC3 transcripts were present in all adult sensory neurons suggesting a KCC3 isoform specific regulation of Cl(-) handling. The contribution of KCC3 to Cl(-) extrusion in a subset of sensory neurons indicates that KCC3 could play a major role in GABAergic/glycinergic transmission.
Collapse
Affiliation(s)
- Olivier Lucas
- Inserm, U-1051, Institute for Neurosciences of Montpellier, Montpellier, F-34000, 80, rue Augustin Fliche, 34091 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
9
|
Abstract
Glucagon, a peptide hormone secreted from the α-cells of the pancreatic islets, is critical for blood glucose homeostasis. We reviewed the literature and employed a computational systems analysis of intracellular metabolic and electrical regulation of glucagon secretion to better understand these processes. The mathematical model of α-cell metabolic parameters is based on our previous model for pancreatic β-cells. We also formulated an ionic model for action potentials that incorporates Ca ( 2+) , K (+) , Na (+) and Cl (-) currents. Metabolic and ionic models are coupled to the equations describing Ca ( 2+) homeostasis and glucagon secretion that depends on activation of specific voltage-gated Ca ( 2+) channels. Paracrine and endocrine regulations were analyzed with an emphasis on their effects on a hyperpolarization of membrane potential. This general model simulates and gives insight into the mechanisms of regulation of glucagon secretion under a wide range of experimental conditions. We also reviewed and analyzed dysfunctional mechanisms in α-cells to determine key pharmacological targets for modulating glucagon secretion in type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Leonid E Fridlyand
- The Kovler Diabetes Center, Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
10
|
Talbot JD, David G, Barrett EF, Barrett JN. Calcium dependence of damage to mouse motor nerve terminals following oxygen/glucose deprivation. Exp Neurol 2011; 234:95-104. [PMID: 22206924 DOI: 10.1016/j.expneurol.2011.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/06/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022]
Abstract
Motor nerve terminals are especially sensitive to an ischemia/reperfusion stress. We applied an in vitro model of this stress, oxygen/glucose deprivation (OGD), to mouse neuromuscular preparations to investigate how Ca(2+) contributes to stress-induced motor terminal damage. Measurements using an ionophoretically-injected fluorescent [Ca(2+)] indicator demonstrated an increase in intra-terminal [Ca(2+)] following OGD onset. When OGD was terminated within 20-30min of the increase in resting [Ca(2+)], these changes were sometimes reversible; in other cases [Ca(2+)] remained high and the terminal degenerated. Endplate innervation was assessed morphometrically following 22min OGD and 120min reoxygenation (32.5°C). Stress-induced motor terminal degeneration was Ca(2+)-dependent. Median post-stress endplate occupancy was only 26% when the bath contained the normal 1.8mM Ca(2+), but increased to 81% when Ca(2+) was absent. Removal of Ca(2+) only during OGD was more protective than removal of Ca(2+) only during reoxygenation. Post-stress endplate occupancy was partially preserved by pharmacological inhibition of various routes of Ca(2+) entry into motor terminals, including voltage-dependent Ca(2+) channels (ω-agatoxin-IVA, nimodipine) and the plasma membrane Na(+)/Ca(2+) exchanger (KB-R7943). Inhibition of a Ca(2+)-dependent protease with calpain inhibitor VI was also protective. These results suggest that most of the OGD-induced motor terminal damage is Ca(2+)-dependent, and that inhibition of Ca(2+) entry or Ca(2+)-dependent proteolysis can reduce this damage. There was no significant difference between the response of wild-type and presymptomatic superoxide dismutase 1 G93A mutant terminals to OGD, or in their response to the protective effect of the tested drugs.
Collapse
Affiliation(s)
- Janet D Talbot
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL 33101, USA.
| | | | | | | |
Collapse
|
11
|
Nsimire Chabwine J, Vanden Eijnden S. A claim for caution in the use of promising bumetanide to treat neonatal seizures. J Child Neurol 2011; 26:657-8; author reply 658-9. [PMID: 21531912 DOI: 10.1177/0883073811401395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Serge Vanden Eijnden
- Department of Neonatology, Erasmus Hospital Université Libre de Bruxelles, Belgium
| |
Collapse
|
12
|
Liu B, Linley JE, Du X, Zhang X, Ooi L, Zhang H, Gamper N. The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels. J Clin Invest 2010; 120:1240-52. [PMID: 20335661 DOI: 10.1172/jci41084] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/13/2010] [Indexed: 12/30/2022] Open
Abstract
Bradykinin (BK) is an inflammatory mediator and one of the most potent endogenous pain-inducing substances. When released at sites of tissue damage or inflammation, or applied exogenously, BK produces acute spontaneous pain and causes hyperalgesia (increased sensitivity to potentially painful stimuli). The mechanisms underlying spontaneous pain induced by BK are poorly understood. Here we report that in small nociceptive neurons from rat dorsal root ganglia, BK, acting through its B2 receptors, PLC, and release of calcium from intracellular stores, robustly inhibits M-type K+ channels and opens Ca2+-activated Cl- channels (CaCCs) encoded by Tmem16a (also known as Ano1). Summation of these two effects accounted for the depolarization and increase in AP firing induced by BK in DRG neurons. Local injection of inhibitors of CaCC and specific M-channel openers both strongly attenuated the nociceptive effect of local injections of BK in rats. These results provide a framework for understanding spontaneous inflammatory pain and may suggest new drug targets for treatment of such pain.
Collapse
Affiliation(s)
- Boyi Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|