1
|
Papatheodoridi M, Mazza G, Pinzani M. Regenerative hepatology: In the quest for a modern prometheus? Dig Liver Dis 2020; 52:1106-1114. [PMID: 32868215 DOI: 10.1016/j.dld.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
As liver-related morbidity and mortality is rising worldwide and orthotopic liver transplantation (OLT) remains the only standard-of-care for end-stage liver disease or acute liver failure, shortage of donor organs is becoming more prominent. Importantly, advances in regenerative Hepatology and liver bioengineering are bringing new hope to the possibility of restoring impaired hepatic functionality in the presence of acute or chronic liver failure. Hepatocyte transplantation and artificial liver-support systems were the first strategies used in regenerative hepatology but have presented various types of efficiency limitations restricting their widespread use. In parallel, liver bioengineering has been a rapidly developing field bringing continuously novel advancements in biomaterials, three dimensional (3D) scaffolds, cell sources and relative methodologies for creating bioengineered liver tissue. The current major task in liver bioengineering is to build small implantable liver mass for treating inherited metabolic disorders, bioengineered bile ducts for congenital biliary defects and large bioengineered liver organs for transplantation, as substitutes to donor-organs, in cases of acute or acute-on-chronic liver failure. This review aims to summarize the state-of-the-art and upcoming technologies of regenerative Hepatology that are emerging as promising alternatives to the current standard-of care in liver disease.
Collapse
Affiliation(s)
- Margarita Papatheodoridi
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Mazza
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Massimo Pinzani
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom.
| |
Collapse
|
2
|
Nyambat B, Manga YB, Chen CH, Gankhuyag U, Pratomo WP A, Kumar Satapathy M, Chuang EY. New Insight into Natural Extracellular Matrix: Genipin Cross-Linked Adipose-Derived Stem Cell Extracellular Matrix Gel for Tissue Engineering. Int J Mol Sci 2020; 21:E4864. [PMID: 32660134 PMCID: PMC7402347 DOI: 10.3390/ijms21144864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023] Open
Abstract
The cell-derived extracellular matrix (ECM) is associated with a lower risk of pathogen transfer, and it possesses an ideal niche with growth factors and complex fibrillar proteins for cell attachment and growth. However, the cell-derived ECM is found to have poor biomechanical properties, and processing of cell-derived ECM into gels is scarcely studied. The gel provides platforms for three-dimensional cell culture, as well as injectable biomaterials, which could be delivered via a minimally invasive procedure. Thus, in this study, an adipose-derived stem cell (ADSC)-derived ECM gel was developed and cross-linked by genipin to address the aforementioned issue. The genipin cross-linked ADSC ECM gel was fabricated via several steps, including rabbit ADSC culture, cell sheets, decellularization, freeze-thawing, enzymatic digestion, neutralization of pH, and cross-linking. The physicochemical characteristics and cytocompatibility of the gel were evaluated. The results demonstrated that the genipin cross-linking could significantly enhance the mechanical properties of the ADSC ECM gel. Furthermore, the ADSC ECM was found to contain collagen, fibronectin, biglycan, and transforming growth factor (TGF)-β1, which could substantially maintain ADSC, skin, and ligament fibroblast cell proliferation. This cell-derived natural material could be suitable for future regenerative medicine and tissue engineering application.
Collapse
Affiliation(s)
- Batzaya Nyambat
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Yankuba B. Manga
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University–Shuang Ho Hospital, 291 Zhongzheng Rd., Zhonghe District, New Taipei City 11031, Taiwan
| | - Uuganbayar Gankhuyag
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Andi Pratomo WP
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Mantosh Kumar Satapathy
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- Cell Physiology and Molecular Image Research Center, Taipei Medical University–Wan Fang Hospital, 111, Sec. 3, Xinglong 11 Road, Wenshan District, Taipei 116, Taiwan
| |
Collapse
|
3
|
Abazari MF, Soleimanifar F, Enderami SE, Nasiri N, Nejati F, Mousavi SA, Soleimani M, Kiani J, Ghoraeian P, Kehtari M. Decellularized amniotic membrane Scaffolds improve differentiation of iPSCs to functional hepatocyte‐like cells. J Cell Biochem 2019; 121:1169-1181. [DOI: 10.1002/jcb.29351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mohammad Foad Abazari
- Department of Genetics, Tehran Medical Sciences Branch Islamic Azad University Tehran Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, Dietary Supplements and Probiotic Research Center Alborz University of Medical Sciences Karaj Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnolmicroogy, Faculty of Medicine Mazandaran University of Medical Sciences Sari Iran
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Navid Nasiri
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch Islamic Azad University Tehran Iran
| | - Mousa Kehtari
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
- Department of Developmental Biology, School of Biology, College of Science University of Tehran Tehran Iran
| |
Collapse
|
4
|
Salo T, Dourado MR, Sundquist E, Apu EH, Alahuhta I, Tuomainen K, Vasara J, Al-Samadi A. Organotypic three-dimensional assays based on human leiomyoma-derived matrices. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0482. [PMID: 29158312 PMCID: PMC5717437 DOI: 10.1098/rstb.2016.0482] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Alongside cancer cells, tumours exhibit a complex stroma containing a repertoire of cells, matrix molecules and soluble factors that actively crosstalk between each other. Recognition of this multifaceted concept of the tumour microenvironment (TME) calls for authentic TME mimetics to study cancer in vitro. Traditionally, tumourigenesis has been investigated in non-human, three-dimensional rat type I collagen containing organotypic discs or by means of mouse sarcoma-derived gel, such as Matrigel®. However, the molecular compositions of these simplified assays do not properly simulate human TME. Here, we review the main properties and benefits of using human leiomyoma discs and their matrix Myogel for in vitro assays. Myoma discs are practical for investigating the invasion of cancer cells, as are cocultures of cancer and stromal cells in a stiff, hypoxic TME mimetic. Myoma discs contain soluble factors and matrix molecules commonly present in neoplastic stroma. In Transwell, IncuCyte, spheroid and sandwich assays, cancer cells move faster and form larger colonies in Myogel than in Matrigel®. Additionally, Myogel can replace Matrigel® in hanging-drop and tube-formation assays. Myogel also suits three-dimensional drug testing and extracellular vesicle interactions. To conclude, we describe the application of our myoma-derived matrices in 3D in vitro cancer assays. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.
Collapse
Affiliation(s)
- Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland .,Medical Research Centre, Oulu University Hospital, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland.,Helsinki University Hospital, Helsinki 0014, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Campinas 13414-903, Brazil
| | - Mauricio Rocha Dourado
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Campinas 13414-903, Brazil
| | - Elias Sundquist
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Ehsanul Hoque Apu
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Ilkka Alahuhta
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Katja Tuomainen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland
| | - Jenni Vasara
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland
| |
Collapse
|
5
|
Leach JK, Whitehead J. Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2018; 4:1115-1127. [PMID: 30035212 PMCID: PMC6052883 DOI: 10.1021/acsbiomaterials.6b00741] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-based therapies are a promising alternative to grafts and organ transplantation for treating tissue loss or damage due to trauma, malfunction, or disease. Over the past two decades, mesenchymal stem cells (MSCs) have attracted much attention as a potential cell population for use in regenerative medicine. While the proliferative capacity and multilineage potential of MSCs provide an opportunity to generate clinically relevant numbers of transplantable cells, their use in tissue regenerative applications has met with relatively limited success to date apart from secreting paracrine-acting factors to modulate the defect microenvironment. Presently, there is significant effort to engineer the biophysical properties of biomaterials to direct MSC differentiation and further expand on the potential of MSCs in tissue engineering, regeneration, and repair. Biomaterials can dictate MSC differentiation by modulating features of the substrate including composition, mechanical properties, porosity, and topography. The purpose of this review is to highlight recent approaches for guiding MSC fate using biomaterials and provide a description of the underlying characteristics that promote differentiation toward a desired phenotype.
Collapse
Affiliation(s)
- J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Medical Center, Sacramento, C 95817
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| |
Collapse
|
6
|
Matsunaga N, Fukuchi Y, Imawaka H, Tamai I. Sandwich-Cultured Hepatocytes for Mechanistic Understanding of Hepatic Disposition of Parent Drugs and Metabolites by Transporter-Enzyme Interplay. Drug Metab Dispos 2018; 46:680-691. [PMID: 29352067 DOI: 10.1124/dmd.117.079236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Functional interplay between transporters and drug-metabolizing enzymes is currently one of the hottest topics in the field of drug metabolism and pharmacokinetics. Uptake transporter-enzyme interplay is important to determine intrinsic hepatic clearance based on the extended clearance concept. Enzyme and efflux transporter interplay, which includes both sinusoidal (basolateral) and canalicular efflux transporters, determines the fate of metabolites formed in the liver. As sandwich-cultured hepatocytes (SCHs) maintain metabolic activities and form a canalicular network, the whole interplay between uptake and efflux transporters and drug-metabolizing enzymes can be investigated simultaneously. In this article, we review the utility and applicability of SCHs for mechanistic understanding of hepatic disposition of both parent drugs and metabolites. In addition, the utility of SCHs for mimicking species-specific disposition of parent drugs and metabolites in vivo is described. We also review application of SCHs for clinically relevant prediction of drug-drug interactions caused by drugs and metabolites. The usefulness of mathematical modeling of hepatic disposition of parent drugs and metabolites in SCHs is described to allow a quantitative understanding of an event in vitro and to develop a more advanced model to predict in vivo disposition.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Yukina Fukuchi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Ikumi Tamai
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| |
Collapse
|
7
|
Mazza G, Al-Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: From implantable tissue to whole organ engineering. Hepatol Commun 2017; 2:131-141. [PMID: 29404520 PMCID: PMC5796330 DOI: 10.1002/hep4.1136] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
The term “liver tissue engineering” summarizes one of the ultimate goals of modern biotechnology: the possibility of reproducing in total or in part the functions of the liver in order to treat acute or chronic liver disorders and, ultimately, create a fully functional organ to be transplanted or used as an extracorporeal device. All the technical approaches in the area of liver tissue engineering are based on allocating adult hepatocytes or stem cell‐derived hepatocyte‐like cells within a three‐dimensional structure able to ensure their survival and to maintain their functional phenotype. The hosting structure can be a construct in which hepatocytes are embedded in alginate and/or gelatin or are seeded in a pre‐arranged scaffold made with different types of biomaterials. According to a more advanced methodology termed three‐dimensional bioprinting, hepatocytes are mixed with a bio‐ink and the mixture is printed in different forms, such as tissue‐like layers or spheroids. In the last decade, efforts to engineer a cell microenvironment recapitulating the dynamic native extracellular matrix have become increasingly successful, leading to the hope of satisfying the clinical demand for tissue (or organ) repair and replacement within a reasonable timeframe. Indeed, the preclinical work performed in recent years has shown promising results, and the advancement in the biotechnology of bioreactors, ex vivo perfusion machines, and cell expansion systems associated with a better understanding of liver development and the extracellular matrix microenvironment will facilitate and expedite the translation to technical applications. (Hepatology Communications 2018;2:131–141)
Collapse
Affiliation(s)
- Giuseppe Mazza
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| | - Walid Al-Akkad
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| | - Krista Rombouts
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| | - Massimo Pinzani
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| |
Collapse
|
8
|
Kumari M, Heeren J, Scheja L. Regulation of immunometabolism in adipose tissue. Semin Immunopathol 2017; 40:189-202. [DOI: 10.1007/s00281-017-0668-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
|
9
|
Banyard DA, Borad V, Amezcua E, Wirth GA, Evans GRD, Widgerow AD. Preparation, Characterization, and Clinical Implications of Human Decellularized Adipose Tissue Extracellular Matrix (hDAM): A Comprehensive Review. Aesthet Surg J 2016; 36:349-57. [PMID: 26333991 DOI: 10.1093/asj/sjv170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/17/2022] Open
Abstract
Fat grafting is commonly employed by plastic and reconstructive surgeons to address contour abnormalities and soft-tissue defects; however, because retention rates and thus volume filling effects are unpredictable, there is a search for new and innovative approaches. Initial studies on the use of human decellularized adipose tissue extracellular matrix (hDAM) show promise for its use not only in tissue engineering, but also in fat grafting. In this review, we examine and analyze the literature for the preparation, characterization, and use of hDAM and its derivatives in tissue engineering and plastic surgery applications. All studies reviewed involve physical, chemical, and/or biological treatment stages for the preparation of hDAM; however a distinction should be made between detergent and nondetergent-based processing, the latter of which appears to preserve the native integrity of the hDAM while most-efficiently achieving complete decellularization. Methods of hDAM characterization vary among groups and included simple and immunohistochemical staining, biochemical assays, 3-dimensional (3D) imaging, and mechano-stress testing, all of which are necessary to achieve a comprehensive description of this novel tissue. Finally, we examine the various preclinical models utilized to optimize hDAM performance, which primarily include the addition of adipose-derived stem cells or cross-linking agents. Overall, hDAM appears to be a promising adjunct in fat-grafting applications or even possibly as a stand-alone soft-tissue filler with off-the-shelf potential for commercial applications.
Collapse
Affiliation(s)
- Derek A Banyard
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Vedant Borad
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Eduardo Amezcua
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Garrett A Wirth
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Gregory R D Evans
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Alan D Widgerow
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| |
Collapse
|
10
|
Abstract
Although lipotransfer, or fat grafting, is a commonly used procedure in aesthetic and reconstructive surgery, there is still variability in graft survival and neoadipogenesis from one procedure to the next. A better understanding of the sequential molecular events occurring with grafting would allow us to strategize methods to improve the regenerative potency of the grafted tissue. These steps begin with an autophagic process, followed by the inclusion of stromal vascular fraction and matrix components. By tailoring and modifying each of these steps for a particular type of aesthetic or reconstructive procedure, strategic sequencing represents a dynamic approach to lipotransfer with the aim of maximizing adipocyte viability and growth. In the implementation of the strategic sequence, it remains important to consider the clinical viability of each step and its compliance with the US Food and Drug Administration regulations. This review highlights the basic science behind clinically translatable approaches to supplementing various fat grafting procedures.
Collapse
|
11
|
Probert PME, Meyer SK, Alsaeedi F, Axon AA, Fairhall EA, Wallace K, Charles M, Oakley F, Jowsey PA, Blain PG, Wright MC. An expandable donor-free supply of functional hepatocytes for toxicology. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00214h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
The B-13 cell is a readily expandable rat pancreatic acinar-like cell that differentiates on simple plastic culture substrata into replicatively-senescent hepatocyte-like (B-13/H) cells in response to glucocorticoid exposure. B-13/H cells express a variety of liver-enriched and liver-specific genes, many at levels similar to hepatocytes in vivo. Furthermore, the B-13/H phenotype is maintained for at least several weeks in vitro, in contrast to normal hepatocytes which rapidly de-differentiate under the same simple – or even under more complex – culture conditions. The origin of the B-13 cell line and the current state of knowledge regarding differentiation to B-13/H cells are presented, followed by a review of recent advances in the use of B-13/H cells in a variety of toxicity endpoints. B-13 cells therefore offer Toxicologists a cost-effective and easy to use system to study a range of toxicologically-related questions. Dissecting the mechanism(s) regulating the formation of B-13/H cell may also increase the likelihood of engineering a human equivalent, providing Toxicologists with an expandable donor-free supply of functional rat and human hepatocytes, invaluable additions to the tool kit of in vitro toxicity tests.
Collapse
Affiliation(s)
- Philip M. E. Probert
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Stephanie K. Meyer
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fouzeyyah Alsaeedi
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Andrew A. Axon
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Emma A. Fairhall
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Karen Wallace
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Michelle Charles
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fiona Oakley
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Paul A. Jowsey
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Peter G. Blain
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Matthew C. Wright
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
12
|
Martinez-Santibañez G, Lumeng CNK. Macrophages and the regulation of adipose tissue remodeling. Annu Rev Nutr 2014; 34:57-76. [PMID: 24850386 DOI: 10.1146/annurev-nutr-071812-161113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of adipose tissue to adapt to a changing nutrient environment is critical to the maintenance of metabolic control. Nutrient excess and deficiency alter the shape of adipose tissue drastically and trigger many events that are collectively known as adipose tissue remodeling. Remodeling of adipose tissue involves more than adipocytes and is controlled by an extensive network of stromal cells and extracellular matrix proteins. Prominent players in this process are adipose tissue macrophages, which are a specialized leukocyte present in lean and obese states that contributes to adipose tissue inflammation. The interest in adipose tissue remodeling has been accelerated by the current epidemic of obesity and the chronic generation of signals that lead to expansion of adipose tissue. It is clear that evidence of dysfunctional remodeling events is a hallmark of obesity associated with metabolic disease. This review summarizes and highlights the recent work in this area and provides a framework in which to consider how adipose tissue macrophages contribute to the remodeling events in lean and obese states. Advancing our understanding of the involvement of macrophages in adipose tissue remodeling will promote one aspect of the new field of "immunometabolism," which connects control systems developed for regulation of immunity with those that control metabolism. It will also provide insight into how physiologic and pathophysiologic remodeling differs in adipose tissue and identify potential nodes for intervention to break the link between obesity and disease.
Collapse
|
13
|
Lee JS, Shin J, Park HM, Kim YG, Kim BG, Oh JW, Cho SW. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 2013; 15:206-18. [PMID: 24350561 DOI: 10.1021/bm4015039] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Decellularization of tissues or organs can provide an efficient strategy for preparing functional scaffolds for tissue engineering. Microstructures of native extracellular matrices and their biochemical compositions can be retained in the decellularized matrices, providing tissue-specific microenvironments for efficient tissue regeneration. Here, we report the versatility of liver extracellular matrix (LEM) that can be used for two-dimensional (2D) coating and three-dimensional (3D) hydrogel platforms for culture and transplantation of primary hepatocytes. Collagen type I (Col I) has typically been used for hepatocyte culture and transplantation. In this study, LEM was compared with Col I in terms of biophysical and mechanical characteristics and biological performance for enhancing cell viability, differentiation, and hepatic functions. Surface properties of LEM coating and mechanical properties and gelation kinetics of LEM hydrogel could be manipulated by adjusting the LEM concentration. In addition, LEM hydrogel exhibited improved elastic properties, rapid gelation, and volume maintenance compared to Col I hydrogel. LEM coating significantly improved hepatocyte functions such as albumin secretion and urea synthesis. More interestingly, LEM coating upregulated hepatic gene expression of human adipose-derived stem cells, indicating enhanced hepatic differentiation of these stem cells. The viability and hepatic functions of primary hepatocytes were also significantly improved in LEM hydrogel compared to Col I hydrogel both in vitro and in vivo. Albumin and hepatocyte transcription factor expression was upregulated in hepatocytes transplanted in LEM hydrogels. In conclusion, LEM can provide functional biomaterial platforms for diverse applications in liver tissue engineering by promoting survival and maturation of hepatocytes and hepatic commitment of stem cells. This study demonstrates the feasibility of decellularized matrix for both 2D coating and 3D hydrogel in liver tissue engineering.
Collapse
Affiliation(s)
- Jung Seung Lee
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Preparation of an adipogenic hydrogel from subcutaneous adipose tissue. Acta Biomater 2013; 9:5609-20. [PMID: 23142702 DOI: 10.1016/j.actbio.2012.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/21/2012] [Accepted: 11/02/2012] [Indexed: 01/01/2023]
Abstract
The ability to generate controlled amounts of adipose tissue would greatly ease the burden on hospitals for reconstructive surgery. We have previously shown that a tissue engineering chamber containing a vascular pedicle was capable of forming new fat; however, further refinements are required to enhance fat formation. The development and maintenance of engineered adipose tissue requires a suitable source of growth factors and a suitable scaffold. A hydrogel derived from adipose tissue may fulfil this need. Subcutaneous fat was processed into a thermosensitive hydrogel we refer to as adipose-derived matrix (ADM). Protein analysis revealed high levels of basement membrane proteins, collagens and detectable levels of growth factors. Adipose-derived stem cells exposed to this hydrogel differentiated into adipocytes with >90% efficiency and in vivo testing in rats showed significant signs of adipogenesis after 8 weeks. ADM's adipogenic properties combined with its simple gelation, relatively long shelf life and its tolerance to multiple freeze-thaw cycles, makes it a promising candidate for adipose engineering applications.
Collapse
|
15
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
16
|
Sharma NS, Nagrath D, Yarmush ML. Metabolic profiling based quantitative evaluation of hepatocellular metabolism in presence of adipocyte derived extracellular matrix. PLoS One 2011; 6:e20137. [PMID: 21603575 PMCID: PMC3095641 DOI: 10.1371/journal.pone.0020137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/26/2011] [Indexed: 12/05/2022] Open
Abstract
The elucidation of the effect of extracellular matrices on hepatocellular metabolism is critical to understand the mechanism of functional upregulation. We have developed a system using natural extracellular matrices [Adipogel] for enhanced albumin synthesis of rat hepatocyte cultures for a period of 10 days as compared to collagen sandwich cultures. Primary rat hepatocytes isolated from livers of female Lewis rats recover within 4 days of culture from isolation induced injury while function is stabilized at 7 days post-isolation. Thus, the culture period can be classified into three distinct stages viz. recovery stage [day 0–4], pre-stable stage [day 5–7] and the stable stage [day 8–10]. A Metabolic Flux Analysis of primary rat hepatocytes cultured in Adipogel was performed to identify the key metabolic pathways modulated as compared to collagen sandwich cultures. In the recovery stage [day 4], the collagen-soluble Adipogel cultures shows an increase in TriCarboxylic Acid [TCA] cycle fluxes; in the pre-stable stage [day 7], there is an increase in PPP and TCA cycle fluxes while in the stable stage [day 10], there is a significant increase in TCA cycle, urea cycle fluxes and amino acid uptake rates concomitant with increased albumin synthesis rate as compared to collagen sandwich cultures throughout the culture period. Metabolic analysis of the collagen-soluble Adipogel condition reveals significantly higher transamination reaction fluxes, amino acid uptake and albumin synthesis rates for the stable vs. recovery stages of culture. The identification of metabolic pathways modulated for hepatocyte cultures in presence of Adipogel will be a useful step to develop an optimization algorithm to further improve hepatocyte function for Bioartificial Liver Devices. The development of this framework for upregulating hepatocyte function in Bioartificial Liver Devices will facilitate the utilization of an integrated experimental and computational approach for broader applications of Adipogel in tissue e engineering and regenerative medicine.
Collapse
Affiliation(s)
- Nripen S. Sharma
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and The Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Deepak Nagrath
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, United States of America
| | - Martin L. Yarmush
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and The Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Nagrath D, Avila-Elchiver M, Berthiaume F, Tilles AW, Messac A, Yarmush ML. Soft constraints-based multiobjective framework for flux balance analysis. Metab Eng 2010; 12:429-45. [PMID: 20553945 DOI: 10.1016/j.ymben.2010.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 04/12/2010] [Accepted: 05/19/2010] [Indexed: 12/23/2022]
Abstract
The current state of the art for linear optimization in Flux Balance Analysis has been limited to single objective functions. Since mammalian systems perform various functions, a multiobjective approach is needed when seeking optimal flux distributions in these systems. In most of the available multiobjective optimization methods, there is a lack of understanding of when to use a particular objective, and how to combine and/or prioritize mutually competing objectives to achieve a truly optimal solution. To address these limitations we developed a soft constraints based linear physical programming-based flux balance analysis (LPPFBA) framework to obtain a multiobjective optimal solutions. The developed framework was first applied to compute a set of multiobjective optimal solutions for various pairs of objectives relevant to hepatocyte function (urea secretion, albumin, NADPH, and glutathione syntheses) in bioartificial liver systems. Next, simultaneous analysis of the optimal solutions for three objectives was carried out. Further, this framework was utilized to obtain true optimal conditions to improve the hepatic functions in a simulated bioartificial liver system. The combined quantitative and visualization framework of LPPFBA is applicable to any large-scale metabolic network system, including those derived by genomic analyses.
Collapse
Affiliation(s)
- Deepak Nagrath
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | | | | | | | | | |
Collapse
|