1
|
Martynowycz MW, Andreev K, Mor A, Gidalevitz D. Cancer-Associated Gangliosides as a Therapeutic Target for Host Defense Peptide Mimics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12541-12549. [PMID: 37647566 DOI: 10.1021/acs.langmuir.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Aberrant levels of glycolipids expressed on cellular surfaces are characteristic of different types of cancers. The oligomer of acylated lysine (OAK) mimicking antimicrobial peptides displays in vitro activity against human and murine melanoma cell lines with upregulated GD3 and GM3 gangliosides. Herein, we demonstrate the capability of OAK to intercalate into the sialo-oligosaccharides of DPPC/GD3 and DPPC/GM3 lipid monolayers using X-ray scattering. The lack of insertion into monolayers containing phosphatidylserine suggests that the mechanism of action by OAKs against glycosylated lipid membranes is not merely driven by charge effects. The fluorescence microscopy data demonstrates the membrane-lytic activity of OAK. Understanding the molecular basis for selectivity toward GD3 and GM3 gangliosides by antimicrobial lipopeptides will contribute to the development of novel therapies to cure melanoma and other malignancies.
Collapse
Affiliation(s)
- Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Amram Mor
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| |
Collapse
|
2
|
Velázquez-Hernández ME, Ochoa-Zarzosa A, López-Meza JE. Defensin γ-thionin from Capsicum chinense improves butyrate cytotoxicity on human colon adenocarcinoma cell line Caco-2. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
3
|
Kardani K, Bolhassani A. Antimicrobial/anticancer peptides: bioactive molecules and therapeutic agents. Immunotherapy 2021; 13:669-684. [PMID: 33878901 DOI: 10.2217/imt-2020-0312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been known as host-defense peptides. These cationic and amphipathic peptides are relatively short (∼5-50 L-amino acids) with molecular weight less than 10 kDa. AMPs have various roles including immunomodulatory, angiogenic and antitumor activities. Anticancer peptides (ACPs) are a main subset of AMPs as a novel therapeutic approach against tumor cells. The physicochemical properties of the ACPs influence their cell penetration, stability and efficiency of targeting. Up to now, several databases and web servers for in silico prediction of AMPs/ACPs have been established prior to the lab analysis. The present review focuses on the recent advancement about AMPs/ACPs activities including their in silico prediction by computational tools and their potential applications as therapeutic agents especially in cancer.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Antitumor and antimicrobial activity of some cyclic tetrapeptides and tripeptides derived from marine bacteria. Mar Drugs 2015; 13:3029-45. [PMID: 25988520 PMCID: PMC4446616 DOI: 10.3390/md13053029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022] Open
Abstract
Marine derived cyclo(Gly-l-Ser-l-Pro-l-Glu) was selected as a lead to evaluate antitumor-antibiotic activity. Histidine was chosen to replace the serine residue to form cyclo(Gly-l-His-l-Pro-l-Glu). Cyclic tetrapeptides (CtetPs) were then synthesized using a solution phase method, and subjected to antitumor and antibiotic assays. The benzyl group protected CtetPs derivatives, showed better activity against antibiotic-resistant Staphylococcus aureus in the range of 60–120 μM. Benzyl group protected CtetPs 3 and 4, exhibited antitumor activity against several cell lines at a concentration of 80–108 μM. However, shortening the size of the ring to the cyclic tripeptide (CtriP) scaffold, cyclo(Gly-l-Ser-l-Pro), cyclo(Ser-l-Pro-l-Glu) and their analogues showed no antibiotic or antitumor activity. This phenomenon can be explained from their backbone structures.
Collapse
|
5
|
Mulder KCL, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 2013; 4:321. [PMID: 24198814 PMCID: PMC3813893 DOI: 10.3389/fmicb.2013.00321] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/11/2013] [Indexed: 01/21/2023] Open
Abstract
Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered.
Collapse
Affiliation(s)
- Kelly C L Mulder
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília Brasília, Brazil
| | | | | | | | | |
Collapse
|
6
|
Kaneti G, Sarig H, Marjieh I, Fadia Z, Mor A. Simultaneous breakdown of multiple antibiotic resistance mechanisms in
S. aureus. FASEB J 2013; 27:4834-43. [DOI: 10.1096/fj.13-237610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Galoz Kaneti
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Hadar Sarig
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Ibrahim Marjieh
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Zaknoon Fadia
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Amram Mor
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
7
|
Antibacterial properties of an oligo-acyl-lysyl hexamer targeting Gram-negative species. Antimicrob Agents Chemother 2012; 56:4827-32. [PMID: 22751534 DOI: 10.1128/aac.00511-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toward developing new tools for fighting resistance to antibiotics, we investigated the antibacterial properties of a new decanoyl-based oligo-acyl-lysyl (OAK) hexamer, aminododecanoyl-lysyl-[aminodecanoyl-lysyl](5) (α(12)-5α(10)). The OAK exhibited preferential activity against Gram-negative bacteria (GNB), as determined using 36 strains, including diverse species, with an MIC(90) of 6.2 μM. The OAK's bactericidal mode of action was associated with rapid membrane depolarization and cell permeabilization, suggesting that the inner membrane was the primary target, whereas the observed binding affinity to lipoteichoic acid suggested that inefficacy against Gram-positive species resulted from a cell wall interaction preventing α(12)-5α(10) from reaching internal targets. Interestingly, perturbation of the inner membrane structure and function was preserved at sub-MIC values. This prompted us to assess the OAK's effect on the proton motive force-dependent efflux pump AcrAB-TolC, implicated in the low sensitivity of GNB to various antibiotics, including erythromycin. We found that under sub-MIC conditions, wild-type Escherichia coli was significantly more sensitive to erythromycin (the MIC dropped by >10-fold), unlike its acr-deletion mutant. Collectively, the data suggest a useful approach for treating GNB infections through overcoming antibiotic efflux.
Collapse
|
8
|
Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 2011; 33:190-234. [PMID: 21922503 DOI: 10.1002/med.20252] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we review potential determinants of the anticancer efficacy of innate immune peptides (ACPs) for cancer cells. These determinants include membrane-based factors, such as receptors, phosphatidylserine, sialic acid residues, and sulfated glycans, and peptide-based factors, such as residue composition, sequence length, net charge, hydrophobic arc size, hydrophobicity, and amphiphilicity. Each of these factors may contribute to the anticancer action of ACPs, but no single factor(s) makes an overriding contribution to their overall selectivity and toxicity. Differences between the anticancer actions of ACPs seem to relate to different levels of interplay between these peptide and membrane-based factors.
Collapse
Affiliation(s)
- Frederick Harris
- School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | | | | | | |
Collapse
|
9
|
Brogden NK, Brogden KA. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 2011; 38:217-25. [PMID: 21733662 DOI: 10.1016/j.ijantimicag.2011.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
The concept of antimicrobial peptides (AMPs) as potent pharmaceuticals is firmly established in the literature, and most research articles on this topic conclude by stating that AMPs represent promising therapeutic agents against bacterial and fungal pathogens. Indeed, early research in this field showed that AMPs were diverse in nature, had high activities with low minimal inhibitory concentrations, had broad spectrums of activity against bacterial, fungal and viral pathogens, and could easily be manipulated to alter their specificities, reduce their cytotoxicities and increase their antimicrobial activities. Unfortunately, commercial development of these peptides, for even the simplest of applications, has been very limited. With some peptides there are obstacles with their manufacture, in vivo efficacy and in vivo retention. More recently, the focus has shifted. Contemporary research now uses a more sophisticated approach to develop AMPs that surmount many of these prior obstacles. AMP mimetics, hybrid AMPs, AMP congeners, cyclotides and stabilised AMPs, AMP conjugates and immobilised AMPs have all emerged with selective or 'targeted' antimicrobial activities, improved retention, or unique abilities that allow them to bind to medical or industrial surfaces. These groups of new peptides have creative medical and industrial application potentials to treat antibiotic-resistant bacterial infections and septic shock, to preserve food or to sanitise surfaces both in vitro and in vivo.
Collapse
Affiliation(s)
- Nicole K Brogden
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
10
|
Antiplasmodial properties of acyl-lysyl oligomers in culture and animal models of malaria. Antimicrob Agents Chemother 2011; 55:3803-11. [PMID: 21646484 DOI: 10.1128/aac.00129-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous analysis of antiplasmodial properties exhibited by dodecanoyl-based oligo-acyl-lysyls (OAKs) has outlined basic attributes implicated in potent inhibition of parasite growth and underlined the critical role of excess hydrophobicity in hemotoxicity. To dissociate hemolysis from antiplasmodial effect, we screened >50 OAKs for in vitro growth inhibition of Plasmodium falciparum strains, thus revealing the minimal requirements for antiplasmodial potency in terms of sequence and composition, as confirmed by efficacy studies in vivo. The most active sequence, dodecanoyllysyl-bis(aminooctanoyllysyl)-amide (C(12)K-2α(8)), inhibited parasite growth at submicromolar concentrations (50% inhibitory concentration [IC(50)], 0.3 ± 0.1 μM) and was devoid of hemolytic activity (<0.4% hemolysis at 150 μM). Unlike the case of dodecanoyl-based analogs, which equally affect ring and trophozoite stages of the parasite developmental cycle, the ability of various octanoyl-based OAKs to distinctively affect these stages (rings were 4- to 5-fold more sensitive) suggests a distinct antiplasmodial mechanism, nonmembranolytic to host red blood cells (RBCs). Upon intraperitoneal administration to mice, C(12)K-2α(8) demonstrated sustainable high concentrations in blood (e.g., 0.1 mM at 25 mg/kg of body weight). In Plasmodium vinckei-infected mice, C(12)K-2α(8) significantly affected parasite growth (50% effective dose [ED(50)], 22 mg/kg) but also caused mortality in 2/3 mice at high doses (50 mg/kg/day × 4).
Collapse
|
11
|
Livne L, Epand RF, Papahadjopoulos-Sternberg B, Epand RM, Mor A. OAK-based cochleates as a novel approach to overcome multidrug resistance in bacteria. FASEB J 2010. [PMID: 20720156 DOI: 10.1096/fj.10.167809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has become a worldwide medical problem. To find new ways of overcoming this phenomenon, we investigated the role of the membrane-active oligo-acyl-lysyl (OAK) sequence C(12)K-7α(8), in combination with essentially ineffective antibiotics. Determination of minimal inhibitory concentration (MIC) against gram-negative multidrug-resistant strains of Escherichia coli revealed combinations with sub-MIC OAK levels that acted synergistically with several antibiotics, thus lowering their MICs by several orders of magnitude. To shed light into the molecular basis for this synergism, we used both mutant strains and biochemical assays. Our results suggest that bacterial sensitization to antibiotics was derived mainly from the OAK's capacity to overcome the efflux-enhanced resistance mechanism, by promoting backdoor entry of otherwise excluded antibiotics. To facilitate simultaneous delivery of the pooled drugs to an infection site, we developed a novel OAK-based cochleate system with demonstrable stability in whole blood. To assess the potential therapeutic use of such cochleates, we performed preliminary experiments that imitate systemic treatment of neutropenic mice infected with lethal inoculums of multidrug resistance E. coli. Single-dose administration of erythromycin coencapsulated in OAK-based cochleates has decreased drug toxicity and increased therapeutic efficacy in a dose-dependent manner. Collectively, our findings suggest a potentially useful approach for fighting efflux-enhanced resistance mechanisms.
Collapse
Affiliation(s)
- L Livne
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
12
|
Livne L, Epand RF, Papahadjopoulos-Sternberg B, Epand RM, Mor A. OAK-based cochleates as a novel approach to overcome multidrug resistance in bacteria. FASEB J 2010; 24:5092-101. [PMID: 20720156 DOI: 10.1096/fj.10-167809] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has become a worldwide medical problem. To find new ways of overcoming this phenomenon, we investigated the role of the membrane-active oligo-acyl-lysyl (OAK) sequence C(12)K-7α(8), in combination with essentially ineffective antibiotics. Determination of minimal inhibitory concentration (MIC) against gram-negative multidrug-resistant strains of Escherichia coli revealed combinations with sub-MIC OAK levels that acted synergistically with several antibiotics, thus lowering their MICs by several orders of magnitude. To shed light into the molecular basis for this synergism, we used both mutant strains and biochemical assays. Our results suggest that bacterial sensitization to antibiotics was derived mainly from the OAK's capacity to overcome the efflux-enhanced resistance mechanism, by promoting backdoor entry of otherwise excluded antibiotics. To facilitate simultaneous delivery of the pooled drugs to an infection site, we developed a novel OAK-based cochleate system with demonstrable stability in whole blood. To assess the potential therapeutic use of such cochleates, we performed preliminary experiments that imitate systemic treatment of neutropenic mice infected with lethal inoculums of multidrug resistance E. coli. Single-dose administration of erythromycin coencapsulated in OAK-based cochleates has decreased drug toxicity and increased therapeutic efficacy in a dose-dependent manner. Collectively, our findings suggest a potentially useful approach for fighting efflux-enhanced resistance mechanisms.
Collapse
Affiliation(s)
- L Livne
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
13
|
Goldfeder Y, Zaknoon F, Mor A. Experimental conditions that enhance potency of an antibacterial oligo-acyl-lysyl. Antimicrob Agents Chemother 2010; 54:2590-5. [PMID: 20385856 PMCID: PMC2876387 DOI: 10.1128/aac.01656-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 12/30/2009] [Accepted: 04/05/2010] [Indexed: 01/05/2023] Open
Abstract
Oligo-acyl-lysyls (OAKs) are synthetic mimics of host defense peptides known to exert antibacterial activity both in cultures and in animal models of disease. Here, we investigated how environmental conditions (temperature, pH, and ionic strength) affect the antibacterial properties of an octamer derivative, C(12)K-7alpha(8). Data obtained with representative bacteria, including the Gram-negative bacterium Escherichia coli and the Gram-positive bacteria Listeria monocytogenes and Staphylococcus aureus, showed that OAK's potency was proportionally affected by pH changes and subsided essentially throughout a wide range of salt concentrations and temperature values, whereas antistaphyloccocal activity was relatively more vulnerable. It was rather the mode of action that was most susceptible to the environmental changes. Thus, OAK's bactericidal effect was limited to a growth-inhibitory effect under acidic pH, low temperatures, or high salt concentrations, whereas basic pH or high temperatures have enhanced the bactericidal kinetics. Properties of binding to model phospholipid membranes provided evidence that correlated the differential modes of action with variable binding affinities. Interestingly, combination of the optimal incubation conditions resulted in a remarkable increase in potency, as expressed by a 16- to 32-fold reduction in the MIC value and by much faster bactericidal rates (>99% death induced within minutes versus hours) compared with the standard incubation conditions. Collectively, the data suggest that OAKs might be useful in developing design strategies for robust antimicrobial peptides that are able to affect a pathogen's viability under a large spectrum of incubation conditions.
Collapse
Affiliation(s)
- Yair Goldfeder
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fadia Zaknoon
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Livne L, Kovachi T, Sarig H, Epand RF, Zaknoon F, Epand RM, Mor A. Design and characterization of a broad -spectrum bactericidal acyl-lysyl oligomer. ACTA ACUST UNITED AC 2010; 16:1250-8. [PMID: 20064435 DOI: 10.1016/j.chembiol.2009.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/07/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Previously characterized chemical mimics of host defense peptides belonging to the oligo-acyl-lysyl (OAK) family have so far failed to demonstrate broad-spectrum antibacterial potency combined with selectivity toward host cells. Here, we investigated OAK sequences and characterized a promising representative, designated C(12)K-3beta(10), with broad-spectrum activity (MIC(90) = 6.2 microM) and low hemotoxicity (LC(50) > 100 microM). Whereas C(12)K-3beta(10) exerted an essentially bactericidal effect, E. coli bacteria were killed faster than S. aureus (minutes versus hours). Mechanistic studies addressing this difference revealed that unlike E. coli, S. aureus bacteria undergo a transient rapid bactericidal stage that over time converts to a bacteriostatic effect. This behavior was dictated by interactions with cell wall-specific components. Preliminary efficacy studies in mice using the thigh infection model demonstrated the OAK's ability to significantly affect bacterial viability upon single-dose systemic treatment (2 mg/kg).
Collapse
Affiliation(s)
- Liran Livne
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Host defence peptides (HDP) produced by almost all species of living organisms and widely recognized as antimicrobial antibiotics have also proved to be capable of killing a wide variety of cancer cells. In this respect they have many advantages over conventional cytotoxic chemotherapeutic agents. They seem to kill cancer cells by effects on plasma membranes and/or the membranes of mitochondria. They are often effective against multidrug-resistant cells. They have a broad spectrum of activity in that their killing effects are not restricted to particular kinds of cancer. Above all they commonly have few side effects in that they do not have the same detrimental effects on normal cells as they do on cancer cells. It has been demonstrated that HDP can be used as effective adjuvants to conventional chemotherapeutic agents. In addition they have effects on neo-angiogenesis which is important in relation to tumour growth. HDP have been shown to be powerful immunomodulators in a number of circumstances and in this respect they are believed to be instrumental in strengthening immunological host defence against cancer cells. Importantly it has also been shown that certain HDP have the capability to alter the capacity of cells to import Ca ions by affecting the location and thus function of calreticulin. Such changes it has been argued are significant in facilitating the killing of tumour cells by immunogical means. HDP constitute a novel class of anticancer agents for which, as we develop better knowledge of their pharmacokinetic profiles and learn better how to tailor their administration, hold high promise to augment or even replace the currently available cytotoxic anticancer chemotherapeutic agents most of which owe their efficacy to their capacity to bind to and damage target cell DNA.
Collapse
Affiliation(s)
- Károly Lapis
- Semmelweis Egyetem, AOK I. sz. Patológiai és Kísérleti Rákkutató Intézet, 1085 Budapest, Ulloi út 26.
| |
Collapse
|