1
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
2
|
Dual RNA sequencing of group B Streptococcus-infected human monocytes reveals new insights into host-pathogen interactions and bacterial evasion of phagocytosis. Sci Rep 2023; 13:2137. [PMID: 36747074 PMCID: PMC9902490 DOI: 10.1038/s41598-023-28117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is a frequent cause of infections, including bacteraemia and other acute diseases in adults and immunocompromised individuals. We developed a novel system to study GBS within human monocytes to define the co-transcriptome of intracellular GBS (iGBS) and host cells simultaneously using dual RNA-sequencing (RNA-seq) to better define how this pathogen responds to host cells. Using human U937 monocytes and genome-sequenced GBS reference strain 874,391 in antibiotic protection assays we validated a system for dual-RNA seq based on measures of GBS and monocyte viability to ensure that the bacterial and host cell co-transcriptome reflected mainly intracellular (iGBS) rather than extracellular GBS. Elucidation of the co-transcriptome revealed 1119 dysregulated transcripts in iGBS with most genes, including several that encode virulence factors (e.g., scpB, hvgA, ribD, pil2b) exhibiting activation by upregulated expression. Infection with iGBS resulted in significant remodelling of the monocyte transcriptome, with 7587 transcripts differentially expressed including 7040 up-regulated and 547 down-regulated. qPCR confirmed that the most strongly activated genes included sht, encoding Streptococcal Histidine Triad Protein. An isogenic GBS mutant strain deficient in sht revealed a significant effect of this gene on phagocytosis of GBS and survival of the bacteria during systemic infection in mice. Identification of a novel contribution of sht to GBS virulence shows the co-transcriptome responses elucidated in GBS-infected monocytes help to shape the host-pathogen interaction and establish a role for sht in the response of the bacteria to phagocytic uptake. This study provides comprehension of concurrent transcriptional responses that occur in GBS and human monocytes that shape the host-pathogen interaction.
Collapse
|
3
|
Kou TS, Wu JH, Chen XW, Chen ZG, Zheng J, Peng B. Exogenous glycine promotes oxidation of glutathione and restores sensitivity of bacterial pathogens to serum-induced cell death. Redox Biol 2022; 58:102512. [PMID: 36306677 PMCID: PMC9615314 DOI: 10.1016/j.redox.2022.102512] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Pathogenic strains of bacteria are often highly adept at evading serum-induced cell death, which is an essential complement-mediated component of the innate immune response. This phenomenon, known as serum-resistance, is poorly understood, and as a result, no effective clinical tools are available to restore serum-sensitivity to pathogenic bacteria. Here, we provide evidence that exogenous glycine reverses defects in glycine, serine and threonine metabolism associated with serum resistance, restores susceptibility to serum-induced cell death, and alters redox balance and glutathione (GSH) metabolism. More specifically, in Vibrio alginolyticus and Escherichia coli, exogenous glycine promotes oxidation of GSH to GSH disulfide (GSSG), disrupts redox balance, increases oxidative stress and reduces membrane integrity, leading to increased binding of complement. Antioxidant or ROS scavenging agents abrogate this effect and agents that generate or potentiate oxidation stimulate serum-mediated cell death. Analysis of several clinical isolates of E. coli demonstrates that glutathione metabolism is repressed in serum-resistant bacteria. These data suggest a novel mechanism underlying serum-resistance in pathogenic bacteria, characterized by an induced shift in the GSH/GSSG ratio impacting redox balance. The results could potentially lead to novel approaches to manage infections caused by serum-resistant bacteria both in aquaculture and human health.
Collapse
Affiliation(s)
- Tian-shun Kou
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jia-han Wu
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xuan-wei Chen
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Zhuang-gui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510006, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China,Corresponding author. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
4
|
Xu X, Marffy ALL, Keightley A, McCarthy AJ, Geisbrecht BV. Group B Streptococcus Surface Protein β: Structural Characterization of a Complement Factor H-Binding Motif and Its Contribution to Immune Evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1232-1247. [PMID: 35110419 PMCID: PMC8881398 DOI: 10.4049/jimmunol.2101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
The β protein from group B Streptococcus (GBS) is a ∼132-kDa, cell-surface exposed molecule that binds to multiple host-derived ligands, including complement factor H (FH). Many details regarding this interaction and its significance to immune evasion by GBS remain unclear. In this study, we identified a three-helix bundle domain within the C-terminal half of the B75KN region of β as the major FH-binding determinant and determined its crystal structure at 2.5 Å resolution. Analysis of this structure suggested a role in FH binding for a loop region connecting helices α1 and α2, which we confirmed by mutagenesis and direct binding studies. Using a combination of protein cross-linking and mass spectrometry, we observed that B75KN bound to complement control protein (CCP)3 and CCP4 domains of FH. Although this binding site lies within a complement regulatory region of FH, we determined that FH bound by β retained its decay acceleration and cofactor activities. Heterologous expression of β by Lactococcus lactis resulted in recruitment of FH to the bacterial surface and a significant reduction of C3b deposition following exposure to human serum. Surprisingly, we found that FH binding by β was not required for bacterial resistance to phagocytosis by neutrophils or killing of bacteria by whole human blood. However, loss of the B75KN region significantly diminished bacterial survival in both assays. Although our results show that FH recruited to the bacterial surface through a high-affinity interaction maintains key complement-regulatory functions, they raise questions about the importance of FH binding to immune evasion by GBS as a whole.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS U.S.A
| | - Alexander L. Lewis Marffy
- Department of Infectious Diseases, Section of Molecular Microbiology, MRC Centre for Molecular Bacteriology & Infection, Imperial College London; London, U.K
| | - Andrew Keightley
- Department of Opthamology, School of Medicine, University of Missouri-Kansas City; Kansas City, MO U.S.A
| | - Alex J. McCarthy
- Department of Infectious Diseases, Section of Molecular Microbiology, MRC Centre for Molecular Bacteriology & Infection, Imperial College London; London, U.K
| | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS U.S.A.,To whom correspondence should be addressed: Brian V. Geisbrecht, Ph.D., Kansas State University, 141 Chalmers Hall, 1711 Claflin Road, Manhattan, KS 66506, PH: 785.532.3154,
| |
Collapse
|
5
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
6
|
Ni H, Li M, Wang Q, Wang J, Liu X, Zheng F, Hu D, Yu X, Han Y, Zhang Q, Zhou T, Wang Y, Wang C, Gao J, Shao ZQ, Pan X. Inactivation of the htpsA gene affects capsule development and pathogenicity of Streptococcus suis. Virulence 2020; 11:927-940. [PMID: 32815473 PMCID: PMC7567435 DOI: 10.1080/21505594.2020.1792080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important swine pathogen and also an emerging zoonotic agent. HtpsA has been reported as an immunogenic cell surface protein on the bacterium. In the present study, we constructed an isogenic mutant strain of htpsA, namely ΔhtpsA, to study its role in the development and virulence of S. suis 2. Our results showed that the mutant strain lost its typical encapsulated structure with decreased concentrations of sialic acid. Furthermore, the survival rate in whole blood, the anti-phagocytosis by RAW264.7 murine macrophage, and the adherence ability to HEp-2 cells were all significantly affected in the ΔhtpsA. In addition, the deletion of htpsA sharply attenuated the virulence of S. suis 2 in an infection model of mouse. RNA-seq analysis revealed that 126 genes were differentially expressed between the ΔhtpsA and the wild-type strains, including 28 upregulated and 98 downregulated genes. Among the downregulated genes, many were involved in carbohydrate metabolism and synthesis of virulence-associated factors. Taken together, htpsA was demonstrated to play a role in the morphological development and pathogenesis of the highly virulent S. suis 2 05ZYH33 strain.
Collapse
Affiliation(s)
- Hua Ni
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University , Kashi, China
| | - Min Li
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,Clinical Laboratory Department of Changzhi, People's Hospital , Changzhi, China
| | - Qiaoqiao Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,School of Life Sciences, Nanjing Normal University , Nanjing, China
| | - Jing Wang
- Department of Laboratory Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University , Wuxi, China
| | - Xumiao Liu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,School of Life Sciences, Nanjing Normal University , Nanjing, China
| | - Feng Zheng
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Dan Hu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Xu Yu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Yifang Han
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Qi Zhang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Tingting Zhou
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Yiwen Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Chunhui Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Jimin Gao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou, China
| | - Zhu-Qing Shao
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing, China
| | - Xiuzhen Pan
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,School of Life Sciences, Nanjing Normal University , Nanjing, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou, China
| |
Collapse
|
7
|
Cheng ZX, Guo C, Chen ZG, Yang TC, Zhang JY, Wang J, Zhu JX, Li D, Zhang TT, Li H, Peng B, Peng XX. Glycine, serine and threonine metabolism confounds efficacy of complement-mediated killing. Nat Commun 2019; 10:3325. [PMID: 31346171 PMCID: PMC6658569 DOI: 10.1038/s41467-019-11129-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 06/24/2019] [Indexed: 11/28/2022] Open
Abstract
Serum resistance is a poorly understood but common trait of some difficult-to-treat pathogenic strains of bacteria. Here, we report that glycine, serine and threonine catabolic pathway is down-regulated in serum-resistant Escherichia coli, whereas exogenous glycine reverts the serum resistance and effectively potentiates serum to eliminate clinically-relevant bacterial pathogens in vitro and in vivo. We find that exogenous glycine increases the formation of membrane attack complex on bacterial membrane through two previously unrecognized regulations: 1) glycine negatively and positively regulates metabolic flux to purine biosynthesis and Krebs cycle, respectively. 2) α-Ketoglutarate inhibits adenosine triphosphate synthase, which in together promote the formation of cAMP/CRP regulon to increase the expression of complement-binding proteins HtrE, NfrA, and YhcD. The results could lead to effective strategies for managing the infection with serum-resistant bacteria, an especially valuable approach for treating individuals with weak acquired immunity but a normal complement system. Serum-resistant bacteria can escape complement killing in the bloodstream. Here, using metabolomics and metabolite perturbations, the authors describe an altered metabolic state in serum-resistant Escherichia coli and show that exogenous glycine potentiates elimination of pathogenic bacteria in vivo.
Collapse
Affiliation(s)
- Zhi-Xue Cheng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Chang Guo
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Zhuang-Gui Chen
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Tian-Ci Yang
- Zhongshan Hospital of Xiamen University, Xiamen, 361004, People's Republic of China
| | - Jian-Ying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Jie Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Jia-Xin Zhu
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Dan Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Tian-Tuo Zhang
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China. .,Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China. .,Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China. .,Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
8
|
Defining the Role of the Streptococcus agalactiae Sht-Family Proteins in Zinc Acquisition and Complement Evasion. J Bacteriol 2019; 201:JB.00757-18. [PMID: 30745371 DOI: 10.1128/jb.00757-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 01/10/2023] Open
Abstract
Streptococcus agalactiae is not only part of the human intestinal and urogenital microbiota but is also a leading cause of septicemia and meningitis in neonates. Its ability to cause disease depends upon the acquisition of nutrients from its environment, including the transition metal ion zinc. The primary zinc acquisition system of the pathogen is the Adc/Lmb ABC permease, which is essential for viability in zinc-restricted environments. Here, we show that in addition to the AdcCB transporter and the three zinc-binding proteins, Lmb, AdcA, and AdcAII, S. agalactiae zinc homeostasis also involves two streptococcal histidine triad (Sht) proteins. Sht and ShtII are required for zinc uptake via the Lmb and AdcAII proteins with apparent overlapping functionality and specificity. Both Sht-family proteins possess five-histidine triad motifs with similar hierarchies of importance for Zn homeostasis. Independent of its contribution to zinc homeostasis, Sht has previously been reported to bind factor H leading to predictions of a contribution to complement evasion. Here, we investigated ShtII to ascertain whether it had similar properties. Analysis of recombinant Sht and ShtII reveals that both proteins have similar affinities for factor H binding. However, neither protein aided in resistance to complement in human blood. These findings challenge prior inferences regarding the in vivo role of the Sht proteins in resisting complement-mediated clearance.IMPORTANCE This study examined the role of the two streptococcal histidine triad (Sht) proteins of Streptococcus agalactiae in zinc homeostasis and complement resistance. We showed that Sht and ShtII facilitate zinc homeostasis in conjunction with the metal-binding proteins Lmb and AdcAII. Here, we show that the Sht-family proteins are functionally redundant with overlapping roles in zinc uptake. Further, this work reveals that although the Sht-family proteins bind to factor H in vitro this did not influence survival in human blood.
Collapse
|
9
|
Giussani S, Pietrocola G, Donnarumma D, Norais N, Speziale P, Fabbrini M, Margarit I. The Streptococcus agalactiae complement interfering protein combines multiple complement-inhibitory mechanisms by interacting with both C4 and C3 ligands. FASEB J 2018; 33:4448-4457. [PMID: 30566365 PMCID: PMC6404586 DOI: 10.1096/fj.201801991r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Group B Streptococcus (GBS) colonizes the human lower intestinal and genital tracts and constitutes a major threat to neonates from pregnant carrier mothers and to adults with underlying morbidity. The pathogen expresses cell-surface virulence factors that enable cell adhesion and penetration and that counteract innate and adaptive immune responses. Among these, the complement interfering protein (CIP) was recently described for its capacity to interact with the human C4b ligand and to interfere with the classical- and lectin-complement pathways. In the present study, we provide evidence that CIP can also interact with C3, C3b, and C3d. Immunoassay-based competition experiments showed that binding of CIP to C3d interferes with the interaction between C3d and the complement receptor 2/cluster of differentiation 21 (CR2/CD21) receptor on B cells. By B-cell intracellular signaling assays, CIP was confirmed to down-regulate CR2/CD21-dependent B-cell activation. The CIP domain involved in C3d binding was mapped via hydrogen deuterium exchange–mass spectrometry. The data obtained reveal a new role for this GBS polypeptide at the interface between the innate and adaptive immune responses, adding a new member to the growing list of virulence factors secreted by gram-positive pathogens that incorporate multiple immunomodulatory functions.—Giussani, S., Pietrocola, G., Donnarumma, D., Norais, N., Speziale, P., Fabbrini, M., Margarit, I. The Streptococcus agalactiae complement interfering protein combines multiple complement-inhibitory mechanisms by interacting with both C4 and C3 ligands.
Collapse
Affiliation(s)
- Stefania Giussani
- GlaxoSmithKline (GSK), Siena, Italy; and.,Unit of Biochemistry, Molecular Medicine Department, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Unit of Biochemistry, Molecular Medicine Department, University of Pavia, Pavia, Italy
| | | | | | - Pietro Speziale
- Unit of Biochemistry, Molecular Medicine Department, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
10
|
Patras KA, Nizet V. Group B Streptococcal Maternal Colonization and Neonatal Disease: Molecular Mechanisms and Preventative Approaches. Front Pediatr 2018; 6:27. [PMID: 29520354 PMCID: PMC5827363 DOI: 10.3389/fped.2018.00027] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) colonizes the gastrointestinal and vaginal epithelium of a significant percentage of healthy women, with potential for ascending intrauterine infection or transmission during parturition, creating a risk of serious disease in the vulnerable newborn. This review highlights new insights on the bacterial virulence determinants, host immune responses, and microbiome interactions that underpin GBS vaginal colonization, the proximal step in newborn infectious disease pathogenesis. From the pathogen perspective, the function GBS adhesins and biofilms, β-hemolysin/cytolysin toxin, immune resistance factors, sialic acid mimicry, and two-component transcriptional regulatory systems are reviewed. From the host standpoint, pathogen recognition, cytokine responses, and the vaginal mucosal and placental immunity to the pathogen are detailed. Finally, the rationale, efficacy, and potential unintended consequences of current universal recommended intrapartum antibiotic prophylaxis are considered, with updates on new developments toward a GBS vaccine or alternative approaches to reducing vaginal colonization.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Parallel Evolution of Group B Streptococcus Hypervirulent Clonal Complex 17 Unveils New Pathoadaptive Mutations. mSystems 2017; 2:mSystems00074-17. [PMID: 28904998 PMCID: PMC5585690 DOI: 10.1128/msystems.00074-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022] Open
Abstract
The incidence of group B Streptococcus (GBS) neonatal disease continues to be a significant cause of concern worldwide. Strains belonging to clonal complex 17 (CC17) are the most frequently responsible for GBS infections in neonates, especially among late-onset disease cases. Therefore, we undertook the largest genomic study of GBS CC17 strains to date to decipher the genetic bases of their remarkable colonization and infection ability. We show that crucial functions involved in different steps of the colonization or infection process of GBS are distinctly mutated during the adaptation of CC17 to the human host. In particular, our results implicate the CovRS two-component regulator of virulence in the differentiation between carriage- and disease-associated isolates. Not only does this work raise important implications for the ongoing development of a vaccine against GBS but might also drive the discovery of key functions for GBS adaptation and pathogenesis that have been overlooked until now. Group B Streptococcus (GBS) is a commensal of the gastrointestinal and genitourinary tracts, while a prevailing cause of neonatal disease worldwide. Of the various clonal complexes (CCs), CC17 is overrepresented in GBS-infected newborns for reasons that are still largely unknown. Here, we report a comprehensive genomic analysis of 626 CC17 isolates collected worldwide, identifying the genetic traits behind their successful adaptation to humans and the underlying differences between carriage and clinical strains. Comparative analysis with 923 GBS genomes belonging to CC1, CC19, and CC23 revealed that the evolution of CC17 is distinct from that of other human-adapted lineages and recurrently targets functions related to nucleotide and amino acid metabolism, cell adhesion, regulation, and immune evasion. We show that the most distinctive features of disease-specific CC17 isolates were frequent mutations in the virulence-associated CovS and Stk1 kinases, underscoring the crucial role of the entire CovRS regulatory pathway in modulating the pathogenicity of GBS. Importantly, parallel and convergent evolution of major components of the bacterial cell envelope, such as the capsule biosynthesis operon, the pilus, and Rib, reflects adaptation to host immune pressures and should be taken into account in the ongoing development of a GBS vaccine. The presence of recurrent targets of evolution not previously implicated in virulence also opens the way for uncovering new functions involved in host colonization and GBS pathogenesis. IMPORTANCE The incidence of group B Streptococcus (GBS) neonatal disease continues to be a significant cause of concern worldwide. Strains belonging to clonal complex 17 (CC17) are the most frequently responsible for GBS infections in neonates, especially among late-onset disease cases. Therefore, we undertook the largest genomic study of GBS CC17 strains to date to decipher the genetic bases of their remarkable colonization and infection ability. We show that crucial functions involved in different steps of the colonization or infection process of GBS are distinctly mutated during the adaptation of CC17 to the human host. In particular, our results implicate the CovRS two-component regulator of virulence in the differentiation between carriage- and disease-associated isolates. Not only does this work raise important implications for the ongoing development of a vaccine against GBS but might also drive the discovery of key functions for GBS adaptation and pathogenesis that have been overlooked until now. Author Video: An author video summary of this article is available.
Collapse
|
12
|
The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival. J Bacteriol 2016; 198:3265-3277. [PMID: 27672194 DOI: 10.1128/jb.00614-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. IMPORTANCE A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids.
Collapse
|
13
|
Ram S, Shaughnessy J, DeOliveira RB, Lewis LA, Gulati S, Rice PA. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae. Immunobiology 2016; 221:1110-23. [PMID: 27297292 DOI: 10.1016/j.imbio.2016.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
Novel therapies are urgently needed to combat the global threat of multidrug-resistant pathogens. Complement forms an important arm of innate defenses against infections. In physiological conditions, complement activation is tightly controlled by soluble and membrane-associated complement inhibitors, but must be selectively activated on invading pathogens to facilitate microbial clearance. Many pathogens, including Neisseria gonorrhoeae and N. meningitidis, express glycans, including N-acetylneuraminic acid (Neu5Ac), that mimic host structures to evade host immunity. Neu5Ac is a negatively charged 9-cabon sugar that inhibits complement, in part by enhancing binding of the complement inhibitor factor H (FH) through C-terminal domains (19 and 20) on FH. Other microbes also bind FH, in most instances through FH domains 6 and 7 or 18-20. Here we describe two strategies to target complement activation on Neisseriae. First, microbial binding domains of FH were fused to IgG Fc to create FH18-20/Fc (binds gonococci) and FH6,7/Fc (binds meningococci). A point mutation in FH domain 19 eliminated hemolysis caused by unmodified FH18-20, but retained binding to gonococci. FH18-20/Fc and FH6,7/Fc mediated complement-dependent killing in vitro and showed efficacy in animal models of gonorrhea and meningococcal bacteremia, respectively. The second strategy utilized CMP-nonulosonate (CMP-NulO) analogs of sialic acid that were incorporated into LOS and prevented complement inhibition by physiologic CMP-Neu5Ac and resulted in attenuated gonococcal infection in mice. While studies to establish the safety of these agents are needed, enhancing complement activation on microbes may represent a promising strategy to treat antimicrobial resistant organisms.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
14
|
Pietrocola G, Rindi S, Rosini R, Buccato S, Speziale P, Margarit I. The Group B Streptococcus-Secreted Protein CIP Interacts with C4, Preventing C3b Deposition via the Lectin and Classical Complement Pathways. THE JOURNAL OF IMMUNOLOGY 2015; 196:385-94. [PMID: 26608922 DOI: 10.4049/jimmunol.1501954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023]
Abstract
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; and
| | - Simonetta Rindi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; and
| | | | | | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; and
| | | |
Collapse
|
15
|
Rosinski-Chupin I, Sauvage E, Sismeiro O, Villain A, Da Cunha V, Caliot ME, Dillies MA, Trieu-Cuot P, Bouloc P, Lartigue MF, Glaser P. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae. BMC Genomics 2015; 16:419. [PMID: 26024923 PMCID: PMC4448216 DOI: 10.1186/s12864-015-1583-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/27/2015] [Indexed: 11/15/2022] Open
Abstract
Background Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Results Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. Conclusions This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1583-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabelle Rosinski-Chupin
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, 28 rue du Docteur Roux, 75724,, Paris Cedex 15, France. .,CNRS UMR 3525, Paris, France.
| | - Elisabeth Sauvage
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, 28 rue du Docteur Roux, 75724,, Paris Cedex 15, France. .,CNRS UMR 3525, Paris, France.
| | - Odile Sismeiro
- Institut Pasteur, Transcriptome and Epigenome Platform, 28 rue du Docteur Roux, 75724,, Paris Cedex 15, France.
| | - Adrien Villain
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, 28 rue du Docteur Roux, 75724,, Paris Cedex 15, France. .,CNRS UMR 3525, Paris, France.
| | - Violette Da Cunha
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, 28 rue du Docteur Roux, 75724,, Paris Cedex 15, France. .,CNRS UMR 3525, Paris, France.
| | - Marie-Elise Caliot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, 28 rue du Docteur Roux, 75724,, Paris Cedex 15, France.
| | - Marie-Agnès Dillies
- Institut Pasteur, Transcriptome and Epigenome Platform, 28 rue du Docteur Roux, 75724,, Paris Cedex 15, France.
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, 28 rue du Docteur Roux, 75724,, Paris Cedex 15, France.
| | - Philippe Bouloc
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, bâtiment 400, 91405, Orsay, France.
| | - Marie-Frédérique Lartigue
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, bâtiment 400, 91405, Orsay, France. .,Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France. .,CHRU de Tours, F-37044, Tours, France. .,INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.
| | - Philippe Glaser
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, 28 rue du Docteur Roux, 75724,, Paris Cedex 15, France. .,CNRS UMR 3525, Paris, France.
| |
Collapse
|
16
|
Pan X, Yang Y, Zhang JR. Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 2014; 3:e23. [PMID: 26038515 PMCID: PMC3974339 DOI: 10.1038/emi.2014.23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 01/08/2023]
Abstract
Pathogenic bacteria display various levels of host specificity or tropism. While many bacteria can infect a wide range of hosts, certain bacteria have strict host selectivity for humans as obligate human pathogens. Understanding the genetic and molecular basis of host specificity in pathogenic bacteria is important for understanding pathogenic mechanisms, developing better animal models and designing new strategies and therapeutics for the control of microbial diseases. The molecular mechanisms of bacterial host specificity are much less understood than those of viral pathogens, in part due to the complexity of the molecular composition and cellular structure of bacterial cells. However, important progress has been made in identifying and characterizing molecular determinants of bacterial host specificity in the last two decades. It is now clear that the host specificity of bacterial pathogens is determined by multiple molecular interactions between the pathogens and their hosts. Furthermore, certain basic principles regarding the host specificity of bacterial pathogens have emerged from the existing literature. This review focuses on selected human pathogenic bacteria and our current understanding of their host specificity.
Collapse
Affiliation(s)
- Xiaolei Pan
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Yang Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| |
Collapse
|
17
|
Ragunathan P, Sridaran D, Weigel A, Shabayek S, Spellerberg B, Ponnuraj K. Metal binding is critical for the folding and function of laminin binding protein, Lmb of Streptococcus agalactiae. PLoS One 2013; 8:e67517. [PMID: 23826314 PMCID: PMC3691195 DOI: 10.1371/journal.pone.0067517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 05/22/2013] [Indexed: 02/03/2023] Open
Abstract
Lmb is a 34 kDa laminin binding surface adhesin of Streptococcus agalactiae. The structure of Lmb reported by us recently has shown that it consists of a metal binding crevice, in which a zinc ion is coordinated to three highly conserved histidines. To elucidate the structural and functional significance of the metal ion in Lmb, these histidines have been mutated to alanine and single, double and triple mutants were generated. These mutations resulted in insolubility of the protein and revealed altered secondary and tertiary structures, as evidenced by circular dichroism and fluorescence spectroscopy studies. The mutations also significantly decreased the binding affinity of Lmb to laminin, implicating the role played by the metal binding residues in maintaining the correct conformation of the protein for its binding to laminin. A highly disordered loop, proposed to be crucial for metal acquisition in homologous structures, was deleted in Lmb by mutation (ΔLmb) and its crystal structure was solved at 2.6 Å. The ΔLmb structure was identical to the native Lmb structure with a bound zinc ion and exhibited laminin binding activity similar to wild type protein, suggesting that the loop might not have an important role in metal acquisition or adhesion in Lmb. Targeted mutations of histidine residues confirmed the importance of the zinc binding crevice for the structure and function of the Lmb adhesin.
Collapse
Affiliation(s)
- Preethi Ragunathan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Divya Sridaran
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Anja Weigel
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Sarah Shabayek
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
- * E-mail: (BS); (KP)
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
- * E-mail: (BS); (KP)
| |
Collapse
|
18
|
Shao ZQ, Zhang YM, Pan XZ, Wang B, Chen JQ. Insight into the evolution of the histidine triad protein (HTP) family in Streptococcus. PLoS One 2013; 8:e60116. [PMID: 23527301 PMCID: PMC3603884 DOI: 10.1371/journal.pone.0060116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/21/2013] [Indexed: 12/19/2022] Open
Abstract
The Histidine Triad Proteins (HTPs), also known as Pht proteins in Streptococcus pneumoniae, constitute a family of surface-exposed proteins that exist in many pathogenic streptococcal species. Although many studies have revealed the importance of HTPs in streptococcal physiology and pathogenicity, little is known about their origin and evolution. In this study, after identifying all htp homologs from 105 streptococcal genomes representing 38 different species/subspecies, we analyzed their domain structures, positions in genome, and most importantly, their evolutionary histories. By further projecting this information onto the streptococcal phylogeny, we made several major findings. First, htp genes originated earlier than the Streptococcus genus and gene-loss events have occurred among three streptococcal groups, resulting in the absence of the htp gene in the Bovis, Mutans and Salivarius groups. Second, the copy number of htp genes in other groups of Streptococcus is variable, ranging from one to four functional copies. Third, both phylogenetic evidence and domain structure analyses support the division of two htp subfamilies, designated as htp I and htp II. Although present mainly in the pyogenic group and in Streptococcus suis, htp II members are distinct from htp I due to the presence of an additional leucine-rich-repeat domain at the C-terminus. Finally, htp genes exhibit a faster nucleotide substitution rate than do housekeeping genes. Specifically, the regions outside the HTP domains are under strong positive selection. This distinct evolutionary pattern likely helped Streptococcus to easily escape from recognition by host immunity.
Collapse
Affiliation(s)
- Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yan-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiu-Zhen Pan
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail: (BW); (JQC)
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail: (BW); (JQC)
| |
Collapse
|
19
|
Plumptre CD, Ogunniyi AD, Paton JC. Polyhistidine triad proteins of pathogenic streptococci. Trends Microbiol 2012; 20:485-93. [PMID: 22819099 DOI: 10.1016/j.tim.2012.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/17/2022]
Abstract
The polyhistidine triad (Pht) proteins are an intriguing family of proteins found on the surface of members of the genus Streptococcus. Their defining feature is the presence of multiple copies of the eponymous His triad motif HxxHxH. This review focuses on the Pht proteins of Streptococcus pneumoniae, which contribute to virulence and are leading candidates for inclusion in protein-based pneumococcal vaccines. They appear to have multiple functions, including metal ion homeostasis, evasion of complement deposition and adherence of bacteria to host cells. Across the streptococci, there are many Pht homologs, which can be grouped according to structural features. Critically, there is considerable potential to use members of the Pht protein family as components of vaccines targeted at other streptococci.
Collapse
Affiliation(s)
- Charles D Plumptre
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, SA, 5005, Australia
| | | | | |
Collapse
|
20
|
Bhide M, Bhide K, Pulzova L, Madar M, Mlynarcik P, Bencurova E, Hresko S, Mucha R. Variable regions in the sushi domains 6–7 and 19–20 of factor H in animals and human lead to change in the affinity to factor H binding protein of Borrelia. J Proteomics 2012; 75:4520-8. [DOI: 10.1016/j.jprot.2012.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
21
|
Segura M. Fisher scientific award lecture - the capsular polysaccharides of Group B Streptococcus and Streptococcus suis differently modulate bacterial interactions with dendritic cells. Can J Microbiol 2012; 58:249-60. [PMID: 22356626 DOI: 10.1139/w2012-003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infections with encapsulated bacteria cause serious clinical problems. Besides being poorly immunogenic, the bacterial capsular polysaccharide (CPS) cloaks antigenic proteins, allowing bacterial evasion of the host immune system. Despite the clinical significance of bacterial CPS and its suggested role in the pathogenesis of the infection, the mechanisms underlying innate and, critically, adaptive immune responses to encapsulated bacteria have not been fully elucidated. As such, we became interested in studying the CPS of two similar, but unique, streptococcal species: Group B Streptococcus (GBS) and Streptococcus suis . Both streptococci are well encapsulated, some capsular types are more virulent than others, and they can cause severe meningitis and septicemia. For both pathogens, the CPS is considered the major virulence factor. Finally, these two streptococci are the sole Gram-positive bacteria possessing sialic acid in their capsules. GBS type III is a leading cause of neonatal invasive infections. Streptococcus suis type 2 is an important swine and emerging zoonotic pathogen in humans. We recently characterized the S. suis type 2 CPS. It shares common structural elements with GBS, but sialic acid is α2,6-linked to galactose rather than α2,3-linked. Differential sialic acid expression by pathogens might result in modulation of immune cell activation and, consequently, may affect the immuno-pathogenesis of these bacterial infections. Here, we review and compare the interactions of these two sialylated encapsulated bacteria with dendritic cells, known as the most potent antigen-presenting cells linking innate and adaptive immunity. We further address differences between dendritic cells and professional phagocytes, such as macrophages and neutrophils, in their interplay with these encapsulated pathogens. Elucidation of the molecular and cellular basis of the impact of CPS composition on bacterial interactions with immune cells is critical for mechanistic understanding of anti-CPS responses. Knowledge generated will help to advance the development of novel, more effective anti-CPS vaccines and improved immunotherapies.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
22
|
Mittal R, Sukumaran SK, Selvaraj SK, Wooster DG, Babu MM, Schreiber AD, Verbeek JS, Prasadarao NV. Fcγ receptor I alpha chain (CD64) expression in macrophages is critical for the onset of meningitis by Escherichia coli K1. PLoS Pathog 2010; 6:e1001203. [PMID: 21124939 PMCID: PMC2987830 DOI: 10.1371/journal.ppat.1001203] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 10/21/2010] [Indexed: 11/18/2022] Open
Abstract
Neonatal meningitis due to Escherichia coli K1 is a serious illness with unchanged morbidity and mortality rates for the last few decades. The lack of a comprehensive understanding of the mechanisms involved in the development of meningitis contributes to this poor outcome. Here, we demonstrate that depletion of macrophages in newborn mice renders the animals resistant to E. coli K1 induced meningitis. The entry of E. coli K1 into macrophages requires the interaction of outer membrane protein A (OmpA) of E. coli K1 with the alpha chain of Fcγ receptor I (FcγRIa, CD64) for which IgG opsonization is not necessary. Overexpression of full-length but not C-terminal truncated FcγRIa in COS-1 cells permits E. coli K1 to enter the cells. Moreover, OmpA binding to FcγRIa prevents the recruitment of the γ-chain and induces a different pattern of tyrosine phosphorylation of macrophage proteins compared to IgG2a induced phosphorylation. Of note, FcγRIa−/− mice are resistant to E. coli infection due to accelerated clearance of bacteria from circulation, which in turn was the result of increased expression of CR3 on macrophages. Reintroduction of human FcγRIa in mouse FcγRIa−/− macrophages in vitro increased bacterial survival by suppressing the expression of CR3. Adoptive transfer of wild type macrophages into FcγRIa−/− mice restored susceptibility to E. coli infection. Together, these results show that the interaction of FcγRI alpha chain with OmpA plays a key role in the development of neonatal meningitis by E. coli K1. Escherichia coli K1 is the most common cause of meningitis in premature infants; the mortality rate of this disease ranges from 5% to 30%. A better understanding of the pathogenesis of E. coli K1 meningitis is needed to develop new preventative strategies. We have shown that outer membrane protein A (OmpA) of E. coli K1, independent of antibody opsonization, is critical for bacterial entrance and survival within macrophages. Using a newborn mouse model, we found that depletion of macrophages renders the animals resistant to E. coli K1 induced meningitis. OmpA binds to α-chain of Fcγ-receptor I (FcγRIa) in macrophages, but does not induce expected gamma chain association and signaling. FcγRIa knockout mice are resistant to E. coli K1 infection because their macrophages express more CR3 and are thus able to kill bacteria with greater efficiency, preventing the development of high-grade bacteremia, a pre-requisite for the onset of meningitis. These novel observations demonstrate that inhibiting OmpA binding to FcγRIa is a promising therapeutic target for treatment or prevention of neonatal meningitis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bacterial Outer Membrane Proteins/metabolism
- Binding, Competitive
- Blotting, Western
- Brain/immunology
- Brain/metabolism
- Brain/microbiology
- COS Cells
- Chlorocebus aethiops
- Escherichia coli/growth & development
- Escherichia coli/pathogenicity
- Flow Cytometry
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunoprecipitation
- Macrophage-1 Antigen/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/microbiology
- Meningitis, Escherichia coli/etiology
- Meningitis, Escherichia coli/metabolism
- Meningitis, Escherichia coli/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Phagocytosis
- Phosphorylation
- RNA, Messenger/genetics
- Receptors, IgG/physiology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Sunil K. Sukumaran
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Suresh K. Selvaraj
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - David G. Wooster
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - M. Madan Babu
- Structural Studies Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alan D. Schreiber
- Hematology and Oncology Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - J. Sjef Verbeek
- Department of Human Genetics, University Medical Center, Leiden, Netherlands
| | - Nemani V. Prasadarao
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Rioux S, Neyt C, Di Paolo E, Turpin L, Charland N, Labbé S, Mortier MC, Mitchell TJ, Feron C, Martin D, Poolman JT. Transcriptional regulation, occurrence and putative role of the Pht family of Streptococcus pneumoniae. MICROBIOLOGY-SGM 2010; 157:336-348. [PMID: 20966093 DOI: 10.1099/mic.0.042184-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Restricted to the genus Streptococcus, the Pht protein family comprises four members: PhtA, PhtB, PhtD and PhtE. This family has the potential to provide a protein candidate for incorporation in pneumococcal vaccines. Based on sequence analysis and on RT-PCR experiments, we show here that the pht genes are organized in tandem but that their expression, except that of phtD, is monocistronic. PhtD, PhtE, PhtB and PhtA are present in 100, 97, 81 and 62 % of the strains, respectively, and, by analysing its sequence conservation across 107 pneumococcal strains, we showed that PhtD displays very little variability. To analyse the physiological function of these proteins, several mutants were constructed. The quadruple Pht-deficient mutant was not able to grow in a poor culture medium, but the addition of Zn(2+) or Mn(2+) restored its growth capacity. Moreover, the phtD mRNA expression level increased when the culture medium was depleted in zinc. Therefore, we suggest that these proteins are zinc and manganese scavengers, and are able to store these metals and to release them when the bacterium faces an ion-restricted environment. The data also showed that this protein family, and more particularly PhtD, is a promising candidate to be incorporated into pneumococcal vaccines.
Collapse
|
24
|
Preclinical evaluation of the Pht proteins as potential cross-protective pneumococcal vaccine antigens. Infect Immun 2010; 79:238-45. [PMID: 20956575 DOI: 10.1128/iai.00378-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Current pneumococcal vaccines are composed of capsular polysaccharides (PS) of various serotypes, either as free PS or as protein-PS conjugates. The use of pneumococcus protein antigens that are able to afford protection across the majority of serotypes is envisaged as a relevant alternative and/or complement to the polysaccharides. In this context, based on several studies, the Pht protein family emerged as relevant vaccine candidates. The purpose of the present study was to evaluate the Pht protein family in several preclinical mouse models. Immunization with these antigens was compared with immunization with other pneumococcal antigens, such as CbpA, PspA, and PsaA. In a nasopharyngeal colonization model and in a lung colonization model, the Phts were found to be superior to the other candidates in terms of efficacy of protection and serotype coverage. Likewise, vaccination with PhtD allowed higher animal survival rates after lethal intranasal challenge. Finally, a passive transfer model in which natural anti-PhtD human antibodies were transferred into mice demonstrated significant protection against lethal intranasal challenge. This indicates that natural anti-PhtD human antibodies are able to protect against pneumococcal infection. Our findings, together with the serotype-independent occurrence of the Phts, designate this protein family as valid candidate antigens to be incorporated in protein-based pneumococcal vaccines.
Collapse
|
25
|
The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect Immun 2009; 78:704-15. [PMID: 19948837 DOI: 10.1128/iai.00881-09] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Streptococcus pneumoniae capsule is vital for virulence and may inhibit complement activity and phagocytosis. However, there are only limited data on the mechanisms by which the capsule affects complement and the consequences for S. pneumoniae interactions with phagocytes. Using unencapsulated serotype 2 and 4 S. pneumoniae mutants, we have confirmed that the capsule has several effects on complement activity. The capsule impaired bacterial opsonization with C3b/iC3b by both the alternative and classical complement pathways and also inhibited conversion of C3b bound to the bacterial surface to iC3b. There was increased binding of the classical pathway mediators immunoglobulin G (IgG) and C-reactive protein (CRP) to unencapsulated S. pneumoniae, indicating that the capsule could inhibit classical pathway complement activity by masking antibody recognition of subcapsular antigens, as well as by inhibiting CRP binding. Cleavage of serum IgG by the enzyme IdeS reduced C3b/iC3b deposition on all of the strains, but there were still marked increases in C3b/iC3b deposition on unencapsulated TIGR4 and D39 strains compared to encapsulated strains, suggesting that the capsule inhibits both IgG-mediated and IgG-independent complement activity against S. pneumoniae. Unencapsulated strains were more susceptible to neutrophil phagocytosis after incubation in normal serum, normal serum treated with IdeS, complement-deficient serum, and complement-deficient serum treated with IdeS or in buffer alone, suggesting that the capsule inhibits phagocytosis mediated by Fcgamma receptors, complement receptors, and nonopsonic receptors. Overall, these data show that the S. pneumoniae capsule affects multiple aspects of complement- and neutrophil-mediated immunity, resulting in a profound inhibition of opsonophagocytosis.
Collapse
|