1
|
Yan H, Hu Y, Lyu Y, Akk A, Hirbe AC, Wickline SA, Pan H, Roberson EDO, Pham CTN. Systemic delivery of murine SOD2 mRNA to experimental abdominal aortic aneurysm mitigates expansion and rupture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599454. [PMID: 38948794 PMCID: PMC11212962 DOI: 10.1101/2024.06.17.599454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Oxidative stress is implicated in the pathogenesis and progression of abdominal aortic aneurysm (AAA). Antioxidant delivery as a therapeutic for AAA is of substantial interest although clinical translation of antioxidant therapy has met with significant challenges due to limitations in achieving sufficient antioxidant levels at the site of AAA. We posit that nanoparticle-based approaches hold promise to overcome challenges associated with systemic administration of antioxidants. Methods We employed a peptide-based nanoplatform to overexpress a key modulator of oxidative stress, superoxide dismutase 2 (SOD2). The efficacy of systemic delivery of SOD2 mRNA as a nanotherapeutic agent was studied in two different murine AAA models. Unbiased mass spectrometry-enabled proteomics and high-dimensional bioinformatics were used to examine pathways modulated by SOD2 overexpression. Results The murine SOD2 mRNA sequence was mixed with p5RHH, an amphipathic peptide capable of delivering nucleic acids in vivo to form self-assembled nanoparticles of ∼55 nm in diameter. We further demonstrated that the nanoparticle was stable and functional up to four weeks following self-assembly when coated with hyaluronic acid. Delivery of SOD2 mRNA mitigated the expansion of small AAA and largely prevented rupture. Mitigation of AAA was accompanied by enhanced SOD2 protein expression in aortic wall tissue. Concomitant suppression of nitric oxide, inducible nitric oxide synthase expression, and cell death was observed. Proteomic profiling of AAA tissues suggests that SOD2 overexpression augments levels of microRNAs that regulate vascular inflammation and cell apoptosis, inhibits platelet activation/aggregation, and downregulates mitogen-activated protein kinase signaling. Gene set enrichment analysis shows that SOD2 mRNA delivery is associated with activation of oxidative phosphorylation, lipid metabolism, respiratory electron transportation, and tricarboxylic acid cycle pathways. Conclusions These results confirm that SOD2 is key modulator of oxidative stress in AAA. This nanotherapeutic mRNA delivery approach may find translational application in the medical management of small AAA and the prevention of AAA rupture.
Collapse
|
2
|
Dai Y, Yu X, Leng Y, Peng X, Wang J, Zhao Y, Chen J, Zhang Z. Effective treatment of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles. J Nanobiotechnology 2023; 21:245. [PMID: 37528426 PMCID: PMC10391974 DOI: 10.1186/s12951-023-02026-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Sentinel lymph node (SLN) metastasis is an important promoter of distant metastasis in breast cancer. Therefore, the timely diagnosis and precise treatment are crucial for patient staging and prognosis. However, the simultaneous diagnosis of metastasis and the implementation of imaging-guided SLN therapy is challenging. Here, we report a melittin-loaded and hyaluronic acid (HA)-conjugated high-density lipoprotein (HDL) mimic phospholipid scaffold nanoparticle (MLT-HA-HPPS), which dually-target to both breast cancer and its SLN and efficiently inhibit SLN metastasis in the LN metastasis model. The melittin peptide was successfully loaded onto HA-HPPS via electrostatic interactions, and MLT-HA-HPPS possesses effective cytotoxicity for breast cancer 4T1 cells. Moreover, the effective delivery of MLT-HA-HPPS from the primary tumor into SLN is monitored by NIR fluorescence imaging, which greatly benefits the prognosis and treatment of metastatic SLNs. After paracancerous administration, MLT-HA-HPPS can efficiently inhibit primary tumor growth with an inhibition rate of 81.3% and 76.5% relative to the PBS-treated control group and HA-HPPS group, respectively. More importantly, MLT-HA-HPPS can effectively inhibit the growth of the metastatic SLNs with an approximately 78.0%, 79.1%, and 64.2% decrease in SLNs weight than those in PBS, HA-HPPS, and melittin-treated mice, respectively. Taken together, the MLT-HA-HPPS may provide an encouraging theranostic of SLN drug delivery strategy to inhibit primary tumor progression and prevent SLN metastasis of breast cancer.
Collapse
Affiliation(s)
- Yanfeng Dai
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Xiang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Yuehong Leng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xingzhou Peng
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yifan Zhao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Canada
| | - Zhihong Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
3
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Yan H, Hu Y, Akk A, Wickline SA, Pan H, Pham CTN. Peptide-siRNA nanoparticles targeting NF-κB p50 mitigate experimental abdominal aortic aneurysm progression and rupture. BIOMATERIALS ADVANCES 2022; 139:213009. [PMID: 35891603 PMCID: PMC9378586 DOI: 10.1016/j.bioadv.2022.213009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 06/12/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a progressive vascular condition associated with high risk of mortality if left untreated. AAA is an inflammatory process with excessive local production of extracellular matrix degrading enzymes, leading to dilatation and rupture of the abdominal aorta. We posit that targeting NF-κB, a signaling pathway that controls inflammation, will halt AAA progression and prevent rupture. In an elastase-induced AAA model we observed that NF-κB activation increased progressively post-elastase perfusion. Unexpectedly, we found that AAA progression was marked by predominant nuclear accumulation of the NF-κB p50 subunit at the exclusion of p65. Using the amphipathic peptide p5RHH to form nanocomplexes with siRNA, we sought to mitigate AAA progression by knocking down the expression of different NF-κB subunits. We found that the administration of NF-κB p65 siRNA was only beneficial when given early (day 3 post-elastase perfusion) while p50 siRNA was still effective in mitigating elastase-induced AAA even when delivery was delayed until day 5. Additionally, systemic delivery of p50 siRNA, but not p65 siRNA decreased the risk of aortic rupture and sudden death in the transforming growth factor-beta blockade model of AAA. In both murine models, knockdown of NF-κB was accompanied by a significant decrease in leukocyte infiltrates, inflammatory cytokine release, inducible nitric oxide synthase expression, and cell apoptosis. These results suggest that the NF-κB p50 and p65 subunits contribute differentially at different stages of disease and the timing of in vivo siRNA delivery was of critical importance. The results also provide a rationale for selective targeting of p50 for more specific therapeutic intervention in the medical treatment of small AAA.
Collapse
Affiliation(s)
- Huimin Yan
- The John Cochran VA Medical Center, Saint Louis, MO, United States of America; The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Ying Hu
- The John Cochran VA Medical Center, Saint Louis, MO, United States of America; The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Antonina Akk
- The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Samuel A Wickline
- University of South Florida Health Heart Institute, Morsani College of Medicine, Tampa, FL, United States of America
| | - Hua Pan
- The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Christine T N Pham
- The John Cochran VA Medical Center, Saint Louis, MO, United States of America; The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America.
| |
Collapse
|
5
|
Wang A, Zheng Y, Zhu W, Yang L, Yang Y, Peng J. Melittin-Based Nano-Delivery Systems for Cancer Therapy. Biomolecules 2022; 12:biom12010118. [PMID: 35053266 PMCID: PMC8773652 DOI: 10.3390/biom12010118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Melittin (MEL) is a 26-amino acid polypeptide with a variety of pharmacological and toxicological effects, which include strong surface activity on cell lipid membranes, hemolytic activity, and potential anti-tumor properties. However, the clinical application of melittin is restricted due to its severe hemolytic activity. Different nanocarrier systems have been developed to achieve stable loading, side effects shielding, and tumor-targeted delivery, such as liposomes, cationic polymers, lipodisks, etc. In addition, MEL can be modified on nano drugs as a non-selective cytolytic peptide to enhance cellular uptake and endosomal/lysosomal escape. In this review, we discuss recent advances in MEL’s nano-delivery systems and MEL-modified nano drug carriers for cancer therapy.
Collapse
|
6
|
Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis. Mol Ther 2021; 29:1744-1757. [PMID: 33545360 DOI: 10.1016/j.ymthe.2021.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide. Effective delivery of cell-selective therapies that target atherosclerotic plaques and neointimal growth while sparing the endothelium remains the Achilles heel of percutaneous interventions. The current study utilizes synthetic microRNA switch therapy that self-assembles to form a compacted, nuclease-resistant nanoparticle <200 nM in size when mixed with cationic amphipathic cell-penetrating peptide (p5RHH). These nanoparticles possess intrinsic endosomolytic activity that requires endosomal acidification. When administered in a femoral artery wire injury mouse model in vivo, the mRNA-p5RHH nanoparticles deliver their payload specifically to the regions of endothelial denudation and not to the lungs, liver, kidney, or spleen. Moreover, repeated administration of nanoparticles containing a microRNA switch, consisting of synthetically modified mRNA encoding for the cyclin-dependent kinase inhibitor p27Kip1 that contains one complementary target sequence of the endothelial cell-specific miR-126 at its 5' UTR, drastically reduced neointima formation after wire injury and allowed for vessel reendothelialization. This cell-selective nanotherapy is a valuable tool that has the potential to advance the fight against neointimal hyperplasia and atherosclerosis.
Collapse
|
7
|
Antibacterial efficacy of facile cyanobacterial silver nanoparticles inferred by antioxidant mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111888. [PMID: 33641896 DOI: 10.1016/j.msec.2021.111888] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/13/2023]
Abstract
Nanoparticles (NPs) have gained importance in technological advances owing to their user friendly enhanced and efficient physical, chemical, and biological characteristics compared to their bulk counterparts. Biological synthesis of NPs by using a microorganism, enzymes, or plant extracts offers a greener and eco-friendly approach besides many advantages over physical or chemical approaches. This study reports the biosynthesis of silver nanoparticles (AgNPs) using Nostoc muscorum NCCU 442 aqueous extract as the reducing and capping agent for AgNPs synthesis. The synthesized nanoparticles were characterized by UV-VIS spectrum, SEM, EDS, TEM, AFM, DLS and XRD. Results showed distinguishing polycrystalline nature of synthesized AgNPs with surface plasmon significant band in the size range of 6-45nm with average 30 size nm. FT-IR study revealed the role of secondary metabolites present in aqueous extract for the synthesis of AgNPs. Biological activities of purified AgNPs as antioxidant and antibacterial potential showed the highest antibacterial activity against Staphylococcus aureus MTCC 902.
Collapse
|
8
|
Stansel T, Wickline SA, Pan H. NF-κB Inhibition Suppresses Experimental Melanoma Lung Metastasis. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2020; 4:256-265. [PMID: 32954352 PMCID: PMC7497821 DOI: 10.26502/jcsct.5079070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although novel therapeutic regimens for melanoma continue to emerge, the best current clinical response rate is still less than 60%. Moreover, antimelanoma treatments contribute to toxicities in other vital organs. In this study, we elucidate the therapeutic advantages of siRNA targeting melanoma NF-κB canonical signaling pathway with a peptide-based gene delivery nanoplex system. METHODS AND RESULTS In vitro treatment of melanoma B16-F10 cells was used to demonstrate delivery and efficacy of anti-NF-kB siRNA to cell cytoplasm with a 55 mn peptide-based gene delivery system. NF-κB (p65) knockdown was validated both at mRNA and protein levels by using RT2-PCR, western blot, and immunofluorescence cellular staining. Canonical p65 mRNA was reduced by 82% and p65 protein was reduced by 48%, which differed significantly from levels in control groups. In vivo treatment of a melanoma lung metastasis mouse model with 3-serial i.v. injections of p5RHH-p65 siRNA nanoparticles retarded growth of lung metastasis within one week by 76% (p=0.003) as compared to saline control treatments. CONCLUSION Inhibition of melanoma NF-κB (p65) with systemically-delivered siRNA effectively impedes the growth and progression of experimental melanoma lung metastasis.
Collapse
Affiliation(s)
- Tomoko Stansel
- The USF Health Heart Institute, Morsani College of Medicine, University
of South Florida, Tampa, FL, USA
| | - Samuel A. Wickline
- The USF Health Heart Institute, Morsani College of Medicine, University
of South Florida, Tampa, FL, USA
| | - Hua Pan
- The USF Health Heart Institute, Morsani College of Medicine, University
of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Xia J, Sun S, Wu X, Huang Y, Lei C, Nie Z. Enzyme-activated anchoring of peptide probes onto plasma membranes for selectively lighting up target cells. Analyst 2020; 145:3626-3633. [PMID: 32350495 DOI: 10.1039/d0an00487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a cellular microenvironment, numerous biomolecules are involved in various physiological and pathological processes. However, for the in-depth and comprehensive understanding of their roles at the molecular level, there is still a lack of detection techniques for the in situ tracking of these biomolecules in a local environment. Herein, we engineered a membrane insertion peptide (MIP) as an enzyme-activated membrane insertion peptide probe (eaMIP) that allowed the in situ tracking of the activity of target enzymes in living cells. In this strategy, the membrane insertion capacity of the MIP motif in each eaMIP was caged by appending a chemical moiety. In the presence of target enzymes, the caging moiety in each eaMIP was removed by enzymatic decaging, leading to the generation of active MIPs. The versatility of this design was demonstrated by lighting up different tumor cells with distinct fluorescence signal patterns, affording an alternative tool for clinical diagnostics, biochemical research and membrane engineering.
Collapse
Affiliation(s)
- Julan Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN, Wickline SA. Applications of RNA interference in the treatment of arthritis. Transl Res 2019; 214:1-16. [PMID: 31351032 PMCID: PMC6848781 DOI: 10.1016/j.trsl.2019.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism for post-transcriptional gene regulation mediated by small interfering RNA (siRNA) and microRNA. siRNA-based therapy holds significant promise for the treatment of a wide-range of arthritic diseases. siRNA selectively suppresses the expression of a gene product and can thus achieve the specificity that is lacking in small molecule inhibitors. The potential use of siRNA-based therapy in arthritis, however, has not progressed to clinical trials despite ample evidence for efficacy in preclinical studies. One of the main challenges to clinical translation is the lack of a suitable delivery vehicle to efficiently and safely access diverse pathologies. Moreover, the ideal targets in treatment of arthritides remain elusive given the complexity and heterogeneity of these disease pathogeneses. Herein, we review recent preclinical studies that use RNAi-based drug delivery systems to mitigate inflammation in models of rheumatoid arthritis and osteoarthritis. We discuss a self-assembling peptide-based nanostructure that demonstrates the potential of overcoming many of the critical barriers preventing the translation of this technology to the clinic.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| | - Huimin Yan
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christine T N Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| |
Collapse
|
11
|
Mills KA, Quinn JM, Roach ST, Palisoul M, Nguyen M, Noia H, Guo L, Fazal J, Mutch DG, Wickline SA, Pan H, Fuh KC. p5RHH nanoparticle-mediated delivery of AXL siRNA inhibits metastasis of ovarian and uterine cancer cells in mouse xenografts. Sci Rep 2019; 9:4762. [PMID: 30886159 PMCID: PMC6423014 DOI: 10.1038/s41598-019-41122-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
Ovarian and uterine serous cancers are extremely lethal diseases that often present at an advanced stage. The late-stage diagnosis of these patients results in the metastasis of their cancers throughout the peritoneal cavity leading to death. Improving survival for these patients will require identifying therapeutic targets, strategies to target them, and means to deliver therapies to the tumors. One therapeutic target is the protein AXL, which has been shown to be involved in metastasis in both ovarian and uterine cancer. An effective way to target AXL is to silence its expression with small interfering RNA (siRNA). We investigate the ability of the novel siRNA delivery platform, p5RHH, to deliver anti-AXL siRNA (siAXL) to tumor cells both in vitro and in vivo as well as examine the phenotypic effects of this siRNA interference. First, we present in vitro assays showing p5RHH-siAXL treatment reduces invasion and migration ability of ovarian and uterine cancer cells. Second, we show p5RHH nanoparticles target to tumor cells in vivo. Finally, we demonstrate p5RHH-siAXL treatment reduces metastasis in a uterine cancer mouse xenograft model, without causing an obvious toxicity. Collectively, these findings suggest that this novel therapy shows promise in the treatment of ovarian and uterine cancer patients.
Collapse
Affiliation(s)
- Kathryn A Mills
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO, 63110, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Jeanne M Quinn
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - S Tanner Roach
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Marguerite Palisoul
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO, 63110, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Mai Nguyen
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Hollie Noia
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Lei Guo
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Jawad Fazal
- Department of Cardiovascular Sciences, The USF Health Heart Institute, Morsani School of Medicine, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | - David G Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, The USF Health Heart Institute, Morsani School of Medicine, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | - Hua Pan
- Department of Cardiovascular Sciences, The USF Health Heart Institute, Morsani School of Medicine, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA.
| | - Katherine C Fuh
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO, 63110, USA.
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Sun S, Liu Y, Xia J, Wang M, Tang R, Lei C, Huang Y, Nie Z, Yao S. A semisynthetic fluorescent protein assembly-based FRET probe for real-time profiling of cell membrane protease functions in situ. Chem Commun (Camb) 2019; 55:2218-2221. [DOI: 10.1039/c8cc09634a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A semisynthetic fluorescent protein assembly-based FRET probe (sFPAP) was proposed for cell membrane protease function assay.
Collapse
Affiliation(s)
- Sujuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- Hunan University
- Changsha
| | - Yanan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- Hunan University
- Changsha
| | - Julan Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- Hunan University
- Changsha
| | - Miao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- Hunan University
- Changsha
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- Hunan University
- Changsha
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- Hunan University
- Changsha
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- Hunan University
- Changsha
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- Hunan University
- Changsha
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- Hunan University
- Changsha
| |
Collapse
|
13
|
Li Y, Xu N, Zhu W, Wang L, Liu B, Zhang J, Xie Z, Liu W. Nanoscale Melittin@Zeolitic Imidazolate Frameworks for Enhanced Anticancer Activity and Mechanism Analysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22974-22984. [PMID: 29920061 DOI: 10.1021/acsami.8b06125] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cytolytic peptide melittin (MLT) is an important candidate of anticancer drug owing to its hemolytic properties. Nevertheless, its clinical applications are severely restricted as a result of its nonspecific toxicities like hemolysis. In this work, we reported MLT-loaded zeolitic imidazolate framework-8 (MLT@ZIF-8) nanoparticles (NPs). The formed MLT@ZIF-8 NPs not only possess excellent stability but also efficiently inhibit the hemolysis bioactivity of MLT. Confocal scanning imaging and cytotoxicity experiments revealed that as-synthesized MLT@ZIF-8 NPs exhibit enhanced cellular uptake and cytotoxicity toward cancer cells compared to MLT. The mechanism is well investigated by a series of transcriptome analysis, which indicates that MLT@ZIF-8 NPs can regulate the expression of 3383 genes, and the PI3K/Akt-regulated p53 pathway is involved in MLT@ZIF-8 NPs induced A549 cells apoptosis. Finally, MLT@ZIF-8 NPs exhibit enhanced antitumor activity than free MLT in vivo, while no obvious systemic toxicity has been found. This work emphasizes the great potential of utilizing MOF as a simple and efficient nanoplatform for deliverying cytolytic peptides in cancer treatment, and also the investigation on the antitumor mechanism could provide theoretical support for clinical usage of MLT.
Collapse
Affiliation(s)
- Yawei Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
- Jilin Medical University , Jilin , 132013 , P. R. China
| | - Na Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
- Jilin Medical University , Jilin , 132013 , P. R. China
| | - Wenhe Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
- Jilin Medical University , Jilin , 132013 , P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Bin Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
| | - Jianxu Zhang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Wensen Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
| |
Collapse
|
14
|
Kabir AU, Lee TJ, Pan H, Berry JC, Krchma K, Wu J, Liu F, Kang HK, Hinman K, Yang L, Hamilton S, Zhou Q, Veis DJ, Mecham RP, Wickline SA, Miller MJ, Choi K. Requisite endothelial reactivation and effective siRNA nanoparticle targeting of Etv2/Er71 in tumor angiogenesis. JCI Insight 2018; 3:97349. [PMID: 29669933 DOI: 10.1172/jci.insight.97349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/20/2018] [Indexed: 01/24/2023] Open
Abstract
Angiogenesis, new blood vessel formation from preexisting vessels, is critical for solid tumor growth. As such, there have been efforts to inhibit angiogenesis as a means to obstruct tumor growth. However, antiangiogenic therapy faces major challenges to the selective targeting of tumor-associated-vessels, as current antiangiogenic targets also disrupt steady-state vessels. Here, we demonstrate that the developmentally critical transcription factor Etv2 is selectively upregulated in both human and mouse tumor-associated endothelial cells (TAECs) and is required for tumor angiogenesis. Two-photon imaging revealed that Etv2-deficient tumor-associated vasculature remained similar to that of steady-state vessels. Etv2-deficient TAECs displayed decreased Flk1 (also known as Vegfr2) expression, FLK1 activation, and proliferation. Endothelial tube formation, proliferation, and sprouting response to VEGF, but not to FGF2, was reduced in Etv2-deficient ECs. ROS activated Etv2 expression in ECs, and ROS blockade inhibited Etv2 expression in TAECs in vivo. Systemic administration of Etv2 siRNA nanoparticles potently inhibited tumor growth and angiogenesis without cardiovascular side effects. These studies highlight a link among vascular oxidative stress, Etv2 expression, and VEGF response that is critical for tumor angiogenesis. Targeting the ETV2 pathway might offer a unique opportunity for more selective antiangiogenic therapies.
Collapse
Affiliation(s)
- Ashraf Ul Kabir
- Department of Pathology and Immunology and.,Molecular and Cell Biology Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Hua Pan
- Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jeffrey C Berry
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Jun Wu
- Department of Pathology and Immunology and
| | - Fang Liu
- Department of Pathology and Immunology and
| | - Hee-Kyoung Kang
- Department of Pharmacology, School of Medicine, Jeju National University, Jeju, South Korea
| | - Kristina Hinman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lihua Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samantha Hamilton
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qingyu Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Deborah J Veis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel A Wickline
- Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mark J Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology and.,Molecular and Cell Biology Program, Washington University School of Medicine, St. Louis, Missouri, USA.,Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
15
|
García-Manrique P, Matos M, Gutiérrez G, Pazos C, Blanco-López MC. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J Extracell Vesicles 2018; 7:1422676. [PMID: 29372017 PMCID: PMC5774402 DOI: 10.1080/20013078.2017.1422676] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as novel theranostic tools. Limitations related to clinical uses are leading to a new research area on design and manufacture of artificial EVs. Several strategies have been reported in order to produce artificial EVs, but there has not yet been a clear criterion by which to differentiate these novel biomaterials. In this paper, we suggest for the first time a systematic classification of the terms used to build up the artificial EV landscape, based on the preparation method. This could be useful to guide the derivation to clinical trial routes and to clarify the literature. According to our classification, we have reviewed the main strategies reported to date for their preparation, including key points such as: cargo loading, surface targeting strategies, purification steps, generation of membrane fragments for the construction of biomimetic materials, preparation of synthetic membranes inspired in EV composition and subsequent surface decoration.
Collapse
Affiliation(s)
- Pablo García-Manrique
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Carmen Pazos
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|
16
|
Suppression of NF-κB activity via nanoparticle-based siRNA delivery alters early cartilage responses to injury. Proc Natl Acad Sci U S A 2016; 113:E6199-E6208. [PMID: 27681622 PMCID: PMC5068304 DOI: 10.1073/pnas.1608245113] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a major cause of disability and morbidity in the aging population. Joint injury leads to cartilage damage, a known determinant for subsequent development of posttraumatic OA, which accounts for 12% of all OA. Understanding the early molecular and cellular responses postinjury may provide targets for therapeutic interventions that limit articular degeneration. Using a murine model of controlled knee joint impact injury that allows the examination of cartilage responses to injury at specific time points, we show that intraarticular delivery of a peptidic nanoparticle complexed to NF-κB siRNA significantly reduces early chondrocyte apoptosis and reactive synovitis. Our data suggest that NF-κB siRNA nanotherapy maintains cartilage homeostasis by enhancing AMPK signaling while suppressing mTORC1 and Wnt/β-catenin activity. These findings delineate an extensive crosstalk between NF-κB and signaling pathways that govern cartilage responses postinjury and suggest that delivery of NF-κB siRNA nanotherapy to attenuate early inflammation may limit the chronic consequences of joint injury. Therapeutic benefits of siRNA nanotherapy may also apply to primary OA in which NF-κB activation mediates chondrocyte catabolic responses. Additionally, a critical barrier to the successful development of OA treatment includes ineffective delivery of therapeutic agents to the resident chondrocytes in the avascular cartilage. Here, we show that the peptide-siRNA nanocomplexes are nonimmunogenic, are freely and deeply penetrant to human OA cartilage, and persist in chondrocyte lacunae for at least 2 wk. The peptide-siRNA platform thus provides a clinically relevant and promising approach to overcoming the obstacles of drug delivery to the highly inaccessible chondrocytes.
Collapse
|
17
|
Chung EJ, Tirrell M. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis. Adv Healthc Mater 2015; 4:2408-22. [PMID: 26085109 PMCID: PMC4760622 DOI: 10.1002/adhm.201500126] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/31/2015] [Indexed: 01/03/2023]
Abstract
Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows the easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this Progress Report, the pathogenesis of atherosclerosis and the damage caused to vascular tissue are described, as well as the current diagnostic and treatment options. An overview of targeted strategies using self-assembling nanoparticles is provided, including liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, an overview is given of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles.
Collapse
Affiliation(s)
- Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, 5747 S.
Ellis Ave., Chicago, IL, 60637, USA
| | - Matthew Tirrell
- Institute for Molecular Engineering, University of Chicago, 5747 S.
Ellis Ave., Chicago, IL, 60637, USA
| |
Collapse
|
18
|
Hou KK, Pan H, Schlesinger PH, Wickline SA. A role for peptides in overcoming endosomal entrapment in siRNA delivery - A focus on melittin. Biotechnol Adv 2015; 33:931-40. [PMID: 26025036 PMCID: PMC4540690 DOI: 10.1016/j.biotechadv.2015.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/20/2015] [Accepted: 05/23/2015] [Indexed: 12/21/2022]
Abstract
siRNA has the possibility to revolutionize medicine by enabling highly specific and efficient silencing of proteins involved in disease pathogenesis. Despite nearly 20 years of research dedicated to translating siRNA from a research tool into a clinically relevant therapeutic, minimal success has been had to date. Access to RNA interference machinery located in the cytoplasm is often overlooked, but must be considered when designing the next generation of siRNA delivery strategies. Peptide transduction domains (PTDs) have demonstrated moderate siRNA transfection, which is primarily limited by endosomal entrapment. Strategies aimed at overcoming endosomal entrapment associated with peptide vectors are reviewed here, including osmotic methods, lipid conjugation, and fusogenic peptides. As an alternative to traditional PTD, the hemolytic peptide melittin exhibits the native capacity for endosomal disruption but causes cytotoxicity. However, appropriate packaging and protection of melittin with activation and release in the endosomal compartment has allowed melittin-based strategies to demonstrate both in vitro and in vivo safety and efficacy. These data suggest that melittin's membrane disruptive properties can enable safe and effective endosomolysis, building a case for melittin as a key component in a new generation of siRNA therapeutics.
Collapse
Affiliation(s)
- Kirk K Hou
- Computational and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
19
|
Pham CT, Pan H, Wickline SA. Peptide-siRNA nanotherapeutics in arthritis. Oncotarget 2015; 6:14731-2. [PMID: 26142704 PMCID: PMC4558109 DOI: 10.18632/oncotarget.4439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S. State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization: A Scientific Statement From the American Heart Association. Circ Res 2015; 116:e99-132. [PMID: 25931450 DOI: 10.1161/res.0000000000000054] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Jallouk AP, Palekar RU, Pan H, Schlesinger PH, Wickline SA. Modifications of natural peptides for nanoparticle and drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:57-91. [PMID: 25819276 PMCID: PMC4750874 DOI: 10.1016/bs.apcsb.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural products serve as an important source of novel compounds for drug development. Recently, peptides have emerged as a new class of therapeutic agents due to their versatility and specificity for biological targets. Yet, their effective application often requires use of a nanoparticle delivery system. In this chapter, we review the role of natural peptides in the design and creation of nanomedicines, with a particular focus on cell-penetrating peptides, antimicrobial peptides, and peptide toxins. The use of natural peptides in conjunction with nanoparticle delivery systems holds great promise for the development of new therapeutic formulations as well as novel platforms for the delivery of various cargoes.
Collapse
Affiliation(s)
- Andrew P. Jallouk
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
| | - Rohun U. Palekar
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
| | - Hua Pan
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
| | - Paul H. Schlesinger
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Samuel A. Wickline
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| |
Collapse
|
22
|
Rayahin JE, Buhrman JS, Gemeinhart RA. Melittin-glutathione S-transferase fusion protein exhibits anti-inflammatory properties and minimal toxicity. Eur J Pharm Sci 2014; 65:112-21. [PMID: 25240321 DOI: 10.1016/j.ejps.2014.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022]
Abstract
Although potent, proteins often require chemical modification for therapeutic use. Immunogenicity, difficult synthesis, and scale-up of these modifications are all engineering obstacles that stand in the way of expanding the use of these therapeutics. Melittin, a peptide derived from bee venom, has been shown to modulate inflammation. Although potentially therapeutic, the native peptide causes cell lysis and toxicity significantly hindering therapeutic application. Based upon the knowledge of the pore formation mechanism, we examined the toxicity and therapeutic effect of a melittin fusion protein with glutathione-S-transferase. The fusion of melittin and glutathione S-transferase results in diminished toxicity of the peptide and retained anti-inflammatory properties at doses that exceed toxic concentration of native melittin. Our results suggest that fusion proteins, particularly those of glutathione-S-transferase, may be facile modifications to control protein activity.
Collapse
Affiliation(s)
- Jamie E Rayahin
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | - Jason S Buhrman
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | - Richard A Gemeinhart
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA; Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA; Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612-4319, USA.
| |
Collapse
|
23
|
Zhou HF, Yan H, Pan H, Hou KK, Akk A, Springer LE, Hu Y, Allen JS, Wickline SA, Pham CTN. Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis. J Clin Invest 2014; 124:4363-74. [PMID: 25157820 DOI: 10.1172/jci75673] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/03/2014] [Indexed: 12/25/2022] Open
Abstract
The NF-κB signaling pathway is implicated in various inflammatory diseases, including rheumatoid arthritis (RA); therefore, inhibition of this pathway has the potential to ameliorate an array of inflammatory diseases. Given that NF-κB signaling is critical for many immune cell functions, systemic blockade of this pathway may lead to detrimental side effects. siRNAs coupled with a safe and effective delivery nanoplatform may afford the specificity lacking in systemic administration of small-molecule inhibitors. Here we demonstrated that a melittin-derived cationic amphipathic peptide combined with siRNA targeting the p65 subunit of NF-κB (p5RHH-p65) noncovalently self-assemble into stable nanocomplexes that home to the inflamed joints in a murine model of RA. Specifically, administration of p5RHH-p65 siRNA nanocomplexes abrogated inflammatory cytokine expression and cellular influx into the joints, protected against bone erosions, and preserved cartilage integrity. The p5RHH-p65 siRNA nanocomplexes potently suppressed early inflammatory arthritis without affecting p65 expression in off-target organs or eliciting a humoral response after serial injections. These data suggest that this self-assembling, largely nontoxic platform may have broad utility for the specific delivery of siRNA to target and limit inflammatory processes for the treatment of a variety of diseases.
Collapse
|
24
|
Chen J, Pan H, Lanza GM, Wickline SA. Perfluorocarbon nanoparticles for physiological and molecular imaging and therapy. Adv Chronic Kidney Dis 2013; 20:466-78. [PMID: 24206599 DOI: 10.1053/j.ackd.2013.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 11/11/2022]
Abstract
Herein, we review the use of non-nephrotoxic perfluorocarbon nanoparticles (PFC NPs) for noninvasive detection and therapy of kidney diseases, and we provide a synopsis of other related literature pertinent to their anticipated clinical application. Recent reports indicate that PFC NPs allow for quantitative mapping of kidney perfusion and oxygenation after ischemia-reperfusion injury with the use of a novel multinuclear (1)H/(19)F magnetic resonance imaging approach. Furthermore, when conjugated with targeting ligands, the functionalized PFC NPs offer unique and quantitative capabilities for imaging inflammation in the kidney of atherosclerotic ApoE-null mice. In addition, PFC NPs can facilitate drug delivery for treatment of inflammation, thrombosis, and angiogenesis in selected conditions that are comorbidities for kidney failure. The excellent safety profile of PFC NPs with respect to kidney injury positions these nanomedicine approaches as promising diagnostic and therapeutic candidates for treating and following acute and chronic kidney diseases.
Collapse
|
25
|
Huang C, Jin H, Qian Y, Qi S, Luo H, Luo Q, Zhang Z. Hybrid melittin cytolytic Peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo. ACS NANO 2013; 7:5791-5800. [PMID: 23790040 DOI: 10.1021/nn400683s] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The cytolytic peptide melittin is a potential anticancer candidate that may be able to overcome tumor drug resistance due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, which is especially pronounced following intravenous administration. Here, we designed a hybrid cytolytic peptide, α-melittin, in which the N-terminus of melittin is linked to the C-terminus of an amphipathic α-helical peptide (α-peptide) via a GSG linker. The strong α-helical configuration allows α-melittin to interact with phospholipids and self-assemble into lipid nanoparticles, with a high efficiency for α-melittin encapsulation (>80%) and a strong ability to control the structure of the nanoparticle (~20 nm). This α-melittin-based lipid nanoparticle (α-melittin-NP) efficiently shields the positive charge of melittin (18.70 ± 0.90 mV) within the phospholipid monolayer, resulting in the generation of a neutral nanoparticle (2.45 ± 0.56 mV) with reduced cytotoxicity and a widened safe dosage range. Confocal imaging data confirmed that α-melittin peptides were efficiently released from the nanoparticles and were cytotoxic to the melanoma cells. Finally, α-melittin-NPs were administered to melanoma-bearing mice via intravenous injection. The growth of the melanoma cells was blocked by the α-melittin-NPs, with an 82.8% inhibition rate relative to the PBS-treated control group. No side effects of treatment were found in this study. Thus, the excellent properties of α-melittin-NP give it potential clinical applications in solid tumor therapeutics through intravenous administration.
Collapse
Affiliation(s)
- Chuan Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Pan H, Myerson JW, Hu L, Marsh JN, Hou K, Scott MJ, Allen JS, Hu G, San Roman S, Lanza GM, Schreiber RD, Schlesinger PH, Wickline SA. Programmable nanoparticle functionalization for in vivo targeting. FASEB J 2012; 27:255-64. [PMID: 23047896 DOI: 10.1096/fj.12-218081] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The emerging demand for programmable functionalization of existing base nanocarriers necessitates development of an efficient approach for cargo loading that avoids nanoparticle redesign for each individual application. Herein, we demonstrate in vivo a postformulation strategy for lipidic nanocarrier functionalization with the use of a linker peptide, which rapidly and stably integrates cargos into lipidic membranes of nanocarriers after simple mixing through a self-assembling process. We exemplified this strategy by generating a VCAM-1-targeted perfluorocarbon nanoparticle for in vivo targeting in atherosclerosis (ApoE-deficient) and breast cancer (STAT-1-deficient) models. In the atherosclerotic model, a 4.1-fold augmentation in binding to affected aortas was observed for targeted vs. nontargeted nanoparticles (P<0.0298). Likewise, in the breast cancer model, a 4.9-fold increase in the nanoparticle signal from tumor vasculature was observed for targeted vs. nontargeted nanoparticles (P<0.0216). In each case, the nanoparticle was registered with fluorine ((19)F) magnetic resonance spectroscopy of the nanoparticle perfluorocarbon core, yielding a quantitative estimate of the number of tissue-bound nanoparticles. Because other common nanocarriers with lipid coatings (e.g., liposomes, micelles, etc.) can employ this strategy, this peptide linker postformulation approach is applicable to more than half of the available nanosystems currently in clinical trials or clinical uses.
Collapse
Affiliation(s)
- Hua Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hood JL, Wickline SA. A systematic approach to exosome-based translational nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:458-67. [DOI: 10.1002/wnan.1174] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Pan H, Marsh JN, Christenson ET, Soman NR, Ivashyna O, Lanza GM, Schlesinger PH, Wickline SA. Postformulation peptide drug loading of nanostructures. Methods Enzymol 2012; 508:17-39. [PMID: 22449919 DOI: 10.1016/b978-0-12-391860-4.00002-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytolytic peptides have commanded attention for their anticancer potential because the membrane-disrupting function that produces cell death is less likely to be overcome by resistant mutations. Congruently, peptides that are involved in molecular recognition and biological activities become attractive therapeutic candidates because of their high specificity, better affinity, reduced immunogenicity, and reduced off target toxicity. However, problems of inadequate delivery, rapid deactivation in vivo, and poor bioavailability have limited clinical application. Therefore, peptide drug development for clinical use requires an appropriate combination of an effective therapeutic peptide and a robust delivery methodology. In this chapter, we describe methods for the postformulation insertion of peptide drugs into lipidic nanostructures, the physical characterization of peptide-nanostructure complexes, and the evaluation of their therapeutic effectiveness both in vitro and in vivo.
Collapse
Affiliation(s)
- Hua Pan
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Florea A, Puică C, Vinţan M, Benga I, Crăciun C. Electrophysiological and structural aspects in the frontal cortex after the bee (Apis mellifera) venom experimental treatment. Cell Mol Neurobiol 2011; 31:701-14. [PMID: 21359542 DOI: 10.1007/s10571-011-9667-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 02/14/2011] [Indexed: 11/26/2022]
Abstract
The aim of this study is to evaluate the bioelectrical and structural-functional changes in frontal cortex after the bee venom (BV) experimental treatments simulating both an acute envenomation and a subchronic BV therapy. Wistar rats were subcutaneously injected once with three different BV doses: 700 μg/kg (T(1) group), 2100 μg/kg (T(3) group), and 62 mg/kg (sublethal dose-in T(SL) group), and repeated for 30 days with the lowest dose (700 μg/kg-in T(S) group). BV effects were assessed by electrophysiological, histological, histochemical, and ultrastructural methods. Single BV doses produced discharges of negative and biphasic sharp waves, and epileptiform spike-wave complexes. The increasing frequency of these elements suggested a dose-dependent neuronal hyperexcitation or irritation. As compared to the lower doses, the sublethal dose was responsible for a pronounced toxic effect, confirmed by ultrastructural data in both neurons and glial cells that underwent extensive, irreversible changes, triggering the cellular death. Subchronic BV treatment in T(S) group resulted in a slower frequency and increased amplitude of cortical activity suggesting neuronal loss. However, neurons were still stimulated by the last BV dose. Structural-functional data showed a reduced cellular density in frontal cortex of animals in this group, while the remaining neurons displayed both specific (stimulation of neuronal activity) and unspecific modifications (moderate alterations to necrotic phenomena). Molecular mechanisms involved in BV interactions with the nervous tissue are also discussed. We consider all these data very important for clinicians who manage patients with multiple bee stings, or who intend to set an appropriate BV therapy.
Collapse
Affiliation(s)
- Adrian Florea
- Department of Cell and Molecular Biology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | | | | | | | | |
Collapse
|
30
|
Post-formulation peptide drug loading of nanostructures for metered control of NF-κB signaling. Biomaterials 2011; 32:231-8. [PMID: 20864161 DOI: 10.1016/j.biomaterials.2010.08.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/27/2010] [Indexed: 11/20/2022]
Abstract
The NF-κB signaling pathway is an attractive therapeutic target for cancer and chronic inflammatory diseases. In this study, we report the first strategy to achieve NF-κB inhibition with a peptide inhibitor loaded into perfluorocarbon nanoparticles with the use of a simple post-formulation mixing approach that utilizes an amphipathic cationic fusion peptide linker strategy for cargo insertion. A stable peptide-nanoparticle complex is formed (dissociation constant ∼ 0.14 μM) and metered inhibition of both NF-κB signaling and downstream gene expression (ICAM-1) is demonstrated in leukemia/lymphoma cells. This post-formulation cargo loading strategy enables the use of a generic synthetic or biologic lipidic nanostructure for drug conjugation that permits flexible specification of types and doses of peptides and/or other materials as diagnostic or therapeutic agents for metered incorporation and cellular delivery.
Collapse
|
31
|
Pan H, Soman NR, Schlesinger PH, Lanza GM, Wickline SA. Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:318-27. [DOI: 10.1002/wnan.126] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hua Pan
- Consortium for Translational Research In Advanced Imaging and Nanomedicine (C‐TRAIN), Washington University School of Medicine, 4320 Forest Park Avenue Suite 101, Campus Box 8215 St. Louis, MO
| | - Neelesh R. Soman
- Consortium for Translational Research In Advanced Imaging and Nanomedicine (C‐TRAIN), Washington University School of Medicine, 4320 Forest Park Avenue Suite 101, Campus Box 8215 St. Louis, MO
| | - Paul H. Schlesinger
- Consortium for Translational Research In Advanced Imaging and Nanomedicine (C‐TRAIN), Washington University School of Medicine, 4320 Forest Park Avenue Suite 101, Campus Box 8215 St. Louis, MO
| | - Gregory M. Lanza
- Consortium for Translational Research In Advanced Imaging and Nanomedicine (C‐TRAIN), Washington University School of Medicine, 4320 Forest Park Avenue Suite 101, Campus Box 8215 St. Louis, MO
| | - Samuel A. Wickline
- Consortium for Translational Research In Advanced Imaging and Nanomedicine (C‐TRAIN), Washington University School of Medicine, 4320 Forest Park Avenue Suite 101, Campus Box 8215 St. Louis, MO
| |
Collapse
|
32
|
Raha S, Paunesku T, Woloschak G. Peptide-mediated cancer targeting of nanoconjugates. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:269-81. [PMID: 21046660 DOI: 10.1002/wnan.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Targeted use of nanoparticles in vitro, in cells, and in vivo requires nanoparticle surface functionalization. Moieties that can be used for such a purpose include small molecules as well as polymers made of different biological and organic materials. Short amino acid polymers, peptides, can often rival target binding avidity of much larger molecules. At the same time, peptides are smaller than most nanoparticles and thus allow for multiple nanoparticle modifications and creation of pluripotent nanoparticles. Most nanoparticles provide multiple binding sites for different cargo and targeting peptides which can be used for the development of novel approaches for cancer targeting, diagnostics, and therapy. In this review, we will focus on peptides which have been used for the preparation of different nanoparticles designed for cancer research.
Collapse
Affiliation(s)
- Sumita Raha
- Department of Radiation Oncology, Feinberg School of Medicine and Robert H Lurie Cancer Center, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|