1
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
2
|
Ramazzina I, Macchioni V, Carbone K. Antioxidant and pro-oxidant phytochemicals in ultrasound and microwave assisted extracts from hop cones: a statistical modelling approach. Food Funct 2022; 13:9589-9601. [PMID: 36000564 DOI: 10.1039/d2fo02020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study investigated the relationships between different green extracts from hop cones (HGEs) and their cytoprotective/cytotoxic effects on human cultured colonocytes, using a multivariate statistical approach. HGEs were obtained by ultrasound (US) and microwave (MW) assisted extraction, using food grade solvents (ethanol and ethanol : water = 50 : 50 mixture). Their chemical fingerprinting showed the presence of 21 bioactive compounds belonging to the classes of polyphenols, prenylcalcones and floroacylglucinols, which were more abundant in MW ethanolic extracts. All the extracts, except for the US hydroalcoholic one, exerted a cytotoxic effect in a dose-dependent manner. HGEs did not alter the cellular redox status at low doses, while at the highest concentrations considered they displayed a pro-oxidant or antioxidant activity. Chemometric analysis revealed the compounds most correlated with cellular toxicity and/or ROS production and that the differences observed in Caco2 cells could be adequately explained by 2D statistical models including inhibitor-promoting agent pairs.
Collapse
Affiliation(s)
- Ileana Ramazzina
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Valentina Macchioni
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy.
| | - Katya Carbone
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy.
| |
Collapse
|
3
|
Halim PA, Hassan RA, Mohamed KO, Hassanin SO, Khalil MG, Abdou AM, Osman EO. Synthesis and biological evaluation of halogenated phenoxychalcones and their corresponding pyrazolines as cytotoxic agents in human breast cancer. J Enzyme Inhib Med Chem 2021; 37:189-201. [PMID: 34894967 PMCID: PMC8667918 DOI: 10.1080/14756366.2021.1998023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel halogenated phenoxychalcones 2a–f and their corresponding N-acetylpyrazolines 3a–f were synthesised and evaluated for their anticancer activities against breast cancer cell line (MCF-7) and normal breast cell line (MCF-10a), compared with staurosporine. All compounds showed moderate to good cytotoxic activity when compared to control. Compound 2c was the most active, with IC50 = 1.52 µM and selectivity index = 15.24. Also, chalcone 2f showed significant cytotoxic activity with IC50 = 1.87 µM and selectivity index = 11.03. Compound 2c decreased both total mitogen activated protein kinase (p38α MAPK) and phosphorylated enzyme in MCF-7 cells, suggesting its ability to decrease cell proliferation and survival. It also showed the ability to induce ROS in MCF-7 treated cells. Compound 2c exhibited apoptotic behaviour in MCF-7 cells due to cell accumulation in G2/M phase and elevation in late apoptosis 57.78-fold more than control. Docking studies showed that compounds 2c and 2f interact with p38alpha MAPK active sites.
Collapse
Affiliation(s)
- Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Soha O Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Eman O Osman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Xanthohumol Induces ROS through NADPH Oxidase, Causes Cell Cycle Arrest and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9877170. [PMID: 34804373 PMCID: PMC8598356 DOI: 10.1155/2021/9877170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are either toxic in excess or essential for redox signalling at the physiological level, which is closely related to the site of generation. Xanthohumol (XN) is an important natural product of hops (Humulus lupulus L.) and was reported to induce ROS in mitochondria. While in the present study, our data indicate that NADPH oxidase (NOX) is another site. In human acute myeloid leukemia HL-60 cells, we first identified that cell proliferation was inhibited by XN without affecting viability, and this could be alleviated by the antioxidant N-acetyl-L-cysteine (NAC); cell cycles were blocked at G1 phase, apoptosis was induced in a dose-dependent manner, and malondialdehyde (MDA) content was upregulated. XN-induced ROS generation was detected by flow cytometry, which can be inhibited by diphenyleneiodonium chloride (DPI, a NOX inhibitor), while not by NG-methyl-L-arginine acetate (L-NMMA, a nitric oxide synthase inhibitor). The involvement of NOX in XN-induced ROS generation was further evaluated: immunofluorescence assay indicated subunits assembled in the membrane, and gp91phox knockdown with siRNA decreased XN-induced ROS. Human red blood cells (with NOX, without mitochondria) were further selected as a cell model, and the XN-induced ROS and DPI inhibiting effects were found again. In conclusion, our results indicate that XN exhibits antiproliferation effects through ROS-related mechanisms, and NOX is a source of XN-induced ROS. As NOX-sourced ROS are critical for phagocytosis, our findings may contribute to the anti-infection and anti-inflammatory effect of XN.
Collapse
|
5
|
Fonseca M, Macedo AS, Lima SAC, Reis S, Soares R, Fonte P. Evaluation of the Antitumour and Antiproliferative Effect of Xanthohumol-Loaded PLGA Nanoparticles on Melanoma. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6421. [PMID: 34771946 PMCID: PMC8585140 DOI: 10.3390/ma14216421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Cutaneous melanoma is the deadliest type of skin cancer and current treatment is still inadequate, with low patient survival rates. The polyphenol xanthohumol has been shown to inhibit tumourigenesis and metastasization, however its physicochemical properties restrict its application. In this work, we developed PLGA nanoparticles encapsulating xanthohumol and tested its antiproliferative, antitumour, and migration effect on B16F10, malignant cutaneous melanoma, and RAW 264.7, macrophagic, mouse cell lines. PLGA nanoparticles had a size of 312 ± 41 nm and a PdI of 0.259, while achieving a xanthohumol loading of about 90%. The viability study showed similar cytoxicity between the xanthohumol and xanthohumol-loaded PLGA nanoparticles at 48 h with the IC50 established at 10 µM. Similar antimigration effects were observed for free and the encapsulated xanthohumol. It was also observed that the M1 antitumor phenotype was stimulated on macrophages. The ultimate anti-melanoma effect emerges from an association between the viability, migration and macrophagic phenotype modulation. These results display the remarkable antitumour effect of the xanthohumol-loaded PLGA nanoparticles and are the first advance towards the application of a nanoformulation to deliver xanthohumol to reduce adverse effects by currently employed chemotherapeutics.
Collapse
Affiliation(s)
- Magda Fonseca
- Department of Biomedicine, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal; (M.F.); (R.S.)
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana S. Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.S.M.); (S.A.C.L.); (S.R.)
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.S.M.); (S.A.C.L.); (S.R.)
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.S.M.); (S.A.C.L.); (S.R.)
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal; (M.F.); (R.S.)
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
Girisa S, Saikia Q, Bordoloi D, Banik K, Monisha J, Daimary UD, Verma E, Ahn KS, Kunnumakkara AB. Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life 2021; 73:1016-1044. [PMID: 34170599 DOI: 10.1002/iub.2522] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Cancer is a major public health concern due to high mortality and poor quality of life of patients. Despite the availability of advanced therapeutic interventions, most treatment modalities are not efficacious, very expensive, and cause several adverse side effects. The factors such as drug resistance, lack of specificity, and low efficacy of the cancer drugs necessitate developing alternative strategies for the prevention and treatment of this disease. Xanthohumol (XN), a prenylated chalcone present in Hop (Humulus lupulus), has been found to possess prominent activities against aging, diabetes, inflammation, microbial infection, and cancer. Thus, this manuscript thoroughly reviews the literature on the anti-cancer properties of XN and its various molecular targets. XN was found to exert its inhibitory effect on the growth and proliferation of cancer cells via modulation of multiple signaling pathways such as Akt, AMPK, ERK, IGFBP2, NF-κB, and STAT3, and also modulates various proteins such as Notch1, caspases, MMPs, Bcl-2, cyclin D1, oxidative stress markers, tumor-suppressor proteins, and miRNAs. Thus, these reports suggest that XN possesses enormous therapeutic potential against various cancers and could be potentially used as a multi-targeted anti-cancer agent with minimal adverse effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Queen Saikia
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Javadi Monisha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
7
|
Tuli HS, Aggarwal V, Parashar G, Aggarwal D, Parashar NC, Tuorkey MJ, Varol M, Sak K, Kumar M, Buttar HS. Xanthohumol: A Metabolite with Promising Anti-Neoplastic Potential. Anticancer Agents Med Chem 2021; 22:418-432. [PMID: 33622230 DOI: 10.2174/1871520621666210223095021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
The overwhelming globalburden of cancer has posed numerous challenges and opportunities for developing anti-cancer therapies. Phytochemicalshave emerged as promising synergistic compounds with potential anti-cancer effects to supplement chemo- and immune-therapeutic regimens. Anti cancer synergistic effects have been investigated in the interaction between phytocompounds derived from flavonoids such as quercetin, apigenin, kaempferol, hesperidin, emodin etc., and conventional drugs. Xanthohumol is one of the prenylatedphytoflavonoid that has demonstrated key anti-cancer activities in in vitro (anti proliferation of cancer cell lines) and in vivo(animal models of xenograft tumours)studies, and has been explored from different dimensions for targeting cancer subtypes. In the last decade, xanthohumol has been investigated how it induces the anti-cancer effects at cellular and molecular level.The different signalling cascades and targets of xanthohumolare summarized in thisreview.Overall, this reviewsummarizes the current advances made in the field of natural compounds with special reference to xanthohumol and its promising anti-cancer effectsto inhibit tumour progression.The present review hasalso touched upon the potential of xanthohumol transitioning into a lead candidate from nano-therapy viewpoint along with the challenges which need to be addressed for extensive pre-clinical and clinical anti-cancer studies.
Collapse
Affiliation(s)
- Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, PA. United States
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Nidarshana C Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Muobarak J Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour. Egypt
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, MuglaSitkiKocman University, Mugla TR48000. Turkey
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur. India
| | - Harpal S Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario. Canada
| |
Collapse
|
8
|
Gieroba B, Arczewska M, Sławińska-Brych A, Rzeski W, Stepulak A, Gagoś M. Prostate and breast cancer cells death induced by xanthohumol investigated with Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118112. [PMID: 32014658 DOI: 10.1016/j.saa.2020.118112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Fourier Transform Infrared spectroscopy was applied to detect in vitro cell death induced in prostate (PC-3) and breast (T47D) cancer cell lines treated with xanthohumol (XN). After incubation of the cancer cells with XN, specific spectral shifts in the infrared spectra arising from selected cellular components were identified that reflected biochemical changes characteristic for apoptosis and necrosis. Detailed analysis of specific absorbance intensity ratios revealed the compositional changes in the secondary structure of proteins and membrane lipids. In this study, for the first time we examined the changes in these molecular components and linked them to deduce the involvement of molecular mechanisms in the XN-induced death of the selected cancer cells. We showed that XN concentration-dependent changes were attributed to phospholipid ester carbonyl groups, especially in the case of T47D cells, suggesting that XN acts as an inhibitor of cell proliferation. Additionally, we observed distinct changes in the region assigned to the absorption of DNA, which were correlated with a specific marker of cell death and dependent on the XN dose and the type of cancer cells. The microscopic observation and flow cytometry analysis revealed that the decrease in cancer cell viability was mainly related to the induction of necrotic cell death. Moreover, the T47D cells were slightly more sensitive to XN than the PC-3 cells. Considering the results obtained, it can be assumed that apoptosis and necrosis induced by XN may contribute to the anti-proliferative and cytotoxic properties of this flavonoid against cancer cell lines PC-3 and T47D.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Marta Arczewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Wojciech Rzeski
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Medical Biology, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
9
|
Takac P, Kello M, Vilkova M, Vaskova J, Michalkova R, Mojzisova G, Mojzis J. Antiproliferative Effect of Acridine Chalcone Is Mediated by Induction of Oxidative Stress. Biomolecules 2020; 10:biom10020345. [PMID: 32098428 PMCID: PMC7072140 DOI: 10.3390/biom10020345] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Chalcones are naturally occurring phytochemicals with diverse biological activities including antioxidant, antiproliferative, and anticancer effects. Some studies indicate that the antiproliferative effect of chalcones may be associated with their pro-oxidant effect. In the present study, we evaluated contribution of oxidative stress in the antiproliferative effect of acridine chalcone 1C ((2 E)-3-(acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one) in human colorectal HCT116 cells. We demonstrated that chalcone 1C induced oxidative stress via increased reactive oxygen/nitrogen species (ROS/RNS) and superoxide production with a simultaneous weak adaptive activation of the cellular antioxidant defence mechanism. Furthermore, we also showed chalcone-induced mitochondrial dysfunction, DNA damage, and apoptosis induction. Moreover, activation of mitogen activated phosphokinase (MAPK) signalling pathway in 1C-treated cancer cells was also observed. On the other hand, co-treatment of cells with strong antioxidant, N-acetyl cysteine (NAC), significantly attenuated all of the above-mentioned effects of chalcone 1C, that is, decreased oxidant production, prevent mitochondrial dysfunction, DNA damage, and induction of apoptosis, as well as partially preventing the activation of MAPK signalling. Taken together, we documented the role of ROS in the antiproliferative/pro-apoptotic effects of acridine chalcone 1C. Moreover, these data suggest that this chalcone may be useful as a promising anti-cancer agent for treating colon cancer.
Collapse
Affiliation(s)
- Peter Takac
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia (R.M.)
- Institute of Human and Clinical Pharmacology, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia (R.M.)
- Correspondence: (M.K.); (J.M.)
| | - Maria Vilkova
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Janka Vaskova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia (R.M.)
| | - Gabriela Mojzisova
- Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia (R.M.)
- Correspondence: (M.K.); (J.M.)
| |
Collapse
|
10
|
Recent advances in α,β-unsaturated carbonyl compounds as mitochondrial toxins. Eur J Med Chem 2019; 183:111687. [DOI: 10.1016/j.ejmech.2019.111687] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
|
11
|
Wang CM, Huo X, Chen J, Liu JW, Yang TY, Mi XQ, Meng Y, Zhou L, Lin CJ, Liu J. An acute lytic cell death induced by xanthohumol obstructed ROS detecting in HL-60 cells. Toxicol In Vitro 2019; 62:104667. [PMID: 31629901 DOI: 10.1016/j.tiv.2019.104667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/07/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
Serum is an important component in cell culture medium. It also possesses potent antioxidant properties. Therefore, the conventional protocols for detecting reactive oxygen species (ROS) in cultured cells with fluorescent probes include washing and suspending cells with serum-free buffers, such as PBS. This transient serum deprivation is essential for the ROS detecting. Unfortunately, it may also cause unexpected results, which push us to choose more optimal experiment conditions. In the present study, we found an acute lytic cell death induced by xanthohumol (XN), which obstructed ROS detecting in human leukemia cell line HL-60 cells. XN induced ROS burst, caused cell swelling, membrane permeability increase, LDH release, and ultimately an acute lytic cell death and cell rupture. These effects could be alleviated by the antioxidant N-Acetyl-L-cysteine (NAC). Apoptosis, pyroptosis or necroptosis were not observed in this process. Results also indicated that 2% serum addition had already completely scavenged ROS induced by 10 μM XN. Taken together, it is strongly suggested to detecting ROS in a serum-free medium when studying where and how ROS generated in cells. The concentration at the ROS maximum point (10 μM XN in this study) can be selected as the optimal concentration.
Collapse
Affiliation(s)
- Chun-Ming Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Xiang Huo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jun Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jia-Wei Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Ting-Yu Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiang-Quan Mi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yue Meng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Li Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Chang-Jun Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jing Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.
| |
Collapse
|
12
|
Berning L, Scharf L, Aplak E, Stucki D, von Montfort C, Reichert AS, Stahl W, Brenneisen P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One 2019; 14:e0222267. [PMID: 31553748 PMCID: PMC6760786 DOI: 10.1371/journal.pone.0222267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is an aggressive type of cancer and the deadliest form of skin cancer. Even though enormous efforts have been undertaken, in particular the treatment options against the metastasizing form are challenging and the prognosis is generally poor. A novel therapeutical approach is the application of secondary plant constituents occurring in food and food products. Herein, the effect of the dietary chalcone cardamonin, inter alia found in Alpinia species, was tested using human malignant melanoma cells. These data were compared to cardamonin treated normal melanocytes and dermal fibroblasts representing healthy cells. To investigate the impact of cardamonin on tumor and normal cells, it was added to monolayer cell cultures and cytotoxicity, proliferation, tumor invasion, and apoptosis were studied with appropriate cell biological and biochemical methods. Cardamonin treatment resulted in an apoptosis-mediated increase in cytotoxicity towards tumor cells, a decrease in their proliferation rate, and a lowered invasive capacity, whereas the viability of melanocytes and fibroblasts was hardly affected at such concentrations. A selective cytotoxic effect of cardamonin on melanoma cells compared to normal (healthy) cells was shown in vitro. This study along with others highlights that dietary chalcones may be a valuable tool in anticancer therapies which has to be proven in the future in vivo.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lisa Scharf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Elif Aplak
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
13
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
14
|
Antiproliferative Effects of Hop-derived Prenylflavonoids and Their Influence on the Efficacy of Oxaliplatine, 5-fluorouracil and Irinotecan in Human ColorectalC Cells. Nutrients 2019; 11:nu11040879. [PMID: 31010128 PMCID: PMC6520918 DOI: 10.3390/nu11040879] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
Beer, the most popular beverage containing hops, is also frequently consumed by cancer patients. Moreover, non-alcoholic beer, owing to its nutritional value and high content of biological active compounds, is sometimes recommended to patients by oncologists. However, the potential benefits and negatives have to date not been sufficiently evaluated. The present study was designed to examine the effects of four main hop-derived prenylflavonoids on the viability, reactive oxygen species (ROS) formation, activity of caspases, and efficiency of the chemotherapeutics 5-fluorouracil (5-FU), oxaliplatin (OxPt) and irinotecan (IRI) in colorectal cancer cell lines SW480, SW620 and CaCo-2. All the prenylflavonoids exerted substantial antiproliferative effects in all cell lines, with xanthohumol being the most effective (IC50 ranging from 3.6 to 7.3 µM). Isoxanthohumol increased ROS formation and the activity of caspases-3/7, but 6-prenylnaringenin and 8-prenylnaringenin exerted antioxidant properties. As 6-prenylnaringenin acted synergistically with IRI, its potential in combination therapy deserves further study. However, other prenylflavonoids acted antagonistically with all chemotherapeutics at least in one cell line. Therefore, consumption of beer during chemotherapy with 5-FU, OxPt and IRI should be avoided, as the prenylflavonoids in beer could decrease the efficacy of the treatment.
Collapse
|
15
|
Bolton JL, Dunlap TL, Hajirahimkhan A, Mbachu O, Chen SN, Chadwick L, Nikolic D, van Breemen RB, Pauli GF, Dietz BM. The Multiple Biological Targets of Hops and Bioactive Compounds. Chem Res Toxicol 2019; 32:222-233. [PMID: 30608650 PMCID: PMC6643004 DOI: 10.1021/acs.chemrestox.8b00345] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Botanical dietary supplements for women's health are increasingly popular. Older women tend to take botanical supplements such as hops as natural alternatives to traditional hormone therapy to relieve menopausal symptoms. Especially extracts from spent hops, the plant material remaining after beer brewing, are enriched in bioactive prenylated flavonoids that correlate with the health benefits of the plant. The chalcone xanthohumol (XH) is the major prenylated flavonoid in spent hops. Other less abundant but important bioactive prenylated flavonoids are isoxanthohumol (IX), 8-prenylnaringenin (8-PN), and 6-prenylnaringenin (6-PN). Pharmacokinetic studies revealed that these flavonoids are conjugated rapidly with glucuronic acid. XH also undergoes phase I metabolism in vivo to form IX, 8-PN, and 6-PN. Several hop constituents are responsible for distinct effects linked to multiple biological targets, including hormonal, metabolic, inflammatory, and epigenetic pathways. 8-PN is one of the most potent phytoestrogens and is responsible for hops' estrogenic activities. Hops also inhibit aromatase activity, which is linked to 8-PN. The weak electrophile, XH, can activate the Keap1-Nrf2 pathway and turn on the synthesis of detoxification enzymes such as NAD(P)H-quinone oxidoreductase 1 and glutathione S-transferase. XH also alkylates IKK and NF-κB, resulting in anti-inflammatory activity. Antiobesity activities have been described for XH and XH-rich hop extracts likely through activation of AMP-activated protein kinase signaling pathways. Hop extracts modulate the estrogen chemical carcinogenesis pathway by enhancing P450 1A1 detoxification. The mechanism appears to involve activation of the aryl hydrocarbon receptor (AhR) by the AhR agonist, 6-PN, leading to degradation of the estrogen receptor. Finally, prenylated phenols from hops are known inhibitors of P450 1A1/2; P450 1B1; and P450 2C8, 2C9, and 2C19. Understanding the biological targets of hop dietary supplements and their phytoconstituents will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha L. Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Atieh Hajirahimkhan
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Obinna Mbachu
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Luke Chadwick
- Bell’s Brewery, 8938 Krum Avenue, Galesburg, Michigan 49053, United States
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Richard B. van Breemen
- Linus Pauling Institute, Oregon State University, 305 Linus Pauling Science Center, Corvallis, Oregon 97331, United States
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Birgit M. Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
16
|
Sastre-Serra J, Ahmiane Y, Roca P, Oliver J, Pons DG. Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells. Int J Food Sci Nutr 2018; 70:396-404. [DOI: 10.1080/09637486.2018.1540558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Spain Palma de Mallorca Illes Balears
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| | - Youssef Ahmiane
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Spain Palma de Mallorca Illes Balears
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Spain Palma de Mallorca Illes Balears
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Spain Palma de Mallorca Illes Balears
| |
Collapse
|
17
|
Huang X, Wang J, Chen X, Liu P, Wang S, Song F, Zhang Z, Zhu F, Huang X, Liu J, Song G, Spencer PS, Yang X. The Prenylflavonoid Xanthohumol Reduces Alzheimer-Like Changes and Modulates Multiple Pathogenic Molecular Pathways in the Neuro2a/APP swe Cell Model of AD. Front Pharmacol 2018; 9:199. [PMID: 29670521 PMCID: PMC5893754 DOI: 10.3389/fphar.2018.00199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that has proved refractory to drug treatment. Given evidence of neuroprotection in animal models of ischemic stroke, we assessed the prenylflavonoid xanthohumol from the Common Hop (Humulus lupulus L.) for therapeutic potential in murine neuroblastoma N2a cells stably expressing human Swedish mutant amyloid precursor protein (N2a/APP), a well-characterized cellular model of AD. The ELISA and Western-blot analysis revealed that xanthohumol (Xn) inhibited Aβ accumulation and APP processing, and that Xn ameliorated tau hyperphosphorylation via PP2A, GSK3β pathways in N2a/APP cells. The amelioration of tau hyperphosphorylation by Xn was also validated on HEK293/Tau cells, another cell line with tau hyperphosphorylation. Proteomic analysis (2D-DIGE-coupled MS) revealed a total of 30 differentially expressed lysate proteins in N2a/APP vs. wild-type (WT) N2a cells (N2a/WT), and a total of 21 differentially expressed proteins in lysates of N2a/APP cells in the presence or absence of Xn. Generally, these 51 differential proteins could be classified into seven main categories according to their functions, including: endoplasmic reticulum (ER) stress-associated proteins; oxidative stress-associated proteins; proteasome-associated proteins; ATPase and metabolism-associated proteins; cytoskeleton-associated proteins; molecular chaperones-associated proteins, and others. We used Western-blot analysis to validate Xn-associated changes of some key proteins in several biological/pathogenic processes. Taken together, we show that Xn reduces AD-related changes in stably transfected N2a/APP cells. The underlying mechanisms involve modulation of multiple pathogenic pathways, including those involved in ER stress, oxidative stress, proteasome molecular systems, and the neuronal cytoskeleton. These results suggest Xn may have potential for the treatment of AD and/or neuropathologically related neurodegenerative diseases.
Collapse
Affiliation(s)
- Xianfeng Huang
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Jing Wang
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Pan Liu
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shujin Wang
- Department of Neurology, The First Hospital of Zibo, Weifang Medical University, Zibo, China
| | - Fangchen Song
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zaijun Zhang
- Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Institute of New Drug Research and Guangzhou, College of Pharmacy, Jinan University, Guangzhou, China
| | - Feiqi Zhu
- Department of Cognitive Impairment Ward of Neurology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Guoqiang Song
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
18
|
Gallo C, Dallaglio K, Bassani B, Rossi T, Rossello A, Noonan DM, D'Uva G, Bruno A, Albini A. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget 2018; 7:59917-59931. [PMID: 27494895 PMCID: PMC5312358 DOI: 10.18632/oncotarget.10990] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Recently, increased attention has been addressed to the ability of flavonoids to prevent cancer by suppressing angiogenesis, strategy that we named "angioprevention". Several natural compounds exert their anti-tumor properties by activating 5' adenosine monophosphate-activated protein kinase (AMPK), a key regulator of metabolism in cancer cells. Drugs with angiopreventive activities, in particular metformin, regulate AMPK in endothelial cells. Here we investigated the involvement of AMPK in the anti-angiogenic effects of xanthohumol (XN), the major prenylated flavonoid of the hop plant, and mechanisms of action. The anti-angiogenic activity of XN was more potent than epigallocatechin-3-gallate (EGCG). Treatment of endothelial cells with XN led to increased AMPK phosphorylation and activity. Functional studies using biochemical approaches confirmed that AMPK mediates XN anti-angiogenic activity. AMPK activation by XN was mediated by CAMMKβ, but not LKB1. Analysis of the downstream mechanisms showed that XN-induced AMPK activation reduced nitric oxide (NO) levels in endothelial cells by decreasing eNOS phosphorylation. Finally, AKT pathway was inactivated by XN as part of its anti-angiogenic activity, but independently from AMPK, suggesting that these two signaling pathways proceed autonomously. Our study dissects the molecular mechanism by which XN exerts its potent anti-angiogenic activity, pointing out AMPK as a crucial signal transducer.
Collapse
Affiliation(s)
- Cristina Gallo
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Katiuscia Dallaglio
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Barbara Bassani
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Teresa Rossi
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | | | - Douglas M Noonan
- Department of Biotechnologies and Life Sciencies, University of Insubria, Varese, Italy
| | - Gabriele D'Uva
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
19
|
Nosaka Y, Nosaka AY. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem Rev 2017; 117:11302-11336. [DOI: 10.1021/acs.chemrev.7b00161] [Citation(s) in RCA: 1754] [Impact Index Per Article: 250.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yoshio Nosaka
- Department of Materials Science
and Technology, Nagaoka University of Technology Nagaoka 940-2188, Japan
| | - Atsuko Y. Nosaka
- Department of Materials Science
and Technology, Nagaoka University of Technology Nagaoka 940-2188, Japan
| |
Collapse
|
20
|
Saidu NEB, Noé G, Cerles O, Cabel L, Kavian-Tessler N, Chouzenoux S, Bahuaud M, Chéreau C, Nicco C, Leroy K, Borghese B, Goldwasser F, Batteux F, Alexandre J. Dimethyl Fumarate Controls the NRF2/DJ-1 Axis in Cancer Cells: Therapeutic Applications. Mol Cancer Ther 2017; 16:529-539. [PMID: 28069874 DOI: 10.1158/1535-7163.mct-16-0405] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022]
Abstract
The transcription factor NRF2 (NFE2L2), regulates important antioxidant and cytoprotective genes. It enhances cancer cell proliferation and promotes chemoresistance in several cancers. Dimethyl fumarate (DMF) is known to promote NRF2 activity in noncancer models. We combined in vitro and in vivo methods to examine the effect of DMF on cancer cell death and the activation of the NRF2 antioxidant pathway. We demonstrated that at lower concentrations (<25 μmol/L), DMF has a cytoprotective role through activation of the NRF2 antioxidant pathway. At higher concentrations, however (>25 μmol/L), DMF caused oxidative stress and subsequently cytotoxicity in several cancer cell lines. High DMF concentration decreases nuclear translocation of NRF2 and production of its downstream targets. The pro-oxidative and cytotoxic effects of high concentration of DMF were abrogated by overexpression of NRF2 in OVCAR3 cells, suggesting that DMF cytotoxicity is dependent of NRF2 depletion. High concentrations of DMF decreased the expression of DJ-1, a NRF2 protein stabilizer. Using DJ-1 siRNA and expression vector, we observed that the expression level of DJ-1 controls NRF2 activation, antioxidant defenses, and cell death in OVCAR3 cells. Finally, antitumoral effect of daily DMF (20 mg/kg) was also observed in vivo in two mice models of colon cancer. Taken together, these findings implicate the effect of DJ-1 on NRF2 in cancer development and identify DMF as a dose-dependent modulator of both NRF2 and DJ-1, which may be useful in exploiting the therapeutic potential of these endogenous antioxidants. Mol Cancer Ther; 16(3); 529-39. ©2017 AACR.
Collapse
Affiliation(s)
| | - Gaëlle Noé
- UMR8638 CNRS, Faculté de Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Olivier Cerles
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Luc Cabel
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Niloufar Kavian-Tessler
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Sandrine Chouzenoux
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Mathilde Bahuaud
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Christiane Chéreau
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Carole Nicco
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Karen Leroy
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Molecular Genetics, Cochin Hospital, AP-HP, Paris, France
| | - Bruno Borghese
- Department of Gynecologic Surgery, Cochin Hospital, AP-HP, Paris, France
| | - François Goldwasser
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France
| | - Frédéric Batteux
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Immunology, Cochin Hospital, AP-HP, Paris, France
| | - Jérôme Alexandre
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France. .,Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France
| |
Collapse
|
21
|
Abstract
Xanthohumol (Xan) is a natural constituent of human nutrition. Little is known about its actions on leishmanial parasites and their mitochondria as putative target. Therefore, we determined the antileishmanial activity of Xan and resveratrol (Res, as alternative compound with antileishmanial activity) with respect to mitochondria in Leishmania amazonensis promastigotes/amastigotes (LaP/LaA) in comparison with their activity in peritoneal macrophages from mouse (PMM) and macrophage cell line J774A.1 (J774). Mechanistic studies were conducted in Leishmania tarentolae promastigotes (LtP) and mitochondrial fractions isolated from LtP. Xan and Res demonstrated antileishmanial activity in LaA [half inhibitory concentration (IC50): Xan 7 µ m, Res 14 µ m]; while they had less influence on the viability of PMM (IC50: Xan 70 µ m, Res >438 µ m). In contrast to Res, Xan strongly inhibited oxygen consumption in Leishmania (LtP) but not in J774 cells. This was based on the inhibition of the mitochondrial electron transfer complex II/III by Xan, which was less pronounced with Res. Neither Xan nor Res increased mitochondrial superoxide release in LtP, while both decreased the mitochondrial membrane potential in LtP. Bioenergetic studies showed that LtP mitochondria have no spare respiratory capacity in contrast to mitochondria in J774 cells and can therefore much less adapt to stress by mitochondrial inhibitors, such as Xan. These data show that Xan may have antileishmanial activity, which is mediated by mitochondrial inhibition.
Collapse
|
22
|
In vivo and in vitro studies of the role of lyophilised blond Lager beer and some bioactive components in the modulation of degenerative processes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 2016; 32:1171-8. [DOI: 10.1016/j.nut.2016.03.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
|
24
|
Redox and respiratory chain related alterations in the lophirones B and C-mediated bacterial lethality. Microb Pathog 2016; 100:95-111. [DOI: 10.1016/j.micpath.2016.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022]
|
25
|
Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and Their Bioactive Phytochemicals for Women's Health. Pharmacol Rev 2016; 68:1026-1073. [PMID: 27677719 PMCID: PMC5050441 DOI: 10.1124/pr.115.010843] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Birgit M Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Judy L Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Thamilselvan V, Menon M, Thamilselvan S. Combination of carmustine and selenite effectively inhibits tumor growth by targeting androgen receptor, androgen receptor-variants, and Akt in preclinical models: New hope for patients with castration resistant prostate cancer. Int J Cancer 2016; 139:1632-47. [PMID: 27198552 DOI: 10.1002/ijc.30189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023]
Abstract
Despite established androgen receptor (AR) antagonists, AR/AR-variants signaling remain a major obstacle for the successful treatment of castration resistant prostate cancer (CRPC). In addition, CRPC cells adapt to survive via AR-independent pathways to escape next generation therapies. Therefore, there is an urgent need for drugs that can target these signaling pathways in CRPC. In this study, we sought to determine whether carmustine and selenite in combination could induce apoptosis and inhibit growth of CRPC in-vitro and in-vivo. CRPC (22Rv1, VCaP, and PC-3) cell lines in culture and xenograft mouse were used. Combination of carmustine and selenite treatment significantly increased reactive oxygen species, apoptosis and growth inhibition in CRPC cells with down regulation of anti-apoptotic (Bcl-2 and Mcl-1) and proliferative proteins (c-Myc and cyclin-D1). This effect was associated with complete reduction of AR/AR-variants, AR-V7, PSA and significant induction of p27Kip1. Combination treatment substantially abolished phospho-Akt, phospho-GSK-3β, and anchorage-independent growth in AR-positive and AR-negative cells. Consistent with in-vitro results, combination treatment effectively induced apoptosis and completely inhibited xenograft tumor growth and markedly reduced AR/AR-variants, AR-V7, PSA, and Bcl-2 in xenograft tumors without causing genotoxicity in host mice. Individual agent treatment showed only partial effect. The combination treatment showed a significant synergistic effect. The present study is the first to demonstrate that the combination of carmustine and selenite treatment completely suppressed CRPC tumor growth by reducing AR/AR-variants and Akt signaling. Our findings suggest that the combination of carmustine and selenite could constitute a promising next-generation therapy for successful treatment of patients with CRPC.
Collapse
Affiliation(s)
| | - Mani Menon
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, MI
| | | |
Collapse
|
27
|
Brodziak-Jarosz L, Fujikawa Y, Pastor-Flores D, Kasikci S, Jirásek P, Pitzl S, Owen RW, Klika KD, Gerhäuser C, Amslinger S, Dick TP. A click chemistry approach identifies target proteins of xanthohumol. Mol Nutr Food Res 2016; 60:737-48. [DOI: 10.1002/mnfr.201500613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Lidia Brodziak-Jarosz
- Division of Redox Regulation; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Heidelberg Germany
- Division of Epigenomics and Cancer Risk Factors; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Yuuta Fujikawa
- Division of Redox Regulation; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Heidelberg Germany
| | - Daniel Pastor-Flores
- Division of Redox Regulation; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Heidelberg Germany
| | - Sonay Kasikci
- Institute of Organic Chemistry; University of Regensburg; Regensburg Germany
| | - Petr Jirásek
- Institute of Organic Chemistry; University of Regensburg; Regensburg Germany
- Institute of Pharmaceutical Biology; University of Regensburg; Regensburg Germany
| | - Sebastian Pitzl
- Institute of Organic Chemistry; University of Regensburg; Regensburg Germany
- Institute of Pharmaceutical Biology; University of Regensburg; Regensburg Germany
| | - Robert W. Owen
- Division of Preventive Oncology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Karel D. Klika
- Core Facility; Molecular Structure Analysis; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Clarissa Gerhäuser
- Division of Epigenomics and Cancer Risk Factors; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry; University of Regensburg; Regensburg Germany
| | - Tobias P. Dick
- Division of Redox Regulation; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Heidelberg Germany
| |
Collapse
|
28
|
Carvalho DO, Oliveira R, Johansson B, Guido LF. Dose-Dependent Protective and Inductive Effects
of Xanthohumol on Oxidative DNA Damage in
Saccharomyces cerevisiae. Food Technol Biotechnol 2016; 54:60-69. [PMID: 27904394 DOI: 10.17113/ftb.54.01.16.4256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of xanthohumol, a prenylflavonoid isolated from the hop plant (Humulus lupulus L.), on Saccharomyces cerevisiae DNA oxidative damage and viability was evaluated. Yeast cultures under oxidative stress, induced by H2O2, displayed stronger growth in the presence of 5 mg/L of xanthohumol than cultures with only H2O2. Likewise, DNA damage assessed by the comet assay was significantly lower in cells co-incubated with xanthohumol and H2O2. Accordingly, fluorescence of dichlorofluorescein in cells treated with H2O2 and xanthohumol was considerably lower than in cells exclusively treated with H2O2, indicative of a reactive oxygen species scavenging mechanism and consequent formation of oxidation products, as detected by mass spectrometry. However, at concentrations above 5 mg/L, xanthohumol elicited an opposite effect, leading to a slower growth rate and significant increase in DNA damage. A yeast yap1 deletion mutant strain sensitive to oxidative stress grew more slowly in the presence of at least 5 mg/L of xanthohumol than cultures of the wild type, suggesting that xanthohumol toxicity is mediated by oxidative stress. This evidence provides further insight into the impact of xanthohumol on yeast cells, supporting dose-dependent antioxidant/antigenotoxic and prooxidant/genotoxic effects.
Collapse
Affiliation(s)
- Daniel O Carvalho
- REQUIMTE/LAQV - Department of Chemistry and Biochemistry, Faculty of Sciences,
University of Porto, Rua do Campo Alegre 687, PT-4169-007 Porto, Portugal
| | - Rui Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB),
Department of Biology, University of Minho, Campus de Gualtar, PT-4710-057 Braga, Portugal
| | - Björn Johansson
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology,
University of Minho, Campus de Gualtar, PT-4710-057 Braga, Portugal
| | - Luís F Guido
- REQUIMTE/LAQV - Department of Chemistry and Biochemistry, Faculty of Sciences,
University of Porto, Rua do Campo Alegre 687, PT-4169-007 Porto, Portugal
| |
Collapse
|
29
|
Yong WK, Ho YF, Malek SNA. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn Mag 2015; 11:S275-83. [PMID: 26664015 PMCID: PMC4653337 DOI: 10.4103/0973-1296.166069] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. OBJECTIVE This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. MATERIALS AND METHODS A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. RESULTS Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. CONCLUSION This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC.
Collapse
Affiliation(s)
- Wai Kuan Yong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yen Fong Ho
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Zhang B, Chu W, Wei P, Liu Y, Wei T. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic Biol Med 2015; 89:486-97. [PMID: 26453927 DOI: 10.1016/j.freeradbiomed.2015.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
Abstract
Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol.
Collapse
Affiliation(s)
- Bo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Chu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Zimmermann K, Baldinger J, Mayerhofer B, Atanasov AG, Dirsch VM, Heiss EH. Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response. Free Radic Biol Med 2015; 88:417-426. [PMID: 25843659 PMCID: PMC4568300 DOI: 10.1016/j.freeradbiomed.2015.03.030] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/20/2022]
Abstract
In light of the emerging interplay between redox and metabolic signaling pathways we investigated the potential cross talk between nuclear factor E2-related factor 2 (Nrf2) and AMP-activated kinase (AMPK), central regulators of the cellular redox and energy balance, respectively. Making use of xanthohumol (XN) as an activator of both the AMPK and the Nrf2 signaling pathway we show that AMPK exerts a positive influence on Nrf2/heme oxygenase (HO)-1 signaling in mouse embryonic fibroblasts. Genetic ablation and pharmacological inhibition of AMPK blunts Nrf2-dependent HO-1 expression by XN already at the mRNA level. XN leads to AMPK activation via interference with mitochondrial function and activation of liver kinase B1 as upstream AMPK kinase. The subsequent AMPK-mediated enhancement of the Nrf2/HO-1 response does not depend on inhibition of the mammalian target of rapamycin, inhibition of glycogen synthase kinase 3β, or altered abundance of Nrf2 (total and nuclear). However, reduced endoplasmic reticulum stress was identified and elaborated as a step in the AMPK-augmented Nrf2/HO-1 response. Overall, we shed more light on the hitherto incompletely understood cross talk between the LKB1/AMPK and the Nrf2/HO-1 axis revealing for the first time involvement of the unfolded protein response as an additional player and suggesting tight cooperation between signaling pathways controlling cellular redox, energy, or protein homeostasis.
Collapse
Affiliation(s)
- Kristin Zimmermann
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Johannes Baldinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Barbara Mayerhofer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
32
|
Zenger K, Dutta S, Wolff H, Genton MG, Kraus B. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells. Toxicology 2015. [DOI: 10.1016/j.tox.2015.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Xanthohumol from Humulus lupulus L. induces glioma cell autophagy via inhibiting Akt/mTOR/S6K pathway. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:921306. [PMID: 25949267 PMCID: PMC4408747 DOI: 10.1155/2015/921306] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/05/2015] [Accepted: 02/25/2015] [Indexed: 12/31/2022]
Abstract
We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.
Collapse
|
35
|
Zhang B, Duan D, Ge C, Yao J, Liu Y, Li X, Fang J. Synthesis of Xanthohumol Analogues and Discovery of Potent Thioredoxin Reductase Inhibitor as Potential Anticancer Agent. J Med Chem 2015; 58:1795-805. [DOI: 10.1021/jm5016507] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Baoxin Zhang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dongzhu Duan
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chunpo Ge
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juan Yao
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yaping Liu
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinming Li
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
36
|
Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 2015; 20:754-79. [PMID: 25574819 PMCID: PMC6272297 DOI: 10.3390/molecules20010754] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/30/2014] [Indexed: 11/17/2022] Open
Abstract
The female inflorescences of hops (Humulus lupulus L.), a well-known bittering agent used in the brewing industry, have long been used in traditional medicines. Xanthohumol (XN) is one of the bioactive substances contributing to its medical applications. Among foodstuffs XN is found primarily in beer and its natural occurrence is surveyed. In recent years, XN has received much attention for its biological effects. The present review describes the pharmacological aspects of XN and summarizes the most interesting findings obtained in the preclinical research related to this compound, including the pharmacological activity, the pharmacokinetics, and the safety of XN. Furthermore, the potential use of XN as a food additive considering its many positive biological effects is discussed.
Collapse
|
37
|
Zhao L, Yan X, Shi J, Ren F, Liu L, Sun S, Shan B. Ethanol extract of Forsythia suspensa root induces apoptosis of esophageal carcinoma cells via the mitochondrial apoptotic pathway. Mol Med Rep 2014; 11:871-80. [PMID: 25373392 PMCID: PMC4262507 DOI: 10.3892/mmr.2014.2874] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 10/02/2014] [Indexed: 12/23/2022] Open
Abstract
Forsythia suspensa root is used in the treatment of fever and jaundice in Traditional Chinese Medicine. In the present study, the anti-tumor activity of the ethanolic extract of Forsythia suspensa root (FSREE) against esophageal carcinoma cells was investigated in vitro and in vivo and its anti-cancer mechanism was examined. The results revealed that FSREE, rather than Forsythia suspensa ethanolic extracts from the leaf (FSLEE) and fruit (FSFEE) exhibited marked anti-tumor activity towards human esophageal cancer cells. FSREE induced cancer cell apoptosis and growth arrest by downregulating B-cell lymphoma (Bcl)-2, Bcl-extra large and myeloid cell leukemia 1, while upregulating Bcl-2-associated X protein, Bcl-2 antagonist of cell death and phorbol-12-myristate-13-acetate-induced protein 1. This led to the activation of poly(ADP ribose) polymerase, caspase-3 and caspase-9, but not caspase-8. Furthermore, the anti-cancer activity of FSREE was associated with a decreased level of phosphorylated Janus kinase/signal transducer and activator of transcription 3 and extracellular-signal-regulated kinase signaling activity. It was also observed that the levels of cytochrome c were elevated in the cytoplasm, accounting for the loss of mitochondrial membrane potential in the TE-13 cells upon treatment with FSEER. In addition, FSEER inhibited the growth of esophageal cancer cells in xenograft models and no detectable toxicity was present in the lung or liver tissues. These observations provided further evidence of the anti-tumor effect of FSEER and may be of importance to further examine the potential role of Forsythia suspensa root as a therapeutic agent in esophageal carcinoma therapy.
Collapse
Affiliation(s)
- Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xi Yan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Juan Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Fengzhi Ren
- Department of Natural Medicine Development, New Drug Research and Development Center of North China Pharmaceutical Group Corporation, Shijiazhuang, Hebei 050015, P.R. China
| | - Lihua Liu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shiping Sun
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
38
|
Rajh T, Dimitrijevic NM, Bissonnette M, Koritarov T, Konda V. Titanium Dioxide in the Service of the Biomedical Revolution. Chem Rev 2014; 114:10177-216. [DOI: 10.1021/cr500029g] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tijana Rajh
- Center
for Nanoscale Materials, Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60540, United States
| | - Nada M. Dimitrijevic
- Center
for Nanoscale Materials, Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60540, United States
| | - Marc Bissonnette
- Department
of Medicine, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 4076, Chicago, Illinois 60637, United States
| | - Tamara Koritarov
- Center
for Nanoscale Materials, Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60540, United States
- School
of Medicine, Boston University, 72 East Concord Street, Boston, Massachusetts 02118, United States
| | - Vani Konda
- Department
of Medicine, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 4076, Chicago, Illinois 60637, United States
| |
Collapse
|
39
|
Evaluation on Antioxidant Effect of Xanthohumol by Different Antioxidant Capacity Analytical Methods. J CHEM-NY 2014. [DOI: 10.1155/2014/249485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Several assays have been frequently used to estimate antioxidant capacities includingABTS•+, DPPH, and FRAP assays. Xanthohumol (XN), the major prenylated flavonoid contained in beer, witnessed various reports on its antioxidant capacity. We systematically evaluated the antioxidant activity of XN using three systems, 2,2,-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS•+) scavenging assays, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assays, and ferric reducing antioxidant power (FRAP) assays. The results are expressed as Trolox equivalent antioxidant capacity (TEAC). The TEAC of XN was0.32±0.09 μmol·l−1by the ABTS assay and0.27±0.04 μmol·l−1by the FRAP. Meanwhile, the XN did not show obviously scavenging effect on DPPH radical reaction system. These results showed that different methods in the evaluation of compound antioxidant capicity, there may be a different conclusion.
Collapse
|
40
|
Blanquer-Rosselló MM, Oliver J, Valle A, Roca P. Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression. J Cell Biochem 2013; 114:2785-94. [DOI: 10.1002/jcb.24627] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/26/2013] [Indexed: 01/04/2023]
|
41
|
Strain-dependent oxidant release in articular cartilage originates from mitochondria. Biomech Model Mechanobiol 2013; 13:565-72. [PMID: 23896937 DOI: 10.1007/s10237-013-0518-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/18/2013] [Indexed: 12/29/2022]
Abstract
Mechanical loading is essential for articular cartilage homeostasis and plays a central role in the cartilage pathology, yet the mechanotransduction processes that underlie these effects remain unclear. Previously, we showed that lethal amounts of reactive oxygen species (ROS) were liberated from the mitochondria in response to mechanical insult and that chondrocyte deformation may be a source of ROS. To this end, we hypothesized that mechanically induced mitochondrial ROS is related to the magnitude of cartilage deformation. To test this, we measured axial tissue strains in cartilage explants subjected to semi-confined compressive stresses of 0, 0.05, 0.1, 0.25, 0.5, or 1.0 MPa. The presence of ROS was then determined by confocal imaging with dihydroethidium, an oxidant sensitive fluorescent probe. Our results indicated that ROS levels increased linearly relative to the magnitude of axial strains (r(2) = 0.87, p < 0.05), and significant cell death was observed at strains >40%. By contrast, hydrostatic stress, which causes minimal tissue strain, had no significant effect. Cell-permeable superoxide dismutase mimetic Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride significantly decreased ROS levels at 0.5 and 0.25 MPa. Electron transport chain inhibitor, rotenone, and cytoskeletal inhibitor, cytochalasin B, significantly decreased ROS levels at 0.25 MPa. Our findings strongly suggest that ROS and mitochondrial oxidants contribute to cartilage mechanobiology.
Collapse
|
42
|
Kang Y, Park MA, Heo SW, Park SY, Kang KW, Park PH, Kim JA. The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. Biochim Biophys Acta Gen Subj 2013; 1830:2638-48. [PMID: 23246576 DOI: 10.1016/j.bbagen.2012.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/20/2012] [Accepted: 12/06/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chemotherapeutic drug resistance remains a clinical obstacle in cancer management. Drug-resistant cancer cells usually exhibit cross-resistance to ionizing radiation, which has devastating consequences for patients. With a better understanding of the molecular mechanisms, it will be possible to develop strategies to overcome this cross-resistance and to increase therapeutic sensitivity. METHODS Natural and synthetic flavonoid compounds including xanthohumol, the principal flavonoid in hops, were investigated for its radio-sensitizing activity on human breast cancer MCF-7 and adriamycin-resistant MCF-7 (MCF-7/ADR) cells. Chemo-sensitizing or radio-sensitizing effect was analyzed by tetrazolium-based colorimetric assay and flow cytometry. Western blot analysis, confocal microscopy, gene silencing with siRNA transfection and luciferase reporter gene assay were performed to examine signaling molecule activation. RESULTS Among the tested flavonoid compounds, pretreatment of the cells with xanthohumol significantly sensitized MCF-7/ADR cells to the radiation treatment by inducing apoptosis. In MCF-7/ADR cells, treatment with xanthohumol alone or with gamma-rays significantly decreased levels of anti-apoptotic proteins. Multi-drug resistance 1 (MDR1), epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) expression levels in MCF-7/ADR cells were suppressed by xanthohumol treatment. In addition, xanthohumol treatment increased death receptor (DR)-4 and DR5 expression. The xanthohumol-induced changes of these resistance-related molecules in MCF-7/ADR cells were synergistically increased by gamma-ray treatment. CONCLUSIONS Xanthohumol restored sensitivity of MCF-7/ADR cells to doxorubicin and radiation therapies. GENERAL SIGNIFICANCE Our results suggest that xanthohumol may be a potent chemo- and radio-sensitizer, and its actions are mediated through STAT3 and EGFR inhibition.
Collapse
Affiliation(s)
- Youra Kang
- College of Pharmacy, Yeungnam University, Gyeongsang 712-749, South Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Kathagen N, Prehm P. Regulation of intracellular pH by glycosaminoglycans. J Cell Physiol 2013; 228:2071-5. [DOI: 10.1002/jcp.24376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/25/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Nadine Kathagen
- Institute of Physiological Chemistry and Pathobiochemistry, Muenster University, Hospital; Münster; Germany
| | - Peter Prehm
- Institute of Physiological Chemistry and Pathobiochemistry, Muenster University, Hospital; Münster; Germany
| |
Collapse
|
44
|
Kirkwood JS, Legette LL, Miranda CL, Jiang Y, Stevens JF. A metabolomics-driven elucidation of the anti-obesity mechanisms of xanthohumol. J Biol Chem 2013; 288:19000-13. [PMID: 23673658 DOI: 10.1074/jbc.m112.445452] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mild, mitochondrial uncoupling increases energy expenditure and can reduce the generation of reactive oxygen species (ROS). Activation of cellular, adaptive stress response pathways can result in an enhanced capacity to reduce oxidative damage. Together, these strategies target energy imbalance and oxidative stress, both underlying factors of obesity and related conditions such as type 2 diabetes. Here we describe a metabolomics-driven effort to uncover the anti-obesity mechanism(s) of xanthohumol (XN), a prenylated flavonoid from hops. Metabolomics analysis of fasting plasma from obese, Zucker rats treated with XN revealed decreases in products of dysfunctional fatty acid oxidation and ROS, prompting us to explore the effects of XN on muscle cell bioenergetics. At low micromolar concentrations, XN acutely increased uncoupled respiration in several different cell types, including myocytes. Tetrahydroxanthohumol also increased respiration, suggesting electrophilicity did not play a role. At higher concentrations, XN inhibited respiration in a ROS-dependent manner. In myocytes, time course metabolomics revealed acute activation of glutathione recycling and long term induction of glutathione synthesis as well as several other changes indicative of short term elevated cellular stress and a concerted adaptive response. Based on these findings, we hypothesize that XN may ameliorate metabolic syndrome, at least in part, through mitochondrial uncoupling and stress response induction. In addition, time course metabolomics appears to be an effective strategy for uncovering metabolic events that occur during a stress response.
Collapse
Affiliation(s)
- Jay S Kirkwood
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
45
|
Xanthohumol attenuates tumour cell-mediated breaching of the lymphendothelial barrier and prevents intravasation and metastasis. Arch Toxicol 2013; 87:1301-12. [DOI: 10.1007/s00204-013-1028-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/25/2013] [Indexed: 01/09/2023]
|
46
|
Venè R, Benelli R, Minghelli S, Astigiano S, Tosetti F, Ferrari N. Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice. Mol Med 2012; 18:1292-302. [PMID: 22952060 DOI: 10.2119/molmed.2012.00174] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/28/2012] [Indexed: 01/08/2023] Open
Abstract
Despite recent advances in understanding the biological basis of prostate cancer, management of the disease, especially in the phase resistant to androgen ablation, remains a significant challenge. The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention to prevent or eradicate prostate malignancies. In this study, we have used human hormone-resistant prostate cancer cells, DU145 and PC3, as an in vitro model to assess the efficacy of xanthohumol (XN) against cell growth, motility and invasion. We observed that treatment of prostate cancer cells with low micromolar doses of XN inhibits proliferation and modulates focal adhesion kinase (FAK) and AKT phosphorylation leading to reduced cell migration and invasion. Oxidative stress by increased production of reactive oxygen species (ROS) was associated with these effects. Transgenic adenocarcinoma of the mouse prostate (TRAMP) transgenic mice were used as an in vivo model of prostate adenocarcinoma. Oral gavage of XN, three times per week, beginning at 4 wks of age, induced a decrease in the average weight of the urogenital (UG) tract, delayed advanced tumor progression and inhibited the growth of poorly differentiated prostate carcinoma. The ability of XN to inhibit prostate cancer in vitro and in vivo suggests that XN may be a novel agent for the management of prostate cancer.
Collapse
Affiliation(s)
- Roberta Venè
- Molecular Oncology and Angiogenesis, IRCCS Azienda Ospedaliera Universitaria San Martino, IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Hirata H, Yimin, Segawa S, Ozaki M, Kobayashi N, Shigyo T, Chiba H. Xanthohumol prevents atherosclerosis by reducing arterial cholesterol content via CETP and apolipoprotein E in CETP-transgenic mice. PLoS One 2012; 7:e49415. [PMID: 23166663 PMCID: PMC3500296 DOI: 10.1371/journal.pone.0049415] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/10/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Xanthohumol is expected to be a potent anti-atherosclerotic agent due to its inhibition of cholesteryl ester transfer protein (CETP). In this study, we hypothesized that xanthohumol prevents atherosclerosis in vivo and used CETP-transgenic mice (CETP-Tg mice) to evaluate xanthohumol as a functional agent. METHODOLOGY/PRINCIPAL FINDINGS Two strains of mice, CETP-Tg and C57BL/6N (wild-type), were fed a high cholesterol diet with or without 0.05% (w/w) xanthohumol ad libitum for 18 weeks. In CETP-Tg mice, xanthohumol significantly decreased accumulated cholesterol in the aortic arch and increased HDL cholesterol (HDL-C) when compared to the control group (without xanthohumol). Xanthohumol had no significant effect in wild-type mice. CETP activity was significantly decreased after xanthohumol addition in CETP-Tg mice compared with the control group and it inversely correlated with HDL-C (%) (P<0.05). Furthermore, apolipoprotein E (apoE) was enriched in serum and the HDL-fraction in CETP-Tg mice after xanthohumol addition, suggesting that xanthohumol ameliorates reverse cholesterol transport via apoE-rich HDL resulting from CETP inhibition. CONCLUSIONS Our results suggest xanthohumol prevents cholesterol accumulation in atherogenic regions by HDL-C metabolism via CETP inhibition leading to apoE enhancement.
Collapse
Affiliation(s)
- Hiroshi Hirata
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu, Shizuoka, Japan
| | - Yimin
- Department of Advanced Medicine, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Shuichi Segawa
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu, Shizuoka, Japan
| | - Moeko Ozaki
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu, Shizuoka, Japan
| | - Naoyuki Kobayashi
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu, Shizuoka, Japan
| | - Tatsuro Shigyo
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu, Shizuoka, Japan
| | - Hitoshi Chiba
- Faculty of Health Science, Hokkaido University School of Medicine, Kita-ku, Sapporo, Japan
| |
Collapse
|
48
|
Wyns C, van Steendam K, Vanhoecke B, Deforce D, Bracke M, Heyerick A. Prenylated chalcone xanthohumol associates with histones in breast cancer cells-a novel target identified by a monoclonal antibody. Mol Nutr Food Res 2012; 56:1688-96. [DOI: 10.1002/mnfr.201200030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 07/31/2012] [Accepted: 08/10/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Ciska Wyns
- Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences; Ghent University; Ghent Belgium
| | - Katleen van Steendam
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences; Ghent University; Ghent Belgium
| | - Barbara Vanhoecke
- Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research; Ghent University Hospital; Ghent Belgium
| | - Dieter Deforce
- Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences; Ghent University; Ghent Belgium
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences; Ghent University; Ghent Belgium
| | - Marc Bracke
- Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research; Ghent University Hospital; Ghent Belgium
| | - Arne Heyerick
- Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences; Ghent University; Ghent Belgium
| |
Collapse
|
49
|
Mitocans, Mitochondria-Targeting Anticancer Drugs. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b12308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Sassi N, Biasutto L, Mattarei A, Carraro M, Giorgio V, Citta A, Bernardi P, Garbisa S, Szabò I, Paradisi C, Zoratti M. Cytotoxicity of a mitochondriotropic quercetin derivative: Mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1095-106. [DOI: 10.1016/j.bbabio.2012.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 02/15/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
|