1
|
Siegl K, Kolik‐Shmuel L, Zhang M, Prévost S, Vishnia K, Mor A, Appavou M, Jafta CJ, Danino D, Gradzielski M. Directed Assembly of Multi-Walled Nanotubes and Nanoribbons of Amino Acid Amphiphiles Using a Layer-by-Layer Approach. Chemistry 2021; 27:6904-6910. [PMID: 33560564 PMCID: PMC8251557 DOI: 10.1002/chem.202005331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Indexed: 11/22/2022]
Abstract
Monodisperse unilamellar nanotubes (NTs) and nanoribbons (NRs) were transformed to multilamellar NRs and NTs in a well-defined fashion. This was done by using a step-wise approach in which self-assembled cationic amino acid amphiphile (AAA) formed the initial NTs or NRs, and added polyanion produced an intermediate coating. Successive addition of cationic AAA formed a covering AAA layer, and by repeating this layer-by-layer (LBL) procedure, multi-walled nanotubes (mwNTs) and nanoribbons were formed. This process was structurally investigated by combining small-angle neutron scattering (SANS) and cryogenic-transmission electron microscopy (cryo-TEM), confirming the multilamellar structure and the precise layer spacing. In this way the controlled formation of multi-walled suprastructures was demonstrated in a simple and reproducible fashion, which allowed to control the charge on the surface of these 1D aggregates. This pathway to 1D colloidal materials is interesting for applications in life science and creating well-defined building blocks in nanotechnology.
Collapse
Affiliation(s)
- Kathrin Siegl
- Stranski-Laboratorium für Physikalische und Theoretische ChemieInstitut für ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Luba Kolik‐Shmuel
- CryoEM Laboratory of Soft MatterFaculty of Biotechnology and Food EngineeringTechnion—Israel Institute of TechnologyHaifa3200003Israel
| | - Mingming Zhang
- CryoEM Laboratory of Soft MatterFaculty of Biotechnology and Food EngineeringTechnion—Israel Institute of TechnologyHaifa3200003Israel
| | - Sylvain Prévost
- Institut Max von Laue-Paul Langevin (ILL)71 avenue des Martyrs38042GrenobleFrance
| | - Kalanit Vishnia
- CryoEM Laboratory of Soft MatterFaculty of Biotechnology and Food EngineeringTechnion—Israel Institute of TechnologyHaifa3200003Israel
| | - Amram Mor
- Faculty of Biotechnology and Food EngineeringTechnion—Israel Institute of TechnologyHaifa3200003Israel
| | - Marie‐Sousai Appavou
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS)Heinz Maier-Leibnitz Zentrum (MLZ)Lichtenbergerstr. 185747GarchingGermany
| | - Charl J. Jafta
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)14109BerlinGermany
| | - Dganit Danino
- CryoEM Laboratory of Soft MatterFaculty of Biotechnology and Food EngineeringTechnion—Israel Institute of TechnologyHaifa3200003Israel
- Guangdong Technion—Israel Institute of TechnologyGuangdong ProvinceShantou515063P. R. China
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische ChemieInstitut für ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| |
Collapse
|
2
|
Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev 2020; 43:490-516. [PMID: 31150547 PMCID: PMC6736374 DOI: 10.1093/femsre/fuz014] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Infections of antibiotic-resistant pathogens pose an ever-increasing threat to mankind. The investigation of novel approaches for tackling the antimicrobial resistance crisis must be part of any global response to this problem if an untimely reversion to the pre-penicillin era of medicine is to be avoided. One such promising avenue of research involves so-called antibiotic resistance breakers (ARBs), capable of re-sensitising resistant bacteria to antibiotics. Although some ARBs have previously been employed in the clinical setting, such as the β-lactam inhibitors, we posit that the broader field of ARB research can yet yield a greater diversity of more effective therapeutic agents than have been previously achieved. This review introduces the area of ARB research, summarises the current state of ARB development with emphasis on the various major classes of ARBs currently being investigated and their modes of action, and offers a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Mark Laws
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| | - Ali Shaaban
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| |
Collapse
|
3
|
Molchanova N, Hansen PR, Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules 2017; 22:E1430. [PMID: 28850098 PMCID: PMC6151827 DOI: 10.3390/molecules22091430] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/19/2023] Open
Abstract
The rapid emergence of multidrug-resistant pathogens has evolved into a global health problem as current treatment options are failing for infections caused by pan-resistant bacteria. Hence, novel antibiotics are in high demand, and for this reason antimicrobial peptides (AMPs) have attracted considerable interest, since they often show broad-spectrum activity, fast killing and high cell selectivity. However, the therapeutic potential of natural AMPs is limited by their short plasma half-life. Antimicrobial peptidomimetics mimic the structure and biological activity of AMPs, but display extended stability in the presence of biological matrices. In the present review, focus is on the developments reported in the last decade with respect to their design, synthesis, antimicrobial activity, cytotoxic side effects as well as their potential applications as anti-infective agents. Specifically, only peptidomimetics with a modular structure of residues connected via amide linkages will be discussed. These comprise the classes of α-peptoids (N-alkylated glycine oligomers), β-peptoids (N-alkylated β-alanine oligomers), β³-peptides, α/β³-peptides, α-peptide/β-peptoid hybrids, α/γ N-acylated N-aminoethylpeptides (AApeptides), and oligoacyllysines (OAKs). Such peptidomimetics are of particular interest due to their potent antimicrobial activity, versatile design, and convenient optimization via assembly by standard solid-phase procedures.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
4
|
Dispersion and stabilization of cochleate nanoparticles. Eur J Pharm Biopharm 2017; 117:270-275. [DOI: 10.1016/j.ejpb.2017.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 11/19/2022]
|
5
|
Liu M, Zhong X, Yang Z. Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A. Sci Rep 2017; 7:41322. [PMID: 28112262 PMCID: PMC5282608 DOI: 10.1038/srep41322] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/14/2016] [Indexed: 11/17/2022] Open
Abstract
It remains a significant challenge to overcome the poor permeability of cyclosporine A and enhance its oral absorption. In this study, we have identified a positively charged chitosan that is able to induce coiling up of anionic lipids to form nanocochleates with an average size of 114.2 ± 0.8 nm, without the need for calcium ions. These functional chitosan-induced nanocochleates enhanced gastrointestinal absorption of cyclosporine A, up to a 3-fold increase in oral bioavailability. A fluorescence-labeling study confirmed that absorption mainly occurred in the duodenum and jejunum. Transport studies indicated that uptake of chitosan-induced nanocochleates by Caco-2 cells was by clathrin- and caveolae-mediated endocytosis, but not by macropinocytosis. Furthermore, three cellular tight junction proteins, ZO-1, F-actin and claudin-4, were significantly down-regulated, suggesting that chitobiose-induced nanocochleates are able to reconstruct and open tight junctions in intestinal epithelial cells to enhance drug absorption. In summary, these novel bifunctional chitosan-induced nanocochleates appear to have potential to facilitate oral delivery of cyclosporine A.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Urology Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Xiaoming Zhong
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Jiangxi Province Tumor Hospital, Nanchang, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Kaneti G, Meir O, Mor A. Controlling bacterial infections by inhibiting proton-dependent processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:995-1003. [PMID: 26522076 DOI: 10.1016/j.bbamem.2015.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Bacterial resistance to antibiotics is recognized as one of the greatest threats in modern healthcare, taking a staggering toll worldwide. New approaches for controlling bacterial infections must be designed, eventually combining multiple strategies for complimentary therapies. This review explores an old/new paradigm for multi-targeted antibacterial therapy, focused at disturbing bacterial cytoplasmic membrane functions at sub minimal inhibitory concentrations, namely through superficial physical alterations of the bilayer, thereby perturbing transmembrane signals transduction. Such a paradigm may have the advantage of fighting the infection while avoiding many of the known resistance mechanisms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Galoz Kaneti
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ohad Meir
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
7
|
Hovakeemian SG, Liu R, Gellman SH, Heerklotz H. Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents. SOFT MATTER 2015; 11:6840-51. [PMID: 26234884 PMCID: PMC4666704 DOI: 10.1039/c5sm01521a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane permeabilizing compounds. Without this thorough approach, it would have been logical to assume that the two nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity.
Collapse
|
8
|
Membrane curvature modulation of protein activity determined by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:220-8. [DOI: 10.1016/j.bbamem.2014.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 02/04/2023]
|
9
|
McCloskey AP, Gilmore BF, Laverty G. Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 2014; 3:791-821. [PMID: 25436505 PMCID: PMC4282886 DOI: 10.3390/pathogens3040791] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 11/17/2022] Open
Abstract
Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a "bottom-up" approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection.
Collapse
Affiliation(s)
- Alice P McCloskey
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, N. Ireland.
| | - Brendan F Gilmore
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, N. Ireland.
| | - Garry Laverty
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, N. Ireland.
| |
Collapse
|
10
|
Melo AM, Loura LMS, Fernandes F, Villalaín J, Prieto M, Coutinho A. Electrostatically driven lipid-lysozyme mixed fibers display a multilamellar structure without amyloid features. SOFT MATTER 2014; 10:840-850. [PMID: 24651998 DOI: 10.1039/c3sm52586d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Understanding the interactions between anionic lipid membranes and amyloidogenic proteins/peptides is key to elucidate the molecular mechanisms underlying the membrane-driven amyloid fiber formation. Here, hen egg-white lysozyme was used as a model protein to test whether this same process also occurs with non-amyloidogenic lipid-binding proteins/peptides. A complementary set of biophysical techniques was employed to study the structure and dynamics of the lipid-lysozyme mixed fibers produced at a low lipid/protein molar ratio that have been proposed earlier to present "amyloid-like" characteristics. The multilamellar architecture of these elongated mesoscopic structures was established by performing time-resolved Förster resonance energy transfer measurements, at both bulk (ensemble) and single-fiber level. The predominantly oligomeric lysozyme and phospholipids were both found to display significantly decreased lateral mobility when embedded in these mixed fibers. Notably, two-photon microscopy of Laurdan revealed that a pronounced membrane surface dehydration/increased molecular interfacial packing was produced exclusively in these elongated mixed supramolecular fibers present in the highly polymorphic samples. Infrared spectroscopic studies of lysozyme in these samples further showed that this protein did not exhibit a rich β-sheet structure characteristic of amyloid fibrils. These results support the conclusion that negatively charged lipid membranes do not have the general ability to trigger amyloid fibril formation of non-amyloidogenic proteins.
Collapse
Affiliation(s)
- Ana M Melo
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
11
|
Kaneti G, Sarig H, Marjieh I, Fadia Z, Mor A. Simultaneous breakdown of multiple antibiotic resistance mechanisms in
S. aureus. FASEB J 2013; 27:4834-43. [DOI: 10.1096/fj.13-237610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Galoz Kaneti
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Hadar Sarig
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Ibrahim Marjieh
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Zaknoon Fadia
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Amram Mor
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
12
|
Clock SA, Tabibi S, Alba L, Kubin CJ, Whittier S, Saiman L. In vitro activity of doripenem alone and in multi-agent combinations against extensively drug-resistant Acinetobacter baumannii and Klebsiella pneumoniae. Diagn Microbiol Infect Dis 2013; 76:343-6. [DOI: 10.1016/j.diagmicrobio.2013.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
13
|
Goldberg K, Sarig H, Zaknoon F, Epand RF, Epand RM, Mor A. Sensitization of gram-negative bacteria by targeting the membrane potential. FASEB J 2013; 27:3818-26. [PMID: 23733749 DOI: 10.1096/fj.13-227942] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Toward generating new tools for fighting multidrug-resistant (MDR) bacteria, we assessed the ability of a membrane-active peptide to sensitize gram-negative bacteria to various antibiotics. The mechanism for affecting inner and/or outer membrane functions was assessed by complementary biophysical methods (SPR, DSC, ITC). The implication of efflux pumps was examined using Acr-AB mutants, as tested with representative antibiotics, host defense peptides, and synthetic mimics. The ability to affect disease course systemically was compared for a single therapy and combination therapy, using the mouse thigh-infection model. The data show that potent antibiotic action can be provoked in vitro and in vivo, by a treatment combining two antibacterial compounds whose individual inefficiency against gram-negative bacteria stems from their efflux. Thus, at subminimal inhibitory concentrations, the lipopeptide-like sequence, N(α)(ω7)dodecenoyl-lysyl-[lysyl-aminododecanoyl-lysyl]-amide (designated C12(ω7)K-β12), has, nonetheless, rapidly achieved a transient membrane depolarization, which deprived bacteria of the proton-motive force required for active efflux. Consequently, bacteria became significantly sensitive to intracellular targeting antibiotics. Collectively, these findings suggest a potentially useful approach for expanding the antibiotics sensitivity spectrum of MDR gram-negative bacteria to include efflux substrates.
Collapse
Affiliation(s)
- Keren Goldberg
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Rishi P, Singh AP, Arora S, Garg N, Kaur IP. Revisiting eukaryotic anti-infective biotherapeutics. Crit Rev Microbiol 2013; 40:281-92. [PMID: 23317462 DOI: 10.3109/1040841x.2012.749210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emerging drug resistance has forced the scientific community to revisit the observational data documented in the folklore and come up with novel and effective alternatives. Candidates from eukaryotic origin including herbal products and antimicrobial peptides are finding a strategic place in the therapeutic armamentarium against infectious diseases. These agents have recently gained interest owing to their versatile applications. Present review encompasses the use of these alternative strategies in their native or designer form, alone or in conjunction with antibiotics, as possible remedial measures. Further to this, the limitations or the possible concerns associated with these options are also discussed at length.
Collapse
Affiliation(s)
- Praveen Rishi
- Department of Microbiology, Panjab University , Chandigarh, Chandigarh , India and
| | | | | | | | | |
Collapse
|
15
|
Antibacterial properties of an oligo-acyl-lysyl hexamer targeting Gram-negative species. Antimicrob Agents Chemother 2012; 56:4827-32. [PMID: 22751534 DOI: 10.1128/aac.00511-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toward developing new tools for fighting resistance to antibiotics, we investigated the antibacterial properties of a new decanoyl-based oligo-acyl-lysyl (OAK) hexamer, aminododecanoyl-lysyl-[aminodecanoyl-lysyl](5) (α(12)-5α(10)). The OAK exhibited preferential activity against Gram-negative bacteria (GNB), as determined using 36 strains, including diverse species, with an MIC(90) of 6.2 μM. The OAK's bactericidal mode of action was associated with rapid membrane depolarization and cell permeabilization, suggesting that the inner membrane was the primary target, whereas the observed binding affinity to lipoteichoic acid suggested that inefficacy against Gram-positive species resulted from a cell wall interaction preventing α(12)-5α(10) from reaching internal targets. Interestingly, perturbation of the inner membrane structure and function was preserved at sub-MIC values. This prompted us to assess the OAK's effect on the proton motive force-dependent efflux pump AcrAB-TolC, implicated in the low sensitivity of GNB to various antibiotics, including erythromycin. We found that under sub-MIC conditions, wild-type Escherichia coli was significantly more sensitive to erythromycin (the MIC dropped by >10-fold), unlike its acr-deletion mutant. Collectively, the data suggest a useful approach for treating GNB infections through overcoming antibiotic efflux.
Collapse
|
16
|
Epand RF, Mor A, Epand RM. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents. Cell Mol Life Sci 2011; 68:2177-88. [PMID: 21573783 PMCID: PMC11114973 DOI: 10.1007/s00018-011-0711-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | | | | |
Collapse
|
17
|
Sarig H, Ohana D, Epand RF, Mor A, Epand RM. Functional studies of cochleate assemblies of an oligo-acyl-lysyl with lipid mixtures for combating bacterial multidrug resistance. FASEB J 2011; 25:3336-43. [PMID: 21676947 DOI: 10.1096/fj.11-183764] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cationic antimicrobial oligo-acyl-lysyls (OAKs) interact with lipid mixtures mimicking the composition of bacterial cytoplasmic membranes. We have reported the ability of one such OAK, C(12)K-7α(8), to cluster anionic lipids and to promote a structural change with lipid bilayers to form rolled cylindrical structures or cochleates, without requiring divalent cations for their assembly. These assemblies can be exploited for drug delivery, permitting their synergistic use with antibiotics in systemic therapy to increase efficacy and reduce toxicity. Our previous studies of the biophysical properties of these systems led us to select mixtures with the goal of optimizing their potential for enhancing effectiveness in combating bacterial multidrug resistance. Here, we further investigate the properties of such mixtures that result in enhanced in vivo activity. The role of erythromycin in the assembly of cochleates with OAK in the gel and the liquid crystalline states were assessed, as well as the encapsulation efficiency of the systems chosen. In addition, we found that erythromycin did not undermine the ability of OAKs to induce fusion of vesicles, fusion being an essential component of cochleate formation. The in vivo activity of the new assemblies tested resulted in higher survival rates of animals infected with multidrug resistant bacteria.
Collapse
Affiliation(s)
- Hadar Sarig
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
18
|
Antiplasmodial properties of acyl-lysyl oligomers in culture and animal models of malaria. Antimicrob Agents Chemother 2011; 55:3803-11. [PMID: 21646484 DOI: 10.1128/aac.00129-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous analysis of antiplasmodial properties exhibited by dodecanoyl-based oligo-acyl-lysyls (OAKs) has outlined basic attributes implicated in potent inhibition of parasite growth and underlined the critical role of excess hydrophobicity in hemotoxicity. To dissociate hemolysis from antiplasmodial effect, we screened >50 OAKs for in vitro growth inhibition of Plasmodium falciparum strains, thus revealing the minimal requirements for antiplasmodial potency in terms of sequence and composition, as confirmed by efficacy studies in vivo. The most active sequence, dodecanoyllysyl-bis(aminooctanoyllysyl)-amide (C(12)K-2α(8)), inhibited parasite growth at submicromolar concentrations (50% inhibitory concentration [IC(50)], 0.3 ± 0.1 μM) and was devoid of hemolytic activity (<0.4% hemolysis at 150 μM). Unlike the case of dodecanoyl-based analogs, which equally affect ring and trophozoite stages of the parasite developmental cycle, the ability of various octanoyl-based OAKs to distinctively affect these stages (rings were 4- to 5-fold more sensitive) suggests a distinct antiplasmodial mechanism, nonmembranolytic to host red blood cells (RBCs). Upon intraperitoneal administration to mice, C(12)K-2α(8) demonstrated sustainable high concentrations in blood (e.g., 0.1 mM at 25 mg/kg of body weight). In Plasmodium vinckei-infected mice, C(12)K-2α(8) significantly affected parasite growth (50% effective dose [ED(50)], 22 mg/kg) but also caused mortality in 2/3 mice at high doses (50 mg/kg/day × 4).
Collapse
|
19
|
Sesana AM, Monti-Rocha R, Vinhas SA, Morais CG, Dietze R, Lemos EM. In vitro activity of amphotericin B cochleates against Leishmania chagasi. Mem Inst Oswaldo Cruz 2011; 106:251-3. [DOI: 10.1590/s0074-02762011000200022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/12/2010] [Indexed: 11/21/2022] Open
|