1
|
Wu P, Zhang Q, Xu X, He S, Liu Z, Li Y, Guo R. Primary infection enhances neutrophil-mediated host defense by educating HSPCs. Int Immunopharmacol 2024; 137:112382. [PMID: 38875995 DOI: 10.1016/j.intimp.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can give rise to all kinds of immune cells including neutrophils. Neutrophils are the first line of defense in the innate immune system with a short lifespan, due to which it is well-accepted that neutrophils have no immune memory. However, recent reports showed that the changes in HSPCs induced by primary stimulation could last a long time, which contributes to enhancing response to subsequent infection by generating more monocytes or macrophages equipped with stronger anti-bacterial function. Here, we used the reinfection mice model to reveal that primary infection could improve neutrophil-mediated host defense by training neutrophil progenitors in mammals, providing a new idea to enhance neutrophil number and improve neutrophil functions, which is pretty pivotal for patients with compromised or disordered immunity.
Collapse
Affiliation(s)
- Peng Wu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qingyu Zhang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450053, Henan, China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Songjiang He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheming Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
2
|
Mares RG, Suica VI, Uyy E, Boteanu RM, Ivan L, Cocuz IG, Sabau AH, Yadav V, Szabo IA, Cotoi OS, Tomut ME, Jakobsson G, Simionescu M, Antohe F, Schiopu A. Short-term S100A8/A9 Blockade Promotes Cardiac Neovascularization after Myocardial Infarction. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10542-6. [PMID: 39009944 DOI: 10.1007/s12265-024-10542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Acute-phase inhibition of the pro-inflammatory alarmin S100A8/A9 improves cardiac function post-myocardial infarction (MI), but the mechanisms underlying the long-term benefits of this short-term treatment remain to be elucidated. Here, we assessed the effects of S100A8/A9 blockade with the small-molecule inhibitor ABR-238901 on myocardial neovascularization in mice with induced MI. The treatment significantly reduced S100A9 and increased neovascularization in the myocardium, assessed by CD31 staining. Proteomic analysis by mass-spectrometry showed strong myocardial upregulation of the pro-angiogenic proteins filamin A (~ 10-fold) and reticulon 4 (~ 5-fold), and downregulation of the anti-angiogenic proteins Ras homolog gene family member A (RhoA, ~ 4.7-fold), neutrophilic granule protein (Ngp, ~ 4.0-fold), and cathelicidin antimicrobial peptide (Camp, ~ 4.4-fold) versus controls. In-vitro, ABR-238901 protected against apoptosis induced by recombinant human S100A8/A9 in human umbilical vein endothelial cells (HUVECs). In conclusion, S100A8/A9 blockade promotes post-MI myocardial neovascularization by favorably modulating pro-angiogenic proteins in the myocardium and by inhibiting endothelial cell apoptosis.
Collapse
Affiliation(s)
- Razvan Gheorghita Mares
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania.
| | - Viorel Iulian Suica
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Elena Uyy
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Raluca Maria Boteanu
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Luminita Ivan
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Iuliu Gabriel Cocuz
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Clinical County Hospital, Targu Mures, Romania
| | - Adrian Horatiu Sabau
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Clinical County Hospital, Targu Mures, Romania
| | - Vikas Yadav
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Istvan Adorjan Szabo
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Ovidiu Simion Cotoi
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Clinical County Hospital, Targu Mures, Romania
| | | | - Gabriel Jakobsson
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maya Simionescu
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Felicia Antohe
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Alexandru Schiopu
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania.
- Molecular and Cellular Pharmacology - Functional Genomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Internal Medicine, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
3
|
Cao X, Xu Y, Zhou C, Huo J, Su S, Liu L, Zhu Z, Li L, Jia W, Wang C, Zhen M. Oral Immunotherapy Reshapes Intestinal Immunosuppression via Metabolic Reprogramming to Enhance Systemic Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302910. [PMID: 37884486 PMCID: PMC10724426 DOI: 10.1002/advs.202302910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Tumor immunotherapy offers a new paradigm to treat cancer; however, the existing regimens are accompanied by the dilemma of insufficient therapeutic outcomes and off-target adverse effects. The intestinal immune system contains a bulk of immune cells, which can be important contributors to the maintenance of systemic immune homeostasis. However, manipulating intestinal immunity to achieve systemic anti-tumor immunity is extremely challenging. Here, an oral immunotherapy strategy is reported using immune-enhancing fullerenes (IEF) that can reinvigorate anti-tumor immunity via immune cell-metabolic reprogramming of intestinal immune cells. Findings show that IEF can remodel anti-inflammatory macrophages into tumor-killing macrophages by regulating the energy metabolism pathway from oxidative phosphorylation (OXPHOS) to glycolysis. Consequently, IEF can reprogram the immunosuppressive intestinal immunity and enhance sys temic immunity in vivo, thereby boosting anti-tumor immunity and converting "cold" tumors into "hot" tumors. Oral immunotherapy strategy, modulating autoimmune cells in the intestine and achieving systemic anti-tumor immunity, can ensure safe and efficient tumor immunotherapy.
Collapse
Affiliation(s)
- Xinran Cao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuan Xu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chen Zhou
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jiawei Huo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shenge Su
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lei Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ziran Zhu
- University of Chinese Academy of SciencesBeijing100049China
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Lei Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wang Jia
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chunru Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
4
|
Asega AF, Barros BCSC, Chaves AFA, Oliveira AK, Bertholim L, Kitano ES, Serrano SMT. Mouse skin peptidomic analysis of the hemorrhage induced by a snake venom metalloprotease. Amino Acids 2023; 55:1103-1119. [PMID: 37389729 DOI: 10.1007/s00726-023-03299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Hemorrhage induced by snake venom metalloproteases (SVMPs) results from proteolysis, capillary disruption, and blood extravasation. HF3, a potent SVMP of Bothrops jararaca, induces hemorrhage at pmol doses in the mouse skin. To gain insight into the hemorrhagic process, the main goal of this study was to analyze changes in the skin peptidome generated by injection of HF3, using approaches of mass spectrometry-based untargeted peptidomics. The results revealed that the sets of peptides found in the control and HF3-treated skin samples were distinct and derived from the cleavage of different proteins. Peptide bond cleavage site identification in the HF3-treated skin showed compatibility with trypsin-like serine proteases and cathepsins, suggesting the activation of host proteinases. Acetylated peptides, which originated from the cleavage at positions in the N-terminal region of proteins in both samples, were identified for the first time in the mouse skin peptidome. The number of peptides acetylated at the residue after the first Met residue, mostly Ser and Ala, was higher than that of peptides acetylated at the initial Met. Proteins cleaved in the hemorrhagic skin participate in cholesterol metabolism, PPAR signaling, and in the complement and coagulation cascades, indicating the impairment of these biological processes. The peptidomic analysis also indicated the emergence of peptides with potential biological activities, including pheromone, cell penetrating, quorum sensing, defense, and cell-cell communication in the mouse skin. Interestingly, peptides generated in the hemorrhagic skin promoted the inhibition of collagen-induced platelet aggregation and could act synergistically in the local tissue damage induced by HF3.
Collapse
Affiliation(s)
- Amanda F Asega
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Bianca C S C Barros
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Alison F A Chaves
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Ana K Oliveira
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Luciana Bertholim
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Eduardo S Kitano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil.
| |
Collapse
|
5
|
Hsieh CC, Chang CC, Hsu YC, Lin CL. Immune Modulation by Myeloid-Derived Suppressor Cells in Diabetic Kidney Disease. Int J Mol Sci 2022; 23:13263. [PMID: 36362050 PMCID: PMC9655277 DOI: 10.3390/ijms232113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/22/2023] Open
Abstract
Diabetic kidney disease (DKD) frequently leads to end-stage renal disease and other life-threatening illnesses. The dysregulation of glomerular cell types, including mesangial cells, endothelial cells, and podocytes, appears to play a vital role in the development of DKD. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory and anti-inflammatory properties through the depletion of L-arginine that is required by T cells, through generation of oxidative stress, interference with T-cell recruitment and viability, proliferation of regulatory T cells, and through the promotion of pro-tumorigenic functions. Under hyperglycemic conditions, mouse mesangial cells reportedly produce higher levels of fibronectin and pro-inflammatory cytokines. Moreover, the number of MDSCs is noticeably decreased, weakening inhibitory immune activities, and creating an inflammatory environment. In diabetic mice, immunotherapy with MDSCs that were induced by a combination of granulocyte-macrophage colony-stimulating factor, interleukin (IL)-1β, and IL-6, reduced kidney to body weight ratio, fibronectin expression, and fibronectin accumulation in renal glomeruli, thus ameliorating DKD. In conclusion, MDSCs exhibit anti-inflammatory activities that help improve renal fibrosis in diabetic mice. The therapeutic targeting of the proliferative or immunomodulatory pathways of MDSCs may represent an alternative immunotherapeutic strategy for DKD.
Collapse
Affiliation(s)
- Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Cheng-Chih Chang
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Yung-Chien Hsu
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Division of Nephrology, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Chun-Liang Lin
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Division of Nephrology, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| |
Collapse
|
6
|
Cathepsin K: A Versatile Potential Biomarker and Therapeutic Target for Various Cancers. Curr Oncol 2022; 29:5963-5987. [PMID: 36005209 PMCID: PMC9406569 DOI: 10.3390/curroncol29080471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer, a common malignant disease, is one of the predominant causes of diseases that lead to death. Additionally, cancer is often detected in advanced stages and cannot be radically cured. Consequently, there is an urgent need for reliable and easily detectable markers to identify and monitor cancer onset and progression as early as possible. Our aim was to systematically review the relevant roles of cathepsin K (CTSK) in various possible cancers in existing studies. CTSK, a well-known key enzyme in the bone resorption process and most studied for its roles in the effective degradation of the bone extracellular matrix, is expressed in various organs. Nowadays, CTSK has been involved in various cancers such as prostate cancer, breast cancer, bone cancer, renal carcinoma, lung cancer and other cancers. In addition, CTSK can promote tumor cells proliferation, invasion and migration, and its mechanism may be related to RANK/RANKL, TGF-β, mTOR and the Wnt/β-catenin signaling pathway. Clinically, some progress has been made with the use of cathepsin K inhibitors in the treatment of certain cancers. This paper reviewed our current understanding of the possible roles of CTSK in various cancers and discussed its potential as a biomarker and/or novel molecular target for various cancers.
Collapse
|
7
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
8
|
Lynall ME, Kigar SL, Lehmann ML, DePuyt AE, Tuong ZK, Listwak SJ, Elkahloun AG, Bullmore ET, Herkenham M, Clatworthy MR. B-cells are abnormal in psychosocial stress and regulate meningeal myeloid cell activation. Brain Behav Immun 2021; 97:226-238. [PMID: 34371135 PMCID: PMC8453122 DOI: 10.1016/j.bbi.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
There is increasing interest in how immune cells, including those within the meninges at the blood-brain interface, influence brain function and mood disorders, but little data on humoral immunity in this context. Here, we show that in mice exposed to psychosocial stress, there is increased splenic B cell activation and secretion of the immunoregulatory cytokine interleukin (IL)-10. Meningeal B cells were prevalent in homeostasis but substantially decreased following stress, whereas Ly6Chi monocytes increased, and meningeal myeloid cells showed augmented expression of activation markers. Single-cell RNA sequencing of meningeal B cells demonstrated the induction of innate immune transcriptional programmes following stress, including genes encoding antimicrobial peptides that are known to alter myeloid cell activation. Cd19-/- mice, that have reduced B cells, showed baseline meningeal myeloid cell activation and decreased exploratory behaviour. Together, these data suggest that B cells may influence behaviour by regulating meningeal myeloid cell activation.
Collapse
Affiliation(s)
- Mary-Ellen Lynall
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; National Institute of Mental Health, Bethesda, MA, USA; Department of Psychiatry, University of Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, UK
| | - Stacey L Kigar
- National Institute of Mental Health, Bethesda, MA, USA; Department of Medicine, Cambridge, UK
| | | | | | - Zewen Kelvin Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, UK
| | | | | | | | | | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, UK.
| |
Collapse
|
9
|
Yang S, Zhao W, Zhu M, Hu H, Wang W, Zang Z, Jin M, Bi J, Huang J, Liu C, Li X, Yin P, Li N. Tumor Temporal Proteome Profiling Reveals the Immunological Triple Offensive Induced by Synthetic Anti-Cancer Salmonella. Front Immunol 2021; 12:712936. [PMID: 34489962 PMCID: PMC8417115 DOI: 10.3389/fimmu.2021.712936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/03/2021] [Indexed: 01/30/2023] Open
Abstract
The engineered “obligate” anaerobic Salmonella typhimurium strain YB1 shows a prominent ability to repress tumor growth and metastasis, which has great potential as a novel cancer immunotherapy. However, the antitumor mechanism of YB1 remains unelucidated. To resolve the proteome dynamics induced by the engineered bacteria, we applied tumor temporal proteome profiling on murine bladder tumors after intravenous injection of either YB1 or PBS as a negative control. Our data suggests that during the two weeks treatment of YB1 injections, the cured tumors experienced three distinct phases of the immune response. Two days after injection, the innate immune response was activated, particularly the complement and blood coagulation pathways. In the meantime, the phagocytosis was initiated. The professional phagocytes such as macrophages and neutrophils were recruited, especially the infiltration of iNOS+ and CD68+ cells was enhanced. Seven days after injection, substantial amount of T cells was observed at the invasion margin of the tumor. As a result, the tumor shrunk significantly. Overall, the temporal proteome profiling can systematically reveal the YB1 induced immune responses in tumor, showing great promise for elucidating the mechanism of bacteria-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Shuxin Yang
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjuan Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Muchun Zhu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huijuan Hu
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weijie Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhongsheng Zang
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meiling Jin
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiacheng Bi
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiandong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenli Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuefei Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Yin
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
10
|
Kalafati L, Kourtzelis I, Schulte-Schrepping J, Li X, Hatzioannou A, Grinenko T, Hagag E, Sinha A, Has C, Dietz S, de Jesus Domingues AM, Nati M, Sormendi S, Neuwirth A, Chatzigeorgiou A, Ziogas A, Lesche M, Dahl A, Henry I, Subramanian P, Wielockx B, Murray P, Mirtschink P, Chung KJ, Schultze JL, Netea MG, Hajishengallis G, Verginis P, Mitroulis I, Chavakis T. Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity. Cell 2021; 183:771-785.e12. [PMID: 33125892 PMCID: PMC7599076 DOI: 10.1016/j.cell.2020.09.058] [Citation(s) in RCA: 288] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
Abstract
Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with β-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of β-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from β-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of β-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany; Hull York Medical School, York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Jonas Schulte-Schrepping
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aikaterini Hatzioannou
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Tatyana Grinenko
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Eman Hagag
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany
| | - Canan Has
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sevina Dietz
- DFG-Center for Regenerative Therapies Dresden, 01307 Dresden, Germany
| | | | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sundary Sormendi
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Athanasios Ziogas
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ian Henry
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Peter Murray
- Immunoregulation Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany; PRECISE - Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53115 Bonn, Germany
| | - Mihai G Netea
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 XZ, the Netherlands
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Panayotis Verginis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
11
|
Thangavelu B, Boutté AM. Single Molecule Assay for Ultrasensitive Detection of Cathepsin B in Human Blood. ACS OMEGA 2021; 6:9609-9616. [PMID: 33869941 PMCID: PMC8047647 DOI: 10.1021/acsomega.1c00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 05/23/2023]
Abstract
Cathepsin B (catB) is a lysosomal cysteine protease expressed in several cells and organs, where it plays a role in protein degradation and turnover. Extracellular, secreted catB has utility as a biomarker for a host of pathological or physiological states, including a myriad of cancers or neurological diseases and injuries. Analytical or diagnostic assessment may be limited by biological sample volume availability. Pathologically relevant changes in catB levels may occur at low-moderate concentrations that require accurate measurement to differentiate from basal levels. Furthermore, biological samples like plasma and serum, often occlude accurate catB measurements because of background and high variance, vastly limiting the ability to detect catB as a peripheral biomarker. Techniques for ultrasensitive protein detection that require low volumes of sample are necessary. To overcome these challenges, a digital enzyme-linked immunosorbent assay (ELISA) was developed for differential detection of catB within less than 5 μL of serum and plasma using the single molecule array (SiMoA) platform, which offers 1000-times more sensitivity and vastly reduced variance compared to colorimetric tests. In buffer, curve-fitting estimated the limit of detection (LoD) to be ∼1.56 and ∼8.47 pg/mL using two-step or three-step assay configurations, respectively. After correcting for endogenous levels, the estimated LoD was ∼4.7 pg/mL in the serum or plasma with the two-step assay. The lower limit of quantitation was ∼2.3 pg/mL in the buffer and ∼9.4 pg/mL in the serum or plasma, indicting the ability to measure small changes above endogenous levels within blood samples.
Collapse
|
12
|
Fang H, Xie X, Liu P, Rao Y, Cui Y, Yang S, Yu J, Luo Y, Feng Y. Ziyuglycoside II alleviates cyclophosphamide-induced leukopenia in mice via regulation of HSPC proliferation and differentiation. Biomed Pharmacother 2020; 132:110862. [PMID: 33069969 DOI: 10.1016/j.biopha.2020.110862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Ziyuglycoside II (ZGS II) is a major bioactive ingredient of Sanguisorbae officinalis L., which has been widely used for managing myelosuppression or leukopenia induced by chemotherapy or radiotherapy. In the current study, we investigated the pro-hematopoietic effects and underlying mechanisms of ZGS II in cyclophosphamide-induced leukopenia in mice. The results showed that ZGS II significantly increased the number of total white blood cells and neutrophils in the peripheral blood. Flow cytometry analysis also showed a significant increase in the number of nucleated cells and hematopoietic stem and progenitor cells (HSPCs) including ST-HSCs, MPPs, and GMPs, and enhanced HSPC proliferation in ZGS II treated mice. The RNA-sequencing analysis demonstrated that ZGS II effectively regulated cell differentiation, immune system processes, and hematopoietic system-related pathways related to extracellular matrix (ECM)-receptor interaction, focal adhesion, hematopoietic cell lineage, cytokine-cytokine receptor interaction, the NOD-like receptor signaling pathway, and the osteoclast differentiation pathway. Moreover, ZGS II treatment altered the differentially expressed genes (DEGs) with known functions in HSPC differentiation and mobilization (Cxcl12, Col1a2, and Sparc) and the surface markers of neutrophilic precursors or neutrophils (Ngp and CD177). Collectively, these data suggest that ZGS II protected against chemotherapy-induced leukopenia by regulating HSPC proliferation and differentiation.
Collapse
Affiliation(s)
- Haihong Fang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xinxu Xie
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Peng Liu
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Ying Rao
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Yaru Cui
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Shilin Yang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA19140, USA
| | - Yingying Luo
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
13
|
Yang H, Heyer J, Zhao H, Liang S, Guo R, Zhong L. The Potential Role of Cathepsin K in Non-Small Cell Lung Cancer. Molecules 2020; 25:molecules25184136. [PMID: 32927648 PMCID: PMC7571067 DOI: 10.3390/molecules25184136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Cathepsin K has been found overexpressed in several malignant tumors. However, there is little information regarding the involvement of Cathepsin K in non-small cell lung cancer (NSCLC). (2) Methods: Cathepsin K expression was tested in human NSCLC cell lines A549 and human embryo lung fibroblast MRC-5 cells using Western blot and immunofluorescence assay. Cathepsin K was transiently overexpressed or knocked down using transfection with a recombinant plasmid and siRNA, respectively, to test the effects on cell proliferation, migration, invasion, and on the mammalian target of rapamycin (mTOR) signaling pathway. (3) Results: Expression of Cathepsin K was increased significantly in A549 cells and diffused within the cytoplasm compared to the MRC-5 cells used as control. Cathepsin K overexpression promoted the proliferation, migration, and invasion of A549 cells, accompanied by mTOR activation. Cathepsin K knockdown reversed the above malignant behavior and inhibited the mTOR signaling activation, suggesting that Cathepsin K may promote the progression of NSCLC by activating the mTOR signaling pathway. (4) Conclusion: Cathepsin K may potentially represent a viable drug target for NSCLC treatment.
Collapse
Affiliation(s)
- Hui Yang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
| | - Jasmine Heyer
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Hui Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
| | - Shengxian Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
- Correspondence: (R.G.); (L.Z.)
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
- Correspondence: (R.G.); (L.Z.)
| |
Collapse
|
14
|
Liu K, Tian LX, Tang X, Wang J, Tang WQ, Ma ZF, Chen T, Liang HP. Neutrophilic granule protein (NGP) attenuates lipopolysaccharide-induced inflammatory responses and enhances phagocytosis of bacteria by macrophages. Cytokine 2020; 128:155001. [PMID: 32035329 DOI: 10.1016/j.cyto.2020.155001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Neutrophilic granule protein (NGP) belongs to the cystatin superfamily. Even though this superfamily is critically involved in cancer biology and adaptive immunity, the relationship of macrophage NGP to inflammation and phagocytosis remains poorly understood. In this study, we observed a significant increase of NGP in peritoneal macrophages (PMs) isolated from mice challenged with E. coli or lipopolysaccharide (LPS), as judged by NGP mRNA microarray. We also found changes in NGP to be mainly Toll-like receptor 4 (TLR4)-dependent. By western blot and electrophoretic mobility shift assay, we demonstrated NGP overexpression to reduce TNF-α and IL-1β production by LPS-induced RAW264.7 cells (RAW) via suppression of the NF-κB (p65 and p50) signalling pathway, rather than the JNK1/AP-1 (fos and jun) signalling pathway. NGP overexpression by LPS-induced RAW also induced IL-10, an anti-inflammatory cytokine, which was partially involved in the anti-inflammatory effect produced by NGP overexpression. Moreover, upregulated NGP enhanced the phagocytosis of E. coli by RAW. Taken together, these results demonstrated NGP to be an important host defense component that regulates inflammatory responses and phagocytosis by activated macrophages. As such, NGP may be useful for the treatment of inflammatory based disease.
Collapse
Affiliation(s)
- Kuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China; Department of Intensive Care Unit, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Xing Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Xin Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China; Department of Intensive Care Unit, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China; Department Of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wan-Qi Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhong-Fu Ma
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Intensive Care Unit, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hua-Ping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
15
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
16
|
Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond. Arch Immunol Ther Exp (Warsz) 2018; 67:89-102. [PMID: 30386868 DOI: 10.1007/s00005-018-0531-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
Abstract
Metastasis is the direst face of cancer, and it is not a feature solely dependent on cancer cells; however, a complex interaction between cancer cells and host causes this process. Investigating the mechanisms of metastasis can lead to its control. Myeloid-derived suppressor cells (MDSCs) are key components of tumor microenvironment that favor cancer progression. These cells result from altered myelopoiesis in response to the presence of tumor. The most recognized function of MDSCs is suppressing anti-tumor immune responses. Strikingly, these cells are among important players in cancer dissemination and metastasis. They can exert their effect on metastatic process by affecting anti-cancer immunity, epithelial-mesenchymal transition, cancer stem cell formation, angiogenesis, establishing premetastatic niche, and supporting cancer cell survival and growth in metastatic sites. In this article, we review and discuss the mechanisms by which MDSCs contribute to cancer metastasis.
Collapse
|
17
|
Sigloch FC, Tholen M, Gomez-Auli A, Biniossek ML, Reinheckel T, Schilling O. Proteomic analysis of lung metastases in a murine breast cancer model reveals divergent influence of CTSB and CTSL overexpression. J Cancer 2017; 8:4065-4074. [PMID: 29187882 PMCID: PMC5706009 DOI: 10.7150/jca.21401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 12/26/2022] Open
Abstract
Studies in the MMTV-PyMT (PyMT) breast cancer mouse model have shown a strong influence of the lysosomal cysteine cathepsins B or L on lung metastasis formation. Transgenic expression of human CTSB (tgCTSB) or CTSL (tgCTSL) both led to similar metastatic phenotypes with increased metastatic burden in the PyMT mice. However, recent studies in other tumor models proved marked differences in effects of either cathepsin on the proteome composition. We sought to analyze and compare proteome changes in the metastatic proteome of PyMT mice expressing either tgCTSB or tgCTSL to evaluate similarities and differences in those models. Performing an explorative, quantitative proteome comparison based on LC-MS/MS, we identified up to 3,000 proteins from murine lung metastases in three independent biological replicates per genotype. In both cases, when compared to wild-type (WT) mice, we noticed a pronounced impact of transgene cathepsin expression on the metastasis proteome. Highlights include increased moesin, integrin beta 1 and vinexin levels in the tgCTSB dataset and increased saposin and granulin levels in the tgCTSL dataset. Importantly, non-supervised hierarchical clustering clearly separated tgCTSB vs. tgCTSL induced proteome changes. In summary, tgCTSB and tgCTSL both display a strong and distinct impact on proteome composition of lung macrometastases in the PyMT model. Our observations suggest that they impact malignant behavior in distinct ways, thus further emphasizing interest into their tumor-contextual functionality.
Collapse
Affiliation(s)
- Florian Christoph Sigloch
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Martina Tholen
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, D-79104 Freiburg, Germany.,Present address: Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Alejandro Gomez-Auli
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, D-79104 Freiburg, Germany
| | - Martin Lothar Biniossek
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Gato M, Blanco-Luquin I, Zudaire M, de Morentin XM, Perez-Valderrama E, Zabaleta A, Kochan G, Escors D, Fernandez-Irigoyen J, Santamaría E. Drafting the proteome landscape of myeloid-derived suppressor cells. Proteomics 2015; 16:367-78. [PMID: 26403437 DOI: 10.1002/pmic.201500229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/18/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy.
Collapse
Affiliation(s)
- María Gato
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Idoia Blanco-Luquin
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Maribel Zudaire
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Xabier Martínez de Morentin
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, ProteoRed-ISCIII, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Estela Perez-Valderrama
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, ProteoRed-ISCIII, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Aintzane Zabaleta
- Biofunctional Nanomaterials Laboratory, CIC Biomagune, San Sebastian, Spain
| | - Grazyna Kochan
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - David Escors
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernandez-Irigoyen
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, ProteoRed-ISCIII, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, ProteoRed-ISCIII, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
19
|
Verbovšek U, Van Noorden CJ, Lah TT. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression. Semin Cancer Biol 2015; 35:71-84. [DOI: 10.1016/j.semcancer.2015.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
|
20
|
Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate. Front Neurol 2015; 6:178. [PMID: 26388830 PMCID: PMC4557097 DOI: 10.3389/fneur.2015.00178] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
There is currently no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM) where the unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, rheumatoid arthritis, epilepsy, Huntington's disease, multiple sclerosis, and Alzheimer's disease. The inhibitor E64d is unique among cathepsin B inhibitors in being the only compound to have demonstrated oral efficacy in a TBI model and prior safe use in man and as such it is an excellent tool compound for preclinical testing and clinical compound development. These data support the conclusion that drug development of cathepsin B inhibitors for TBI treatment should be accelerated.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, Inc. , San Diego, CA , USA
| | | | - Kenneth Grabstein
- Department of Chemical Engineering, University of Washington , Seattle, WA , USA
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA ; Ralph H. Johnson Veterans Administration Medical Center , Charleston, SC , USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA ; Department of Neurosciences, Department of Pharmacology, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
21
|
Condamine T, Ramachandran I, Youn JI, Gabrilovich DI. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med 2014; 66:97-110. [PMID: 25341012 DOI: 10.1146/annurev-med-051013-052304] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accumulation of pathologically activated immature myeloid cells with potent immune-suppressive activity is one of the major immunological hallmarks of cancer. In recent years, it became clear that in addition to their immune-suppressive activity, myeloid-derived suppressor cells (MDSCs) influence tumor progression in a variety of ways. They are directly implicated in the promotion of tumor metastases by participating in the formation of premetastatic niches, promoting angiogenesis and tumor cell invasion. In this review, we discuss recent data describing various roles of MDSCs in the formation of tumor metastases.
Collapse
|
22
|
Keskinov AA, Shurin MR. Myeloid regulatory cells in tumor spreading and metastasis. Immunobiology 2014; 220:236-42. [PMID: 25178934 DOI: 10.1016/j.imbio.2014.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/16/2022]
Abstract
Development of metastasis is determined by both the accretion of essential changes in cancerous cells and by their communications with different stromal elements in the tumor microenvironment. Specifically, inflammatory response and emergence of immune regulatory cells, such and myeloid regulatory cells (macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells) and lymphoid regulatory cells (regulatory T, B and NK cells) to the tumor site have been reported to support tumor growth in addition to spreading and metastasis. Every phase of tumor progression, from its initiation through metastatic expansion, is endorsed by interaction between malignant and immune cells mediated by a number of growth factors, cytokines, proteases and other molecules that modify the tumor microenvironment. Invasion and metastasis depend on intratumoral vascularization, alterations of the basement membrane and degradation of the extracellular matrix for tumor cell spreading, invasion and extravasation into the blood and lymphatic vessels. The consequent dissemination of cancerous cells to distant tissues and organs necessitates a trafficking through the vasculature, which is promoted by further interactions with cells of the immune system, including myeloid regulatory cells. Moreover, the formation of the pre-metastatic niche and specific metastasis organ tropism is also regulated and controlled by bone marrow-derived hematopoietic immune progenitor cells, immature myeloid cells and certain cytokines, chemokines and growth factors derived from tumor and immune cells, which amend the local microenvironment of the organ or tissue to promote adhesion and survival of circulating cancerous cells. Although the potential role for myeloid regulatory cells in tumor spreading and development of pre-metastatic niche has been suggested, the concept still requires further supportive experimental and clinical data, as well as data related to specific factors and mechanisms responsible for myeloid regulatory cell functioning at malignant sites.
Collapse
Affiliation(s)
- Anton A Keskinov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Edgington LE, Verdoes M, Bogyo M. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 2011; 15:798-805. [PMID: 22098719 DOI: 10.1016/j.cbpa.2011.10.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/25/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023]
Abstract
Proteases are enzymes that cleave peptide bonds in protein substrates. This process can be important for regulated turnover of a target protein but it can also produce protein fragments that then perform other functions. Because the last few decades of protease research have confirmed that proteolysis is an essential regulatory process in both normal physiology and in multiple disease-associated conditions, there has been an increasing interest in developing methods to image protease activity. Proteases are also considered to be one of the few 'druggable' classes of proteins and therefore a large number of small molecule based inhibitors of proteases have been reported. These compounds serve as a starting point for the design of probes that can be used to target active proteases for imaging applications. Currently, several classes of fluorescent probes have been developed to visualize protease activity in live cells and even whole organisms. The two primary classes of protease probes make use of either peptide/protein substrates or covalent inhibitors that produce a fluorescent signal when bound to an active protease target. This review outlines some of the most recent advances in the design of imaging probes for proteases. In particular, it highlights the strengths and weaknesses of both substrate-based and activity-based probes and their applications for imaging cysteine proteases that are important biomarkers for multiple human diseases.
Collapse
Affiliation(s)
- Laura E Edgington
- Cancer Biology Program, Stanford University School of Medicine, 300 Pasteur Dr., Stanford, CA 94305-5324, USA
| | | | | |
Collapse
|
24
|
Boutté AM, McDonald WH, Shyr Y, Yang L, Lin PC. Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS One 2011; 6:e22446. [PMID: 21853032 PMCID: PMC3154190 DOI: 10.1371/journal.pone.0022446] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/22/2011] [Indexed: 01/04/2023] Open
Abstract
Expansion of Gr-1+/CD11b+ myeloid derived suppressor cells (MDSCs) is governed by the presence of increasingly metastatic, malignant primary tumors. Metastasis, not the primary tumor, is often the cause of mortality. This study sought to fully characterize the MDSC proteome in response to metastatic and non-metastatic mammary tumors using label-free mass spectrometry shotgun proteomics in a mouse model with tumor cell lines, 67NR and 4T1, derived from the same tumor. 67NR cells form only primary mammary tumors, whereas 4T1 cells readily metastasize to the lungs, lymph nodes, and blood. Overall analysis identified a total of 2825 protein groups with a 0.78% false discovery rate. Of the 2814 true identifications, 43 proteins were exclusive to the 67NR group, 153 were exclusive to the 4T1 group, and 2618 were shared. Among the shared cohort, 26 proteins were increased and 31 were decreased in the metastatic 4T1 cohort compared to non-metastatic 67NR controls after filtering. MDSCs selectively express proteins involved in the γ-glutamyl transferase, glutathione synthase pathways, CREB transcription factor signaling, and other pathways involved in platelet aggregation, as well as lipid and amino acid metabolism, in response to highly metastatic 4T1 tumors. Cell cycle regulation dominated protein pathways and ontological groups of the 67NR non-metastatic group. Not only does this study provide a starting point to identify potential biomarkers of metastasis expressed by MDSCs; it identifies critical pathways that are unique to non-metastatic and metastatic conditions. Therapeutic interventions aimed at these pathways in MDSC may offer a new route to control malignancy and metastasis.
Collapse
Affiliation(s)
- Angela M Boutté
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | |
Collapse
|