1
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
2
|
Seo YS, Park JM, Kim JH, Lee MY. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants (Basel) 2023; 12:1732. [PMID: 37760035 PMCID: PMC10525535 DOI: 10.3390/antiox12091732] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Smoking is recognized as a significant risk factor for numerous disorders, including cardiovascular diseases, respiratory conditions, and various forms of cancer. While the exact pathogenic mechanisms continue to be explored, the induction of oxidative stress via the production of excess reactive oxygen species (ROS) is widely accepted as a primary molecular event that predisposes individuals to these smoking-related ailments. This review focused on how cigarette smoke (CS) promotes ROS formation rather than the pathophysiological repercussions of ROS and oxidative stress. A comprehensive analysis of existing studies revealed the following key ways through which CS imposes ROS burden on biological systems: (1) ROS, as well as radicals, are intrinsically present in CS, (2) CS constituents generate ROS through chemical reactions with biomolecules, (3) CS stimulates cellular ROS sources to enhance production, and (4) CS disrupts the antioxidant system, aggravating the ROS generation and its functions. While the evidence supporting these mechanisms is chiefly based on in vitro and animal studies, the direct clinical relevance remains to be fully elucidated. Nevertheless, this understanding is fundamental for deciphering molecular events leading to oxidative stress and for developing intervention strategies to counter CS-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (Y.-S.S.); (J.-M.P.); (J.-H.K.)
| |
Collapse
|
3
|
Sandrini L, Amadio P, Ieraci A, Malara A, Werba JP, Soprano PM, Balduini A, Zarà M, Bonomi A, Veglia F, Colombo GI, Popoli M, Lee FS, Tremoli E, Barbieri SS. The α 2-adrenergic receptor pathway modulating depression influences the risk of arterial thrombosis associated with BDNFVal66Met polymorphism. Biomed Pharmacother 2021; 146:112557. [PMID: 34965503 DOI: 10.1016/j.biopha.2021.112557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is associated with thrombotic risk and arterial events, its proper management is strongly recommended in coronary artery disease (CAD) patients. We have previously shown that the Brain-Derived Neurotrophic Factor (BDNF)Val66Met polymorphism, related to depression, is associated with arterial thrombosis in mice, and with an increased risk of acute myocardial infarction in humans. Herein, expanding the previous findings on BDNFVal66Met polymorphism, we show that desipramine, a norepinephrine reuptake-inhibitor, rescues behavioral impairments, reduces the arterial thrombosis risk, abolishes pathological coagulation and platelet hyper-reactivity, normalizes leukocyte, platelet, and bone marrow megakaryocyte number and restores physiological norepinephrine levels in homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. The in vitro data confirm the enhanced procoagulant activity and the alpha2A-adrenergic receptor (α2A-ADR) overexpression found in BDNFMet/Met mice and we provide evidence that, in presence of Met variant, norepinephrine is crucial to up-regulate procoagulant activity and to enhance platelet generation. The α2-ADR antagonist rauwolscine rescues the prothrombotic phenotype in BDNFMet/Met mice and reduces procoagulant activity and platelet generation in cells transfected with BDNFMet plasmid or exposed to pro-BDNFMet peptide. Finally, we show that homozygous BDNFMet/Met CAD patients have hyper-reactive platelets overexpressing abundant α2A-ADR. The great proplatelet release from their megakaryocytes well reflects their higher circulating platelet number compared to BDNFVal/Val patients. These data reveal an unprecedented described role of Met allele in the dysregulation of norepinephrine/α2A-ADR pathway that may explain the predisposition to arterial thrombosis. Overall, the development of α2A-ADR inhibitors might represent a pharmacological treatment for depression-associated thrombotic conditions in this specific subgroup of CAD patients.
Collapse
Affiliation(s)
| | | | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS San Matteo Foundation, Pavia, Italy
| | - José P Werba
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS San Matteo Foundation, Pavia, Italy
| | - Marta Zarà
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, USA
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Maria Cecilia Hospital, Cotignola, Italy
| | | |
Collapse
|
4
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
5
|
Yelins’ka AM, Akimov OY, Kostenko VO. Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.01.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
6
|
Sub-Chronic Stress Exacerbates the Pro-Thrombotic Phenotype in BDNF Val/Met Mice: Gene-Environment Interaction in the Modulation of Arterial Thrombosis. Int J Mol Sci 2018; 19:ijms19103235. [PMID: 30347685 PMCID: PMC6214083 DOI: 10.3390/ijms19103235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism has been associated with increased susceptibility to develop mood disorders and recently it has been also linked with cardiovascular disease (CVD). Interestingly, stressful conditions unveil the anxious/depressive-like behavioral phenotype in heterozygous BDNFVal66Met (BDNFVal/Met) mice, suggesting an important relationship in terms of gene-environment interaction (GxE). However, the interplay between stress and BDNFVal/Met in relation to CVD is completely unknown. Here, we showed that BDNFVal/Met mice display a greater propensity to arterial thrombosis than wild type BDNFVal/Val mice after 7 days of restraint stress (RS). RS markedly increased the number of leukocytes and platelets, and induced hyper-responsive platelets as showed by increased circulating platelet/leukocyte aggregates and enhanced expression of P-selectin and GPIIbIIIa in heterozygous mutant mice. In addition, stressed BDNFVal/Met mice had a greater number of large and reticulated platelets but comparable number and maturation profile of bone marrow megakaryocytes compared to BDNFVal/Val mice. Interestingly, RS led to a significant reduction of BDNF expression accompanied by an increased activity of tissue factor in the aorta of both BDNFVal/Val and BDNFVal/Met mice. In conclusion, we provide evidence that sub-chronic stress unveils prothrombotic phenotype in heterozygous BDNF Val66Met mice affecting both the number and functionality of blood circulating cells, and the expression of key thrombotic molecules in aorta. Human studies will be crucial to understand whether this GxE interaction need to be taken into account in risk stratification of coronary artery disease (CAD) patients.
Collapse
|
7
|
Sun H, Krauss RM, Chang JT, Teng BB. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res 2018; 59:207-223. [PMID: 29180444 PMCID: PMC5794417 DOI: 10.1194/jlr.m078360] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/22/2017] [Indexed: 01/05/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) interacts directly with cytoplasmic apoB and prevents its degradation via the autophagosome/lysosome pathway. This process affects VLDL and LDL production and influences atherogenesis. Here, we investigated the molecular machinery by which PCSK9 modulates autophagy and affects atherogenesis. We backcrossed Pcsk9-/- mice with atherosclerosis-prone Ldlr-/-Apobec1-/- (LDb) mice to generate Ldlr-/-Apobec1-/-Pcsk9-/- (LTp) mice. Deletion of PCSK9 resulted in decreased hepatic apoB secretion, increased autophagic flux, and decreased plasma levels of IDL and LDL particles. The LDLs from LTp mice (LTp-LDLs) were less atherogenic and contained less cholesteryl ester and phospholipids than LDb-LDLs. Moreover LTp-LDLs induced lower endothelial expression of the genes encoding TLR2, Lox-1, ICAM-1, CCL2, CCL7, IL-6, IL-1β, Beclin-1, p62, and TRAF6 Collectively, these effects were associated with substantially less atherosclerosis development (>4-fold) in LTp mice. The absence of PCSK9 in LDb mice results in decreased lipid and apoB levels, fewer atherogenic LDLs, and marked reduction of atherosclerosis. The effect on atherogenesis may be mediated in part by the effects of modified LDLs on endothelial cell receptors and proinflammatory and autophagy molecules. These findings suggest that there may be clinical benefits of PCSK9 inhibition due to mechanisms unrelated to increased LDL receptor activity.
Collapse
Affiliation(s)
- Hua Sun
- Research Center for Human Genetics, Brown Foundation Institute of Molecular Medicine University of Texas Health Science Center at Houston, Houston, TX
| | | | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX
- University of Texas MD Anderson Cancer Center, University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX
| | - Ba-Bie Teng
- Research Center for Human Genetics, Brown Foundation Institute of Molecular Medicine University of Texas Health Science Center at Houston, Houston, TX
- University of Texas MD Anderson Cancer Center, University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX
| |
Collapse
|
8
|
Kim JY, Choi GE, Yoo HJ, Kim HS. Interferon Potentiates Toll-Like Receptor-Induced Prostaglandin D 2 Production through Positive Feedback Regulation between Signal Transducer and Activators of Transcription 1 and Reactive Oxygen Species. Front Immunol 2017; 8:1720. [PMID: 29255467 PMCID: PMC5723016 DOI: 10.3389/fimmu.2017.01720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 01/14/2023] Open
Abstract
Prostaglandin D2 (PGD2) is a potent lipid mediator that controls inflammation, and its dysregulation has been implicated in diverse inflammatory disorders. Despite significant progress made in understanding the role of PGD2 as a key regulator of immune responses, the molecular mechanism underlying PGD2 production remains unclear, particularly upon challenge with different and multiple inflammatory stimuli. Interferons (IFNs) potentiate macrophage activation and act in concert with exogenous inflammatory mediators such as toll-like receptor (TLR) ligands to amplify inflammatory responses. A recent study found that IFN-γ enhanced lipopolysaccharide-induced PGD2 production, indicating a role of IFNs in PGD2 regulation. Here, we demonstrate that TLR-induced PGD2 production by macrophages was significantly potentiated by signaling common to IFN-β and IFN-γ in a signal transducer and activators of transcription (STAT)1-dependent mechanism. Such potentiation by IFNs was also observed for PGE2 production, despite the differential regulation of PGD synthase and PGE synthase isoforms mediating PGD2 and PGE2 production under inflammatory conditions. Mechanistic analysis revealed that the generation of intracellular reactive oxygen species (ROS) was remarkably potentiated by IFNs and required for PGD2 production, but was nullified by STAT1 deficiency. Conversely, the regulation of STAT1 level and activity by IFNs was largely dependent on ROS levels. Using a model of zymosan-induced peritonitis, the relevance of this finding in vivo was supported by marked inhibition of PGD2 and ROS produced in peritoneal exudate cells by STAT1 deficiency. Collectively, our findings suggest that IFNs, although not activating on their own, are potent amplifiers of TLR-induced PGD2 production via positive-feedback regulation between STAT1 and ROS.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan, South Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Department of Convergence Medicine, Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Cellular Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Apocynin Prevents Abnormal Megakaryopoiesis and Platelet Activation Induced by Chronic Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9258937. [PMID: 29317986 PMCID: PMC5727790 DOI: 10.1155/2017/9258937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/24/2017] [Indexed: 12/14/2022]
Abstract
Environmental chronic stress (ECS) has been identified as a trigger of acute coronary syndromes (ACS). Changes in redox balance, enhanced reactive oxygen species (ROS) production, and platelet hyperreactivity were detected in both ECS and ACS. However, the mechanisms by which ECS predisposes to thrombosis are not fully understood. Here, we investigated the impact of ECS on platelet activation and megakaryopoiesis in mice and the effect of Apocynin in this experimental setting. ECS induced by 4 days of forced swimming stress (FSS) treatment predisposed to arterial thrombosis and increased oxidative stress (e.g., plasma malondialdehyde levels). Interestingly, Apocynin treatment prevented these alterations. In addition, FSS induced abnormal megakaryopoiesis increasing the number and the maturation state of bone marrow megakaryocytes (MKs) and affecting circulating platelets. In particular, a higher number of large and reticulated platelets with marked functional activation were detected after FSS. Apocynin decreased the total MK number and prevented their ability to generate ROS without affecting the percentage of CD42d+ cells, and it reduced the platelet hyperactivation in stressed mice. In conclusion, Apocynin restores the physiological megakaryopoiesis and platelet behavior, preventing the detrimental effect of chronic stress on thrombosis, suggesting its potential use in the occurrence of thrombosis associated with ECS.
Collapse
|
10
|
Amadio P, Baldassarre D, Tarantino E, Zacchi E, Gianellini S, Squellerio I, Amato M, Weksler BB, Tremoli E, Barbieri SS. Production of prostaglandin E2 induced by cigarette smoke modulates tissue factor expression and activity in endothelial cells. FASEB J 2015; 29:4001-10. [PMID: 26065856 DOI: 10.1096/fj.14-268383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/02/2015] [Indexed: 01/15/2023]
Abstract
Cigarette smoke (CS) increases the incidence of atherothrombosis, the release of prostaglandin (PG) E2, and the amount of tissue factor (TF). The link between PGE2 and TF, and the impact of this interaction on CS-induced thrombosis, is unknown. Plasma from active smokers showed higher concentration of PGE2, TF total antigen, and microparticle-associated TF (MP-TF) activity compared with never smokers. Similar results were obtained in mice and in mouse cardiac endothelial cells (MCECs) after treatment with aqueous CS extracts (CSEs) plus IL-1β [CSE (6.4 puffs/L)/IL-1β (2 μg/L)]. A significant correlation between PGE2 and TF total antigen or MP-TF activity were observed in both human and mouse plasma or tissue. Inhibition of PGE synthase reduced TF in vivo and in vitro and prevented the arterial thrombosis induced by CSE/IL-1β. Only PG E receptor 1 (EP1) receptor antagonists (SC51089:IC50 ∼ 1 μM, AH6809:IC50 ∼ 7.5 μM) restored the normal TF and sirtuin 1 (SIRT1) levels in MCECs before PGE2 (EC50 ∼ 2.5 mM) or CSE/IL-1β exposure. Similarly, SIRT1 activators (CAY10591: IC50 ∼ 10 μM, resveratrol: IC50 ∼ 5 μM) or prostacyclin analogs (IC50 ∼ 5 μM) prevented SIRT1 inhibition and reduced TF induced by CSE/IL-1β or by PGE2. In conclusion, PGE2 increases both TF expression and activity through the regulation of the EP1/SIRT1 pathway. These findings suggest that EP1 may represent a possible target to prevent prothrombotic states.
Collapse
Affiliation(s)
- Patrizia Amadio
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Damiano Baldassarre
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Eva Tarantino
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Elena Zacchi
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Sara Gianellini
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Isabella Squellerio
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Mauro Amato
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Babette B Weksler
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Elena Tremoli
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Silvia S Barbieri
- *Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and Division of Hematology-Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
11
|
Kim M, Han CH, Lee MY. NADPH oxidase and the cardiovascular toxicity associated with smoking. Toxicol Res 2014; 30:149-57. [PMID: 25343008 PMCID: PMC4206741 DOI: 10.5487/tr.2014.30.3.149] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022] Open
Abstract
Smoking is one of the most serious but preventable causes of cardiovascular disease (CVD). Key aspects of pathological process associated with smoking include endothelial dysfunction, a prothrombotic state, inflammation, altered lipid metabolism, and hypoxia. Multiple molecular events are involved in smokinginduced CVD. However, the dysregulations of reactive oxygen species (ROS) generation and metabolism mainly contribute to the development of diverse CVDs, and NADPH oxidase (NOX) has been established as a source of ROS responsible for the pathogenesis of CVD. NOX activation and resultant ROS production by cigarette smoke (CS) treatment have been widely observed in isolated blood vessels and cultured vascular cells, including endothelial and smooth muscle cells. NOX-mediated oxidative stress has also been demonstrated in animal studies. Of the various NOX isoforms, NOX2 has been reported to mediate ROS generation by CS, but other isoforms were not tested thoroughly. Of the many CS constituents, nicotine, methyl vinyl ketone, and α,β-unsaturated aldehydes, such as, acrolein and crotonaldehyde, appear to be primarily responsible for NOX-mediated cytotoxicity, but additional validation will be needed. Human epidemiological studies have reported relationships between polymorphisms in the CYBA gene encoding p22phox, a catalytic subunit of NOX and susceptibility to smoking-related CVDs. In particular, G allele carriers of A640G and -930A/G polymorphisms were found to be vulnerable to smoking-induced cardiovascular toxicity, but results for C242T studies are conflicting. On the whole, evidence implicates the etiological role of NOX in smoking-induced CVD, but the clinical relevance of NOX activation by smoking and its contribution to CVD require further validation in human studies. A detailed understanding of the role of NOX would be helpful to assess the risk of smoking to human health, to define high-risk subgroups, and to develop strategies to prevent or treat smoking-induced CVD.
Collapse
Affiliation(s)
- Mikyung Kim
- College of Pharmacy, Dongguk University, Goyang, Korea ; Research Institute of Oriental Medicine, College of Korean Medicine, Dongguk University, Gyeongju, Korea
| | - Chang-Ho Han
- Research Institute of Oriental Medicine, College of Korean Medicine, Dongguk University, Gyeongju, Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang, Korea
| |
Collapse
|
12
|
Abstract
Chemical atherogenesis is an emerging field that describes how environmental pollutants and endogenous toxins perturb critical pathways that regulate lipid metabolism and inflammation, thus injuring cells found within the vessel wall. Despite growing awareness of the role of environmental pollutants in the development of cardiovascular disease, the field of chemical atherogenesis can broadly include both exogenous and endogenous poisons and the study of molecular, biochemical, and cellular pathways that become dysregulated during atherosclerosis. This integrated approach is logical because exogenous and endogenous toxins often share the same mechanism of toxicity. Chemical atherogenesis is a truly integrative discipline because it incorporates concepts from several different fields, including biochemistry, chemical biology, pharmacology, and toxicology. This review will provide an overview of this emerging research area, focusing on cellular and animal models of disease.
Collapse
|
13
|
New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin Sci (Lond) 2013; 126:111-21. [PMID: 24059588 DOI: 10.1042/cs20120651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated production of prostanoids from the constitutive (COX-1) or inducible (COX-2) cyclo-oxygenases has been involved in the alterations in vascular function, structure and mechanical properties observed in cardiovascular diseases, including hypertension. In addition, it is well known that production of ROS (reactive oxygen species) plays an important role in the impaired contractile and vasodilator responses, vascular remodelling and altered vascular mechanics of hypertension. Of particular interest is the cross-talk between NADPH oxidase and mitochondria, the main ROS sources in hypertension, which may represent a vicious feed-forward cycle of ROS production. In recent years, there is experimental evidence showing a relationship between ROS and COX-derived products. Thus ROS can activate COX and the COX/PG (prostaglandin) synthase pathways can induce ROS production through effects on different ROS generating enzymes. Additionally, recent evidence suggests that the COX-ROS axis might constitute a vicious circle of self-perpetuating vasoactive products that have a pathophysiological role in altered vascular contractile and dilator responses and hypertension development. The present review discusses the current knowledge on the role of oxidative stress and COX-derived prostanoids in the vascular alterations observed in hypertension, highlighting new findings indicating that these two pathways act in concert to induce vascular dysfunction.
Collapse
|
14
|
Zhou X, Li D, Resnick MB, Wands J, Cao W. NADPH oxidase NOX5-S and nuclear factor κB1 mediate acid-induced microsomal prostaglandin E synthase-1 expression in Barrett's esophageal adenocarcinoma cells. Mol Pharmacol 2013; 83:978-90. [PMID: 23439561 DOI: 10.1124/mol.112.083287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanisms of progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not known. Cycloxygenase-2 (COX-2)-derived prostaglandin E₂ (PGE₂) has been shown to be important in esophageal tumorigenesis. We have shown that COX-2 mediates acid-induced PGE₂ production. The prostaglandin E synthase (PGES) responsible for acid-induced PGE2 production in BE, however, is not known. We found that microsomal PGES1 (mPGES1), mPGES2, and cytosolic PGES (cPGES) were present in FLO EA cells. Pulsed acid treatment significantly increased mPGES1 mRNA and protein levels but had little or no effect on mPGES2 or cPGES mRNA. Knockdown of mPGES1 by mPGES1 small interfering RNA (siRNA) blocked acid-induced increase in PGE2 production and thymidine incorporation. Knockdown of NADPH oxidase, NOX5-S, a variant lacking calcium-binding domains, by NOX5 siRNA significantly inhibited acid-induced increase in mPGES1 expression, thymidine incorporation, and PGE2 production. Overexpression of NOX5-S significantly increased the luciferase activity in FLO cells transfected with a nuclear factor κB (NF-κB) in vivo activation reporter plasmid pNF-κB-Luc. Knockdown of NF-κB1 p50 by p50 siRNA significantly decreased acid-induced increase in mPGES1 expression, thymidine incorporation, and PGE₂ production. Two novel NF-κB binding elements, GGAGTCTCCC and CGGGACACCC, were identified in the mPGES1 gene promoter. We conclude that mPGES1 mediates acid-induced increase in PGE₂ production and cell proliferation. Acid-induced mPGES1 expression depends on activation of NOX5-S and NF-κB1 p50. Microsomal PGES1 may be a potential target to prevent or treat EA.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | |
Collapse
|
15
|
Tanni SE, Correa CR, Angeleli AY, Vale SA, Coelho LS, Godoy I. Increased production of hydrogen peroxide by peripheral blood monocytes associated with smoking exposure intensity in smokers. J Inflamm (Lond) 2012; 9:45. [PMID: 23170847 PMCID: PMC3526447 DOI: 10.1186/1476-9255-9-45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/13/2012] [Indexed: 12/02/2022] Open
Abstract
UNLABELLED BACKGROUND Smoking is known to be associated with oxidative stress; however, it has not been elucidated whether the oxidative response is influenced by the intensity of smoking exposure. OBJECTIVES Evaluate the effect of smoking exposure on the secretion of hydrogen peroxide (H2O2) by the peripheral blood monocytes of smokers. METHODS A total of 25 smokers (50.3±8.8 years, 48% male) underwent the following evaluations: spirometry, pulse oximetry, body composition and total peripheral blood count. Peripheral blood monocyte (PBM) cultures were isolated and maintained, and IL-6 and TNF-α were measured in the plasma and in the supernatants of spontaneous and stimulated cultures. H2O2 was evaluated in the supernatants of the PBM cultures, and a subset of the PBM culture supernatants was stimulated with phorbol myristate acetate (PMA). We also evaluated 38 healthy controls (49.1±8.2 years, 42% male). RESULTS The spontaneous and stimulated monocytes' secretion of H2O2 were statistically higher in the smokers than in the healthy controls (p<0.001). The H2O2 secretions were statistically significant higher after stimulation with PMA in both groups (p<0.001). In the multiple regression analysis, we identified a positive, statistically significant association between pack-years of smoking and the spontaneous secretion of H2O2 by PBM culture, adjusted for potential confounding variables. The association between PBM culture secretion of H2O2 and the production of TNF-α and IL-6 was not significant. CONCLUSION We identified a positive association between higher production of H2O2 in smokers and higher smoking exposure during life. The influence of pack-years smoking may be a key modifiable factor in oxidative stress associated to smoking.
Collapse
Affiliation(s)
- Suzana E Tanni
- Faculdade de Medicina de Botucatu, Disciplina de Pneumologia, Univ Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
- Departamento de Clínica Médica da Faculdade de Medicina de Botucatu, UNESP, Distrito de Rubião Júnior, Botucatu, SP, 18618-970, Brazil
| | - Camila R Correa
- Faculdade de Medicina de Botucatu, Univ Estadual Paulista, UNESP, Departamento de Patologia, Botucatu, São Paulo, Brazil
| | - Aparecida Y Angeleli
- Faculdade de Medicina de Botucatu, Disciplina de Pneumologia, Univ Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Simone A Vale
- Faculdade de Medicina de Botucatu, Disciplina de Pneumologia, Univ Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Liana S Coelho
- Faculdade de Medicina de Botucatu, Disciplina de Pneumologia, Univ Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Irma Godoy
- Faculdade de Medicina de Botucatu, Disciplina de Pneumologia, Univ Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|