1
|
Wei L, Barrie U, Aloisio GM, Khuong FTH, Arang N, Datta A, Kaushansky A, Wetzel DM. Using machine learning to dissect host kinases required for Leishmania internalization and development. Mol Biochem Parasitol 2024; 260:111651. [PMID: 39181505 DOI: 10.1016/j.molbiopara.2024.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
The Leishmania life cycle alternates between promastigotes, found in the sandfly, and amastigotes, found in mammals. When an infected sandfly bites a host, promastigotes are engulfed by phagocytes (i.e., neutrophils, dendritic cells, and macrophages) to establish infection. When these phagocytes die or break down, amastigotes must be re-internalized to survive within the acidic phagolysosome and establish disease. To define host kinase regulators of Leishmania promastigote and amastigote uptake and survival within macrophages, we performed an image-based kinase regression screen using a panel of 38 kinase inhibitors with unique yet overlapping kinase targets. We also targeted inert beads to complement receptor 3 (CR3) or Fcγ receptors (FcR) as controls by coating them with complement/C3bi or IgG respectively. Through this approach, we identified several putative host kinases that regulate receptor-mediated phagocytosis and/or the uptake of L. amazonensis. Findings included kinases previously implicated in Leishmania uptake (such as Src family kinases (SFK), Abl family kinases (ABL1/c-Abl, ABL2/Arg), and spleen tyrosine kinase (SYK)), but we also uncovered many novel kinases. Our methods also predicted host kinases necessary for promastigotes to convert to amastigotes or for amastigotes to survive within macrophages. Overall, our results suggest that the concerted action of multiple interconnected networks of host kinases are needed over the course of Leishmania infection, and that the kinases required for the parasite's life cycle may differ substantially depending on which receptors are bound and the life cycle stage that is internalized. In addition, using our screen, we identified kinases that appear to preferentially regulate the uptake of parasites over beads, indicating that the methods required for Leishmania to be internalized by macrophages may differ from generalized phagocytic mechanisms. Our findings are intended to be used as a hypothesis generation resource for the broader scientific community studying the roles of kinases in host-pathogen interactions.
Collapse
Affiliation(s)
- Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, United States
| | - Umaru Barrie
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX 75390, United States; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Gina M Aloisio
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX 75390, United States; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Francis T H Khuong
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Nadia Arang
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, United States
| | - Arani Datta
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, United States; Department of Pediatrics, University of Washington, Seattle, WA 98105, United States; Department of Global Health, University of Washington, Seattle, WA 98105, United States.
| | - Dawn M Wetzel
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
2
|
Wei L, Barrie U, Aloisio GM, Khuong FTH, Arang N, Datta A, Kaushansky A, Wetzel DM. Using machine learning to dissect host kinases required for Leishmania internalization and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.593986. [PMID: 38798624 PMCID: PMC11118464 DOI: 10.1101/2024.05.16.593986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The Leishmania life cycle alternates between promastigotes, found in the sandfly, and amastigotes, found in mammals. When an infected sandfly bites a host, promastigotes are engulfed by phagocytes (i.e., neutrophils, dendritic cells, and macrophages) to establish infection. When these phagocytes die or break down, amastigotes must be re-internalized to survive within the acidic phagolysosome and establish disease. To define host kinase regulators of Leishmania promastigote and amastigote uptake and survival within macrophages, we performed an image-based kinase regression screen using a panel of 38 kinase inhibitors with unique yet overlapping kinase targets. We also targeted inert beads to complement receptor 3 (CR3) or Fcγ receptors (FcR) as controls by coating them with complement/C3bi or IgG respectively. Through this approach, we identified several putative host kinases that regulate receptor-mediated phagocytosis and/or the uptake of L. amazonensis. Findings included kinases previously implicated in Leishmania uptake (such as Src family kinases (SFK), Abl family kinases (ABL1/c-Abl, ABL2/Arg), and spleen tyrosine kinase (SYK)), but we also uncovered many novel kinases. Our methods also predicted host kinases necessary for promastigotes to convert to amastigotes or for amastigotes to survive within macrophages. Overall, our results suggest that the concerted action of multiple interconnected networks of host kinases are needed over the course of Leishmania infection, and that the kinases required for the parasite's life cycle may differ substantially depending on which receptors are bound and the life cycle stage that is internalized. In addition, using our screen, we identified kinases that appear to preferentially regulate the uptake of parasites over beads, indicating that the methods required for Leishmania to be internalized by macrophages may differ significantly from generalized phagocytic mechanisms. Our findings are intended to be used as a hypothesis generation resource for the broader scientific community studying the roles of kinases in host-pathogen interactions.
Collapse
Affiliation(s)
- Ling Wei
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, United States
| | - Umaru Barrie
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX 75390, United States
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Gina M. Aloisio
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX 75390, United States
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Francis T. H. Khuong
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Nadia Arang
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, United States
| | - Arani Datta
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, United States
- Department of Pediatrics, University of Washington, Seattle, WA 98105, United States
- Department of Global Health, University of Washington, Seattle, WA 98105, United States
| | - Dawn M. Wetzel
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
3
|
Baars I, Jaedtka M, Dewitz LA, Fu Y, Franz T, Mohr J, Gintschel P, Berlin H, Degen A, Freier S, Rygol S, Schraven B, Kahlfuß S, van Zandbergen G, Müller AJ. Leishmania major drives host phagocyte death and cell-to-cell transfer depending on intracellular pathogen proliferation rate. JCI Insight 2023; 8:e169020. [PMID: 37310793 PMCID: PMC10443809 DOI: 10.1172/jci.insight.169020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The virulence of intracellular pathogens relies largely on the ability to survive and replicate within phagocytes but also on release and transfer into new host cells. Such cell-to-cell transfer could represent a target for counteracting microbial pathogenesis. However, our understanding of the underlying cellular and molecular processes remains woefully insufficient. Using intravital 2-photon microscopy of caspase-3 activation in the Leishmania major-infected (L. major-infected) live skin, we showed increased apoptosis in cells infected by the parasite. Also, transfer of the parasite to new host cells occurred directly without a detectable extracellular state and was associated with concomitant uptake of cellular material from the original host cell. These in vivo findings were fully recapitulated in infections of isolated human phagocytes. Furthermore, we observed that high pathogen proliferation increased cell death in infected cells, and long-term residency within an infected host cell was only possible for slowly proliferating parasites. Our results therefore suggest that L. major drives its own dissemination to new phagocytes by inducing host cell death in a proliferation-dependent manner.
Collapse
Affiliation(s)
- Iris Baars
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Moritz Jaedtka
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Leon-Alexander Dewitz
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yan Fu
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tobias Franz
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Juliane Mohr
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patricia Gintschel
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannes Berlin
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Angelina Degen
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sandra Freier
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Rygol
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuß
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas J. Müller
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
4
|
Feng H, Dai W. Case Report: FDG-PET/CT findings in co-infection of visceral leishmaniasis and chronic hepatitis B. Front Cell Infect Microbiol 2023; 13:1175897. [PMID: 37325515 PMCID: PMC10264663 DOI: 10.3389/fcimb.2023.1175897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Visceral leishmaniasis is an opportunistic infection in immunocompromised patients. Herein, we report a case of an adult male patient with a persistent fever of unknown origin, along with chronic hepatitis B. The patient underwent bone marrow aspiration twice, which revealed hemophagocytosis. Abdomen enhanced CT revealed splenomegaly with a persistent strengthening of multiple nodules, and hemangiomas were diagnosed. A subsequent 18-fluoro-deoxyglucose (18F-FDG) PET/CT scan, which was implemented to search for the reason for the fever, showed diffuse splenic disease uptake, and splenic lymphoma was considered as the diagnosis. His clinical symptoms improved after receiving hemophagocytic lymphohistiocytosis (HLH) chemotherapy. However, the patient was readmitted for fever again only 2 months later. Splenectomy surgery is performed to confirm the diagnosis and classification of lymphoma. Visceral leishmaniasis was eventually diagnosed in a spleen specimen and the third bone marrow biopsy. He received treatment with lipid amphotericin B and remained recurrence-free for 1 year. In this paper, we aim to provide detailed information that will help further our understanding of the clinical symptoms and radiographic findings of visceral leishmaniasis.
Collapse
Affiliation(s)
| | - Wenli Dai
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
5
|
Clos J, Grünebast J, Holm M. Promastigote-to-Amastigote Conversion in Leishmania spp.-A Molecular View. Pathogens 2022; 11:1052. [PMID: 36145483 PMCID: PMC9503511 DOI: 10.3390/pathogens11091052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
A key factor in the successful infection of a mammalian host by Leishmania parasites is their conversion from extracellular motile promastigotes into intracellular amastigotes. We discuss the physical and chemical triggers that induce this conversion and the accompanying changes at the molecular level crucial for the survival of these intracellular parasites. Special emphasis is given to the reliance of these trypanosomatids on the post-transcriptional regulation of gene expression but also to the role played by protein kinases, chaperone proteins and proteolytic enzymes. Lastly, we offer a model to integrate the transduction of different stress signals for the induction of stage conversion.
Collapse
|
6
|
Tandon S, Muthuswami R, Madhubala R. Role of two aminoacyl-tRNA synthetase associated proteins (Endothelial Monocyte Activating Polypeptides 1 and 2) of Leishmania donovani in chemotaxis of human monocytes. Acta Trop 2021; 224:106128. [PMID: 34509454 DOI: 10.1016/j.actatropica.2021.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/26/2022]
Abstract
Visceral leishmaniasis is caused by the protozoan parasite Leishmania donovani. It is a fatal form of leishmaniasis prevalent in Indian subcontinent. Since there are no human licensed vaccines available for leishmaniasis, chemotherapeutic drugs remain the only means for combating parasitic infections. We have earlier identified a total of 26 amino-acyl tRNA synthetases (aaRS) along with five stand-alone editing domains and two aaRS-associated proteins in Leishmania donovani. In addition to their canonical role of tRNA aminoacylation, aaRS have been involved in novel functions by acquiring novel domains during evolution. The aaRS-associated proteins have been reported to be analogous to a human cytokine, EMAP II, as they possess a modified version of the heptapeptide motif responsible for the cytokine activity. In this manuscript, we report the characterization of two L. donovani aminoacyl-tRNA synthetase associated proteins which showed a human chemokine like activity. Both the proteins, L. donovani EMAP-1 and EMAP-2, possess a modified form of the heptapeptide motif, which is responsible for cytokine activity in human EMAP-2. LdEMAP-1 and LdEMAP-2 were cloned, expressed, and purified. Both LdEMAP-1 and LdEMAP-2 proteins in the promastigote stage were found to be localized in cytoplasm as confirmed by immunofluorescence. In case of L. donovani infected human THP-1 derived macrophages, secretion of LdEMAP-1 and LdEMAP-2 proteins in the cytosol of the macrophages was observed. The role of LdEMAP-1 and LdEMAP-2 in the aminoacylation of rLdTyrRS was also tested and LdEMAP-2 but not LdEMAP-1 increased the rate of aminoacylation of tyrosyl tRNA synthetase (rLdTyrRS). L. donovani EMAP-1 and EMAP-2 proteins managed to exhibit the capability of attracting human origin cells as determined by chemotaxis assay, and also were able to induce the secretion of cytokines from macrophages like their human counterpart (EMAP II). Our working hypothesis is that both of these proteins might be involved in helping the parasite to establish the infection within the host.
Collapse
|
7
|
Pissarra J, Pagniez J, Petitdidier E, Séveno M, Vigy O, Bras-Gonçalves R, Lemesre JL, Holzmuller P. Proteomic Analysis of the Promastigote Secretome of Seven Leishmania Species. J Proteome Res 2021; 21:30-48. [PMID: 34806897 DOI: 10.1021/acs.jproteome.1c00244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leishmaniasis is one of the most impactful parasitic diseases worldwide, endangering the lives of 1 billion people every year. There are 20 different species of Leishmania able to infect humans, causing cutaneous (CL), visceral (VL), and/or mucocutaneous leishmaniasis (MCL). Leishmania parasites are known to secrete a plethora of proteins to establish infection and modulate the host's immune system. In this study, we analyzed using tandem mass spectrometry the total protein content of the secretomes produced by promastigote forms from seven Leishmania species grown in serum-free in vitro cultures. The core secretome shared by all seven Leishmania species corresponds to up to one-third of total secreted proteins, suggesting conserved mechanisms of adaptation to the vertebrate host. The relative abundance confirms the importance of known virulence factors and some proteins uniquely present in CL- or VL-causing species and may provide further insight regarding their pathogenesis. Bioinformatic analysis showed that most proteins were secreted via unconventional mechanisms, with an important role for vesicle-based secretion for all species. Gene Ontology annotation and enrichment analyses showed a high level of functional conservation among species. This study contributes to the current knowledge on the biological significance of differently secreted proteins and provides new information on the correlation of Leishmania secretome to clinical outcomes and species-specific pathogenesis.
Collapse
Affiliation(s)
- Joana Pissarra
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Julie Pagniez
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Elodie Petitdidier
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Martial Séveno
- BCM, Univ. Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Oana Vigy
- IGF, Univ. Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Rachel Bras-Gonçalves
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Jean-Loup Lemesre
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), 34090 Montpellier, France
| |
Collapse
|
8
|
Crauwels P, Bank E, Walber B, Wenzel UA, Agerberth B, Chanyalew M, Abebe M, König R, Ritter U, Reiling N, van Zandbergen G. Cathelicidin Contributes to the Restriction of Leishmania in Human Host Macrophages. Front Immunol 2019; 10:2697. [PMID: 31824492 PMCID: PMC6883804 DOI: 10.3389/fimmu.2019.02697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022] Open
Abstract
In cutaneous Leishmaniasis the parasitic control in human host macrophages is still poorly understood. We found an increased expression of the human cathelicidin CAMP in skin lesions of Ethiopian patients with cutaneous leishmaniasis. Vitamin D driven, Cathelicidin-type antimicrobial peptides (CAMP) play an important role in the elimination of invading microorganisms. Recombinant cathelicidin was able to induce cell-death characteristics in Leishmania in a dose dependent manner. Using human primary macrophages, we demonstrated pro-inflammatory macrophages (hMDM1) to express a higher level of human cathelicidin, both on gene and protein level, compared to anti-inflammatory macrophages (hMDM2). Activating the CAMP pathway using Vitamin D in hMDM1 resulted in a cathelicidin-mediated-Leishmania restriction. Finally, a reduction of cathelicidin in hMDM1, using a RNA interference (RNAi) approach, increased Leishmania parasite survival. In all, these data show the human cathelicidin to contribute to the innate immune response against Leishmaniasis in a human primary cell model.
Collapse
Affiliation(s)
- Peter Crauwels
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany.,Institute for Microbiology and Biotechnology, University of Ulm, Ulm, Germany.,Institute for Medical Microbiology and Hygiene, University Clinic of Ulm, Ulm, Germany
| | - Elena Bank
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany.,Institute for Medical Microbiology and Hygiene, University Clinic of Ulm, Ulm, Germany
| | - Bianca Walber
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Ulf Alexander Wenzel
- Institute for Medical Microbiology and Hygiene, University Clinic of Ulm, Ulm, Germany.,Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Agerberth
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Menberework Chanyalew
- Research and Innovation Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Markos Abebe
- Research and Innovation Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Renate König
- Research Group "Host-Pathogen Interactions", Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg and University of Regensburg, Regensburg, Germany
| | - Norbert Reiling
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany.,Institute for Medical Microbiology and Hygiene, University Clinic of Ulm, Ulm, Germany.,Institute of Immunology, Johannes Gutenberg University, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
9
|
Conceição-Silva F, Morgado FN. Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End? Front Cell Infect Microbiol 2019; 9:330. [PMID: 31608245 PMCID: PMC6761226 DOI: 10.3389/fcimb.2019.00330] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
For a long time Leishmaniasis had been considered as a neglected tropical disease. Recently, it has become a priority in public health all over the world for different aspects such as geographic spread, number of population living at risk of infection as well as the potential lethality and/or the development of disfiguring lesions in the, respectively, visceral and tegumentary forms of the disease. As a result, several groups have been bending over this issue and many valuable data have been published. Nevertheless, parasite-host interactions are still not fully known and, consequently, we do not entirely understand the infection dynamics and parasite persistence. This knowledge may point targets for modulation or blockage, being very useful in the development of measures to interfere in the course of infection/ disease and to minimize the risks and morbidity. In the present review we will discuss some aspects of the Leishmania spp-mammalian host interaction in the onset of infection and after the clinical cure of the lesions. We will also examine the information already available concerning the parasite strategy to evade immune response mainly at the beginning of the infection, as well as during the parasite persistence. This knowledge can improve the conditions of treatment, follow-up and cure control of patients, minimizing the potential damages this protozoosis can cause to infected individuals.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda N Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Sazhnev V, DeKrey GK. The growth and infectivity of Leishmania major is not altered by in vitro exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Res Notes 2018; 11:642. [PMID: 30180875 PMCID: PMC6122646 DOI: 10.1186/s13104-018-3759-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 12/04/2022] Open
Abstract
Objective The numbers of Leishmania major parasites in foot lesions of C57Bl/6, BALB/c or SCID mice can be significantly reduced by pre-exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). One potential mechanism to explain this enhanced resistance to infection is that TCDD is directly toxic to L. major. This potential mechanism was addressed by exposing L. major promastigotes and amastigotes to TCDD in vitro and examining their subsequent proliferation and infectivity. Results We found no significant change in the rate of in vitro L. major proliferation (promastigotes or amastigotes) after TCDD exposure at concentrations up to 100 nM. Moreover, in vitro TCDD exposure did not significantly alter the ability of L. major to infect mice, trigger lesion formation, or survive in those lesions.
Collapse
Affiliation(s)
- Vera Sazhnev
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, 501 20th Street, Greeley, CO, 80639, USA
| | - Gregory K DeKrey
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, 501 20th Street, Greeley, CO, 80639, USA.
| |
Collapse
|
11
|
Filippis C, Arens K, Noubissi Nzeteu GA, Reichmann G, Waibler Z, Crauwels P, van Zandbergen G. Nivolumab Enhances In Vitro Effector Functions of PD-1 + T-Lymphocytes and Leishmania-Infected Human Myeloid Cells in a Host Cell-Dependent Manner. Front Immunol 2017; 8:1880. [PMID: 29312350 PMCID: PMC5743744 DOI: 10.3389/fimmu.2017.01880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022] Open
Abstract
Functional impairment of T-cells and a concomitant augmented expression of programmed death-1 (PD-1) have been observed in visceral leishmaniasis patients, as well as in experimental models for visceral and cutaneous leishmaniasis. The PD-1/PD-1-ligand (PD-1/PD-L) interaction negatively regulates T-cell effector functions, which are required for parasite control during leishmaniasis. The aim of this study was to elucidate the impact of the PD-1/PD-L axis in a human primary in vitro infection model of Leishmania major (Lm). Blocking the PD-1/PD-L interaction with nivolumab increased T-cell proliferation and release of the proinflammatory cytokines TNFα and IFNγ during the cocultivation of Lm-infected human monocyte-derived macrophages (hMDMs) or dendritic cells (hMDDC) with autologous PD-1+-lymphocytes. As a consequence Lm infection decreased, being the most pronounced in hMDDC, compared to proinflammatory hMDM1 and anti-inflammatory hMDM2. Focusing on hMDDC, we could partially reverse effects mediated by PD-1 blockade by neutralizing TNFα but not by neutralizing IFNγ. Furthermore, PD-1 blockade increased intracellular expression of perforin, granulysin, and granzymes in proliferating CD4+-T-cells, which might be implicated in reduction of Lm-infected cells. In all, our data describe an important role for the PD-1/PD-L axis upon Lm infection using a human primary cell system. These data contribute to a better understanding of the PD-1-induced T-cell impairment during disease and its influence on immune effector mechanisms to combat Lm infection.
Collapse
Affiliation(s)
| | - Katharina Arens
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | - Zoe Waibler
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Peter Crauwels
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany.,Immunology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
12
|
Marango SN, Khayeka-Wandabwa C, Makwali JA, Jumba BN, Choge JK, Adino EO, Anjili CO. Experimental therapeutic assays of Tephrosia vogelii against Leishmania major infection in murine model: in vitro and in vivo. BMC Res Notes 2017; 10:698. [PMID: 29208030 PMCID: PMC5718069 DOI: 10.1186/s13104-017-3022-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Background Conventional targeted leishmanicidal chemotherapy has persistently remained prohibitive for most economically deprived communities due to costs, associated time to accessing health services and duration for successful treatment programme. Alternatives are bound to be incorporated in rational management of leishmaniasis by choice or default due to accessibility and cultural beliefs. Therefore, there is need to rigorously investigate and appraise the activity of medicinal compounds that may have anti-leishmanicidal activity especially in the context of products that are already being utilized by the populations for other ailments but have limited information on their therapeutic value and possible cytoxicity. Hence, the study examined both in vivo and in vitro response of L. major infection to Tephrosia vogelii extracts in BALB/c mice as the mouse model. Methods A comparative study design was applied for the in vivo and in vitro assays of the extract with Pentostam (GlaxoSmithKline, UK) and Amphotericin B [Fungizone™, X-Gen Pharmaceuticals (US)] as standard drugs. Results In BALB/c mice where the chemotherapeutic extract was administered intraperitoneally, there was significantly (p < 0.05) larger reduction in lesion size and optimal control of parasite burden than those treated orally. However, standard drugs showed better activity. Tephrosia vogelii had 50% inhibitory concentration (IC50) and IC90 of 12 and 68.5 μg/ml respectively, while the standard drugs had IC50 and IC90 of 5.5 and 18 μg/ml for Pentostam and 7.8 and 25.5 μg/ml for Amphotericin B in that order. In the amastigote assay, the infection rates decreased with increase in chemotherapeutic concentration. The multiplication indices for L. major amastigotes in macrophages treated with 200 µg/ml of the standard drugs and extract were significantly different (p < 0.05). 200 µg/ml of T. vogelii extract showed a multiplication index of 20.57, 5.65% for Amphotericin B and 9.56% for Pentostam. There was also significant difference (p < 0.05) in levels of Nitric oxide produced in the macrophages. Conclusions The findings demonstrated that T. vogelii extract has anti-leishmanial activity and further assays should be done to ascertain the active compounds responsible for anti-leishmanial activity.
Collapse
Affiliation(s)
- Sylvia Naliaka Marango
- Department of Biological Science (Parasitology), University of Eldoret, P.O Box 1125, Eldoret, 30100, Kenya
| | - Christopher Khayeka-Wandabwa
- School of Pharmaceutical Science and Technology (SPST), Health Sciences Platform, Tianjin University, Tianjin, 300072, China. .,African Population and Health Research Center (APHRC), P.O. Box 10787, Nairobi, 00100, Kenya. .,Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840, Nairobi, 00200, Kenya.
| | - Judith Alice Makwali
- Department of Biological Science (Parasitology), University of Eldoret, P.O Box 1125, Eldoret, 30100, Kenya
| | - Bernard Ngoitsi Jumba
- Department of Biological Science (Parasitology), University of Eldoret, P.O Box 1125, Eldoret, 30100, Kenya.,Applied Science Department, Sigalagala National Polytechnic, Kakamega, Kenya.,Department of Medical Laboratory Sciences, MasindeMuliro University of Science and Technology, Kakamega, Kenya
| | - Joseph K Choge
- University of Kabianga, P.O. Box 2030, Kericho, 20200, Kenya
| | | | - Christopher O Anjili
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840, Nairobi, 00200, Kenya
| |
Collapse
|
13
|
Schille S, Crauwels P, Bohn R, Bagola K, Walther P, van Zandbergen G. LC3-associated phagocytosis in microbial pathogenesis. Int J Med Microbiol 2017; 308:228-236. [PMID: 29169848 DOI: 10.1016/j.ijmm.2017.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Phagocytosis is essential for uptake and elimination of pathogenic microorganisms. Autophagy is a highly conserved mechanism for incorporation of cellular constituents to replenish nutrients by degradation. Recently, parts of the autophagy machinery - above all microtubule-associated protein 1 light chain 3 (LC3) - were found to be specifically recruited to phagosomal membranes resulting in phagosome-lysosome fusion and efficient degradation of internalized cargo in a process termed LC3-associated phagocytosis (LAP). Many pathogenic bacterial, fungal and parasitic microorganisms reside within LAP-targeted single-membrane phagosomes or vacuoles after infection of host cells. In this minireview we describe the state of knowledge on the interaction of pathogens with LAP or LAP-like pathways and report on various pathogens that have evolved strategies to circumvent degradation in LAP compartments.
Collapse
Affiliation(s)
- Stefan Schille
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Peter Crauwels
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Rebecca Bohn
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Katrin Bagola
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Paul Walther
- Central Facility for EM, Ulm University, Ulm, Germany
| | - Ger van Zandbergen
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany; Institute for Immunology, University Medicine Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
14
|
Lima-Junior DS, Mineo TWP, Calich VLG, Zamboni DS. Dectin-1 Activation during Leishmania amazonensis Phagocytosis Prompts Syk-Dependent Reactive Oxygen Species Production To Trigger Inflammasome Assembly and Restriction of Parasite Replication. THE JOURNAL OF IMMUNOLOGY 2017; 199:2055-2068. [PMID: 28784846 DOI: 10.4049/jimmunol.1700258] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/08/2017] [Indexed: 01/01/2023]
Abstract
Protozoan parasites of the genus Leishmania are the causative agents of Leishmaniasis, a disease that can be lethal and affects 12 million people worldwide. Leishmania replicates intracellularly in macrophages, a process that is essential for disease progression. Although the production of reactive oxygen species (ROS) accounts for restriction of parasite replication, Leishmania is known to induce ROS upon macrophage infection. We have recently demonstrated NLRP3 inflammasome activation in infected macrophages, a process that is important for the outcome of infection. However, the molecular mechanisms responsible for inflammasome activation are unknown. In this article, we demonstrate that ROS induced via NADPH oxidase during the early stages of L. amazonensis infection is critical for inflammasome activation in macrophages. We identified that ROS production during L. amazonensis infection occurs upon engagement of Dectin-1, a C-type lectin receptor that signals via spleen tyrosine kinase (Syk) to induce ROS. Accordingly, inflammasome activation in response to L. amazonensis is impaired by inhibitors of NADPH oxidase, Syk, focal adhesion kinase, and proline-rich tyrosine kinase 2, and in the absence of Dectin-1. Experiments performed with Clec7a-/- mice support the critical role of Dectin-1 for inflammasome activation, restriction of parasite replication in macrophages, and mouse resistance to L. amazonensis infection in vivo. Thus, we reported that activation of the Dectin-1/Syk/ROS/NLRP3 pathway during L. amazonensis phagocytosis is important for macrophage restriction of the parasite replication and effectively accounts for host resistance to Leishmania infection.
Collapse
Affiliation(s)
- Djalma S Lima-Junior
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Tiago W P Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil; and
| | - Vera L G Calich
- Department of Immunology, Institute of Biomedical Sciences, São Paulo University, São Paulo 05508-900, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| |
Collapse
|
15
|
Geraldo MM, Costa CR, Barbosa FMC, Vivanco BC, Gonzaga WFKM, Novaes E Brito RR, Popi AF, Lopes JD, Xander P. In vivo and in vitro phagocytosis of Leishmania (Leishmania) amazonensis promastigotes by B-1 cells. Parasite Immunol 2017; 38:365-76. [PMID: 27084328 DOI: 10.1111/pim.12324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/06/2016] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is caused by Leishmania parasites that infect several cell types. The promastigote stage of Leishmania is internalized by phagocytic cells and transformed into the obligate intracellular amastigote form. B-1 cells are a subpopulation of B cells that are able to differentiate in vitro and in vivo into mononuclear phagocyte-like cells with phagocytic properties. B-1 cells use several receptors for phagocytosis, such as the mannose receptor and third complement receptor. Leishmania binds to the same receptors on macrophages. In this study, we demonstrated that phagocytes derived from B-1 cells (B-1 CDP) were able to internalize promastigotes of L. (L.) amazonensis in vitro. The internalized promastigotes differentiated into amastigotes. Our results showed that the phagocytic index was higher in B-1 CDP compared to peritoneal macrophages and bone marrow-derived macrophages. The in vivo phagocytic ability of B-1 cells was also demonstrated. Parasites were detected inside purified B-1 cells after intraperitoneal infection with L. (L.) amazonensis promastigotes. Intraperitoneal stimulation with the parasites led to an increase in both IL-10 and TNF-α. These results highlight the importance of studying B-1 CDP cells as phagocytic cells that can participate and contribute to immunity to parasites.
Collapse
Affiliation(s)
- M M Geraldo
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil
| | - C R Costa
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil
| | - F M C Barbosa
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil
| | - B C Vivanco
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - W F K M Gonzaga
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - A F Popi
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - J D Lopes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil
| | - P Xander
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil
| |
Collapse
|
16
|
Tomiotto-Pellissier F, Cataneo AHD, Orsini TM, Thomazelli APFDS, Dalevedo GA, de Oliveira AG, Panagio LA, Costa IN, Conchon-Costa I, Pavanelli WR, Almeida RS. Galleria mellonella hemocytes: A novel phagocytic assay for Leishmania (Viannia) braziliensis. J Microbiol Methods 2016; 131:45-50. [DOI: 10.1016/j.mimet.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/23/2016] [Accepted: 10/01/2016] [Indexed: 11/28/2022]
|
17
|
Anand S, Madhubala R. Twin Attributes of Tyrosyl-tRNA Synthetase of Leishmania donovani: A HOUSEKEEPING PROTEIN TRANSLATION ENZYME AND A MIMIC OF HOST CHEMOKINE. J Biol Chem 2016; 291:17754-71. [PMID: 27382051 DOI: 10.1074/jbc.m116.727107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Indexed: 12/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes essential for protein synthesis. Apart from their parent aminoacylation activity, several aaRSs perform non-canonical functions in diverse biological processes. The present study explores the twin attributes of Leishmania tyrosyl-tRNA synthetase (LdTyrRS) namely, aminoacylation, and as a mimic of host CXC chemokine. Leishmania donovani is a protozoan parasite. Its genome encodes a single copy of tyrosyl-tRNA synthetase. We first tested the canonical aminoacylation role of LdTyrRS. The recombinant protein was expressed, and its kinetic parameters were determined by aminoacylation assay. To study the physiological role of LdTyrRS in Leishmania, gene deletion mutations were attempted via targeted gene replacement. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. LdTyrRS appears to be an essential gene as the chromosomal null mutants did not survive. Our data also highlights the non-canonical function of L. donovani tyrosyl-tRNA synthetase. We show that LdTyrRS protein is present in the cytoplasm and exits from the parasite cytoplasm into the extracellular medium. The released LdTyrRS functions as a neutrophil chemoattractant. We further show that LdTyrRS specifically binds to host macrophages with its ELR (Glu-Leu-Arg) peptide motif. The ELR-CXCR2 receptor interaction mediates this binding. This interaction triggers enhanced secretion of the proinflammatory cytokines TNF-α and IL-6 by host macrophages. Our data indicates a possible immunomodulating role of LdTyrRS in Leishmania infection. This study provides a platform to explore LdTyrRS as a potential target for drug development.
Collapse
Affiliation(s)
- Sneha Anand
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rentala Madhubala
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
18
|
Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, Holzmuller P. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Front Immunol 2016; 7:212. [PMID: 27303406 PMCID: PMC4885876 DOI: 10.3389/fimmu.2016.00212] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.
Collapse
Affiliation(s)
- Anne Geiger
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Denis Sereno
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | - Joana Pissarra
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Philippe Vincendeau
- UMR 177, IRD-CIRAD Université de Bordeaux Laboratoire de Parasitologie, Bordeaux, France
| | - Philippe Holzmuller
- UMRCMAEE CIRAD-INRA TA-A15/G “Contrôle des maladies animales exotiques et émergentes”, Montpellier, France
| |
Collapse
|
19
|
Crauwels P, Bohn R, Thomas M, Gottwalt S, Jäckel F, Krämer S, Bank E, Tenzer S, Walther P, Bastian M, van Zandbergen G. Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy 2016; 11:285-97. [PMID: 25801301 PMCID: PMC4502818 DOI: 10.1080/15548627.2014.998904] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed—in contrast to viable parasites—that apoptotic-like parasites enter an LC3+, autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4+ T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells´ autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.
Collapse
Key Words
- ANXA5, annexin V
- CFSE, carboxyfluorescein succinimidyl ester
- CM, complete medium
- IF, immunofluorescence
- IL, interleukin
- LAP
- LAP, LC3-associated phagocytosis
- Lm, Leishmania
- MACS, magnetic-associated cell sorting
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MFI, mean fluorescence intensity
- MHC, major histocompatibility complex
- MOI, multiplicity of infection
- PBMCs, peripheral blood mononuclear cells
- PS, phosphatidylserine
- T-cell proliferation
- TGFB, transforming growth factor
- anti-inflammatory
- apoptotic-like Leishmania
- autophagy
- hMDM, human monocyte derived macrophage
- human primary macrophages
- immune evasion
- log.ph, logarithmic phase
- stat.ph, stationary phase
- β; TT, tetanus toxoid
Collapse
Affiliation(s)
- Peter Crauwels
- a Division of Immunology ; Paul-Ehrlich-Institute ; Langen , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zeng J, Chen QW, Yu ZY, Zhang JR, Chen DL, Song C, Luo J, Zhang C, Wang SL, Chen JP. Regulation of intrinsic apoptosis in cycloheximide-treated macrophages by the Sichuan human strain of Chinese Leishmania isolates. Acta Trop 2016; 153:101-10. [PMID: 26482137 DOI: 10.1016/j.actatropica.2015.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Leishmania spp. are able to survive and proliferate inside mammals' mononuclear phagocytes, causing Leishmaniasis. Previous studies have noted that the regulation of apoptosis in host cells by these parasites may contribute to their ability to evade the immune system. However, current results remain unclear about whether the parasites can promote or delay the apoptotic process in host cells, because the regulatory effect of Leishmania was assumed to be strain-, species- and even infection time-dependent. The aim of this study was to investigate whether the Sichuan isolates of Chinese Leishmania (SC10H2) can alter the process of intrinsic apoptosis induced by cycloheximide in different types of macrophage cell lines and to determine in which steps of the signaling pathway the parasites were involved. Human THP-1 and mouse RAW264.7 macrophages were infected by SC10H2 promastigotes followed by cycloheximide stimulation to assess the alteration of intrinsic apoptosis in these cells. The results indicated that SC10H2 infection of human THP-1 macrophages could promote the initiation of intrinsic apoptosis, but completely opposite results were found in mouse RAW264.7 macrophages. Nevertheless, the expression of Bcl-2 and the DNA fragmentation rates were not altered by SC10H2 infection in the cell lines used in the experiments. This study suggests that SC10H2 promastigote infection is able to promote and delay the transduction of early apoptotic signals induced by cycloheximide in THP-1 and RAW264.7 macrophages, revealing that the regulation of intrinsic apoptosis in host cells by SC10H2 in vitro occurs in a host cell-dependent manner. The data from this study might play a significant role in further understanding the relationship between Leishmania and different host cells.
Collapse
|
21
|
Kaye PM, Beattie L. Lessons from other diseases: granulomatous inflammation in leishmaniasis. Semin Immunopathol 2015; 38:249-60. [PMID: 26678994 PMCID: PMC4779128 DOI: 10.1007/s00281-015-0548-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022]
Abstract
The Leishmania granuloma shares some, though not all, properties with that formed following mycobacterial infection. As a simplified, noncaseating granuloma composed of relatively few and largely mononuclear cell populations, it provides a tractable model system to investigate intra-granuloma cellular dynamics, immune regulation, and antimicrobial resistance. Here, the occurrence of granulomatous pathology across the spectrum of leishmaniasis, in humans and animal reservoir hosts, is first described. However, this review focuses on the process of hepatic granuloma formation as studied in rodent models of visceral leishmaniasis, starting from the initial infection of Kupffer cells to the involution of the granuloma after pathogen clearance. It describes how the application of intravital imaging and the use of computational modeling have changed some of our thoughts on granuloma function, and illustrates how host-directed therapies have been used to manipulate granuloma form and function for therapeutic benefit. Where appropriate, lessons that may be equally applicable across the spectrum of granulomatous diseases are highlighted.
Collapse
Affiliation(s)
- Paul M Kaye
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK.
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland, Australia, 4006
| |
Collapse
|
22
|
Martins VT, Chávez-Fumagalli MA, Lage DP, Duarte MC, Garde E, Costa LE, da Silva VG, Oliveira JS, de Magalhães-Soares DF, Teixeira SMR, Fernandes AP, Soto M, Tavares CAP, Coelho EAF. Antigenicity, Immunogenicity and Protective Efficacy of Three Proteins Expressed in the Promastigote and Amastigote Stages of Leishmania infantum against Visceral Leishmaniasis. PLoS One 2015; 10:e0137683. [PMID: 26367128 PMCID: PMC4569552 DOI: 10.1371/journal.pone.0137683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
In the present study, two Leishmania infantum hypothetical proteins present in the amastigote stage, LiHyp1 and LiHyp6, were combined with a promastigote protein, IgE-dependent histamine-releasing factor (HRF); to compose a polyproteins vaccine to be evaluated against L. infantum infection. Also, the antigenicity of the three proteins was analyzed, and their use for the serodiagnosis of canine visceral leishmaniasis (CVL) was evaluated. The LiHyp1, LiHyp6, and HRF DNA coding sequences were cloned in prokaryotic expression vectors and the recombinant proteins were purified. When employed in ELISA assays, all proteins were recognized by sera from visceral leishmaniasis (VL) dogs, and presented no cross-reactivity with either sera from dogs vaccinated with a Brazilian commercial vaccine, or sera of Trypanosoma cruzi-infected or Ehrlichia canis-infected animals. In addition, the antigens were not recognized by antibodies from non-infected animals living in endemic or non-endemic areas for leishmaniasis. The immunogenicity and protective efficacy of the three proteins administered in the presence of saponin, individually or in combination (composing a polyproteins vaccine), were evaluated in a VL murine model: BALB/c mice infected with L. infantum. Spleen cells from mice inoculated with the individual proteins or with the polyproteins vaccine plus saponin showed a protein-specific production of IFN-γ, IL-12, and GM-CSF after an in vitro stimulation, which was maintained after infection. These animals presented significant reductions in the parasite burden in different evaluated organs, when compared to mice inoculated with saline or saponin. The decrease in parasite burden was associated with an IL-12-dependent production of IFN-γ against parasite total extracts (produced mainly by CD4+ T cells), correlated to the induction of parasite proteins-driven NO production. Mice inoculated with the recombinant protein-based vaccines showed also high levels of parasite-specific IgG2a antibodies. The polyproteins vaccine administration induced a more pronounced Th1 response before and after challenge infection than individual vaccines, which was correlated to a higher control of parasite dissemination to internal organs.
Collapse
Affiliation(s)
- Vivian Tamietti Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Costa Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Esther Garde
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourena Emanuele Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Viviane Gomes da Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil Silvano Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Alberto Pereira Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
23
|
Martins VT, Duarte MC, Chávez-Fumagalli MA, Menezes-Souza D, Coelho CSP, de Magalhães-Soares DF, Fernandes AP, Soto M, Tavares CAP, Coelho EAF. A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis. Parasit Vectors 2015; 8:363. [PMID: 26160291 PMCID: PMC4501199 DOI: 10.1186/s13071-015-0964-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LiHyV is an antigenic hypothetical protein present in both promastigote and amastigote stages of Leishmania infantum, which was recently identified by an immunoproteomic approach. A recombinant version of this protein (rLiHyV) was evaluated as a diagnostic marker for canine VL (CVL). In addition, the prophylactic efficacy of the rLiHyV protein, and two of its CD8(+) T cell epitopes, has been analyzed in a murine model of visceral leishmaniasis (VL). METHODS Initially, the rLiHyV protein was evaluated by an ELISA technique for the serodiagnosis of CVL. Secondly, vaccines composed of the recombinant protein and both chemically synthesized peptides, combined with saponin as an adjuvant; were administered subcutaneously into BALB/c mice. The cellular and humoral responses generated by vaccination were evaluated. In addition, the parasite burden and immune response were studied 10 weeks after L. infantum infection. RESULTS The rLiHyV protein was recognized by antibodies of VL dogs. No cross-reactivity was obtained with sera from dogs vaccinated with a Brazilian commercial vaccine, with sera from animals infected with Trypanosoma cruzi, Babesia canis and Ehrlichia canis, or those from non-infected animals living in an endemic area for leishmaniasis. After challenge with L. infantum, spleen cells of BALB/c mice vaccinated with rLiHyV/saponin stimulated with parasite antigens showed a higher production of IFN-γ, IL-12 and GM-CSF, than the same cells obtained from mice vaccinated with the individual peptides, or mice from control (inoculated with saline or saponin) groups. This Th1-type cellular response observed in rLiHyV/saponin vaccinated mice was accompanied by the induction of parasite-specific IgG2a isotype antibodies. Animals immunized with rLiHyV/saponin showed significant reductions in the parasite burden in the liver, spleen, bone marrow and in the lymph nodes draining the paws relative to control mice. CONCLUSIONS The present study showed for the first time that the L. infantum LiHyV protein could be considered as a vaccine candidate against L. infantum infection, as well as a diagnostic marker for CVL.
Collapse
Affiliation(s)
- Vivian T Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | - Danielle F de Magalhães-Soares
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Carlos A P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Laboratório de Biotecnologia Aplicada ao Estudo das Leishmanioses, Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Leishmanicidal activities of novel methylseleno-imidocarbamates. Antimicrob Agents Chemother 2015; 59:5705-13. [PMID: 26149985 DOI: 10.1128/aac.00997-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022] Open
Abstract
The generation of new antileishmanial drugs has become a priority. Selenium and its derivatives stand out as having promising leishmanicidal activity. In fact, some parasites express selenoproteins and metabolize selenium. Recently, selenium derivatives have shown the potential to reduce parasitemia, clinical manifestations, and mortality in parasite-infected mice. In this paper, after selecting four candidates according to drug similarity parameters, we observed that two of them, called compounds 2b [methyl-N,N'-di(thien-2-ylcarbonyl)-imidoselenocarbamate] and 4b [methyl-N,N'-di(5-nitrothien-3-ylcarbonyl)-imidoselenocarbamate], exhibit low 50% inhibitory concentrations (IC50s) (<3 μM) and good selectivity indexes (SIs) (>5) in Leishmania major promastigotes and lack toxicity on macrophages. In addition, in analysis of their therapeutic potential against L. major in vitro infection, both compounds display a dramatic reduction of amastigote burden (∼80%) with sublethal concentrations. Furthermore, in macrophages, these selenocompounds induce nitric oxide production, which has been described to be critical for defense against intracellular pathogens. Compounds 2b and 4b were demonstrated to cause cell cycle arrest in G1. Interestingly, evaluation of expression of genes related to proliferation (PCNA), treatment resistance (ABC transporter and alpha-tubulin), and virulence (quinonoid dihydropteridine reductase [QDPR]) showed several alterations in gene expression profiling. All these results prompt us to propose both compounds as candidates to treat leishmanial infections.
Collapse
|
25
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
de Morais CGV, Castro Lima AK, Terra R, dos Santos RF, Da-Silva SAG, Dutra PML. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:324915. [PMID: 26090399 PMCID: PMC4450238 DOI: 10.1155/2015/324915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023]
Abstract
The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs.
Collapse
Affiliation(s)
- Carlos Gustavo Vieira de Morais
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós Graduação em Microbiologia/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 3° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Ana Karina Castro Lima
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Rodrigo Terra
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós Graduação em Fisiopatologia Clínica e Experimental/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Rosiane Freire dos Santos
- Programa de Pós Graduação em Microbiologia/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 3° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Silvia Amaral Gonçalves Da-Silva
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Patrícia Maria Lourenço Dutra
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Arango Duque G, Descoteaux A. Leishmania survival in the macrophage: where the ends justify the means. Curr Opin Microbiol 2015; 26:32-40. [PMID: 25988701 DOI: 10.1016/j.mib.2015.04.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/19/2022]
Abstract
Macrophages are cells of the immune system that mediate processes ranging from phagocytosis to tissue homeostasis. Leishmania has evolved ingenious ways to adapt to life in the macrophage. The GP63 metalloprotease, which disables key microbicidal pathways, has recently been found to disrupt processes ranging from antigen cross-presentation to nuclear pore dynamics. New studies have also revealed that Leishmania sabotages key metabolic and signaling pathways to fuel parasite growth. Leishmania has also been found to induce DNA methylation to turn off genes controlling microbicidal pathways. These novel findings highlight the multipronged attack employed by Leishmania to subvert macrophage function.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- INRS-Institut Armand-Frappier, Laval, QC H7 V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, QC H7 V 1B7, Canada.
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, Laval, QC H7 V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, QC H7 V 1B7, Canada.
| |
Collapse
|
28
|
Jebali A, Anvari-Tafti MH. Hybridization of different antisense oligonucleotides on the surface of gold nanoparticles to silence zinc metalloproteinase gene after uptake by Leishmania major. Colloids Surf B Biointerfaces 2015; 129:107-13. [PMID: 25835145 DOI: 10.1016/j.colsurfb.2015.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 01/22/2023]
Abstract
The use of antisense oligonucleotides is a novel strategy to treat infectious diseases. In this approach, vital mRNAs are targeted by antisense oligonucleotides. The aim of this study was to evaluate the effects of gold nanoparticles hybridized with different antisense oligonucleotides on Leishmania (L) major. In this project, gold nanoparticles were first synthesized, and then conjugated with primary oligonucleotides, 3'-AAA-5'. Next, conjugated gold nanoparticles (NP1) were separately hybridized with three types of antisense oligonucleotide from coding reign of GP63 gene (NP2), non-coding reign of GP63 gene (NP3), and both coding and non-coding reigns of GP63 (NP4). Then, 1mL of L. major suspension was separately added to 1mL of different hybridized gold nanoparticles at serial concentrations (1-200μg/mL), and incubated for 24, 48, and 72h at 37°C. Next, the uptake of each nanoparticle was separately measured by atomic absorption spectroscopy. After incubation, the cell viability was separately evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Also, the expression of GP63 gene was read out by quantitative-real-time PCR. This study showed that NP2 and NP3 had higher (5-fold) uptake than NP1 and NP4. Moreover, NP2 and NP3 led to less cell viability and gene expression, compared with NP1 and NP4. It could be concluded that both sequence and size of antisense oligonucleotide were important for transfection of L. major. Importantly, these antisense oligonucleotides can be obtained from both coding and non-coding reign of GP63 gene. Moreover, hybridized gold nanoparticles not only could silence GP63 gene, but also could kill L. major.
Collapse
Affiliation(s)
- Ali Jebali
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
29
|
Insulin-like growth factor-I induces arginase activity in Leishmania amazonensis amastigote-infected macrophages through a cytokine-independent mechanism. Mediators Inflamm 2014; 2014:475919. [PMID: 25294956 PMCID: PMC4175785 DOI: 10.1155/2014/475919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 11/18/2022] Open
Abstract
Leishmania (Leishmania) amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF)-I on interactions between L. (L.) amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxide production but increased arginase expression and activity, which lead to increased parasitism. However, stimulation of amastigote-infected macrophages with IGF-I did not result in altered cytokine levels compared to unstimulated controls. Because IGF-I is present in tissue fluids and also within macrophages, we examined the possible effect of this factor on phosphatidylserine (PS) exposure on amastigotes, seen previously in tissue-derived amastigotes leading to increased parasitism. Stimulation with IGF-I induced PS exposure on amastigotes but not on promastigotes. Using a PS-liposome instead of amastigotes, we observed that the PS-liposome but not the control phosphatidylcholine-liposome led to increased arginase activity in macrophages, and this process was not blocked by anti-TGF-β antibodies. Our results suggest that in L. (L.) amazonensis amastigote-infected macrophages, IGF-I induces arginase activity directly in amastigotes and in macrophages through the induction of PS exposure on amastigotes in the latter, which could lead to the alternative activation of macrophages through cytokine-independent mechanisms.
Collapse
|
30
|
Arango Duque G, Fukuda M, Turco SJ, Stäger S, Descoteaux A. Leishmania promastigotes induce cytokine secretion in macrophages through the degradation of synaptotagmin XI. THE JOURNAL OF IMMUNOLOGY 2014; 193:2363-72. [PMID: 25063865 DOI: 10.4049/jimmunol.1303043] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptotagmins (Syts) are type-I membrane proteins that regulate vesicle docking and fusion in processes such as exocytosis and phagocytosis. We recently discovered that Syt XI is a recycling endosome- and lysosome-associated protein that negatively regulates the secretion of TNF and IL-6. In this study, we show that Syt XI is directly degraded by the zinc metalloprotease GP63 and excluded from Leishmania parasitophorous vacuoles by the promastigotes surface glycolipid lipophosphoglycan. Infected macrophages were found to release TNF and IL-6 in a GP63-dependent manner. To demonstrate that cytokine release was dependent on GP63-mediated degradation of Syt XI, small interfering RNA-mediated knockdown of Syt XI before infection revealed that the effects of small interfering RNA knockdown and GP63 degradation were not cumulative. In mice, i.p. injection of GP63-expressing parasites led to an increase in TNF and IL-6 secretion and to an augmented influx of neutrophils and inflammatory monocytes to the inoculation site. Both of these cell types have been shown to be infection targets and aid in the establishment of infection. In sum, our data revealed that GP63 induces proinflammatory cytokine release and increases infiltration of inflammatory phagocytes. This study provides new insight on how Leishmania exploits the immune response to establish infection.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan; and
| | - Salvatore J Turco
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508
| | - Simona Stäger
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada;
| |
Collapse
|
31
|
Abstract
SUMMARY Hsp90 (a.k.a. Hsp83) plays a significant role in the life cycle control of the protozoan parasite Leishmania donovani. Rather than protecting Leishmania spp. against adverse and stressful environs, Hsp90 is required for the maintenance of the motile, highly proliferative insect stage, the promastigote. However, Hsp90 is also essential for survival and proliferation of the intracellular mammalian stage, the amastigote. Moreover, recent evidence shows Hsp90 and other components of large multi-chaperone complexes as substrates of stage-specific protein phosphorylation pathways, and thus as likely effectors of the signal transduction pathways in Leishmania spp. Future efforts should be directed towards the identification of the protein kinases and the critical phosphorylation sites as targets for novel therapeutic approaches.
Collapse
|
32
|
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 2014; 5:491. [PMID: 25339958 PMCID: PMC4188125 DOI: 10.3389/fimmu.2014.00491] [Citation(s) in RCA: 1411] [Impact Index Per Article: 141.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| |
Collapse
|
33
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
34
|
Leishmania amazonensis amastigotes trigger neutrophil activation but resist neutrophil microbicidal mechanisms. Infect Immun 2013; 81:3966-74. [PMID: 23918780 DOI: 10.1128/iai.00770-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils are the first cells to infiltrate to the site of Leishmania promastigote infection, and these cells help to reduce parasite burden shortly after infection is initiated. Several clinical reports indicate that neutrophil recruitment is sustained over the course of leishmaniasis, and amastigote-laden neutrophils have been isolated from chronically infected patients and experimentally infected animals. The goal of this study was to compare how thioglycolate-elicited murine neutrophils respond to L. amazonensis metacyclic promastigotes and amastigotes derived from axenic cultures or from the lesions of infected mice. Neutrophils efficiently internalized both amastigote and promastigote forms of the parasite, and phagocytosis was enhanced in lipopolysaccharide (LPS)-activated neutrophils or when parasites were opsonized in serum from infected mice. Parasite uptake resulted in neutrophil activation, oxidative burst, and accelerated neutrophil death. While promastigotes triggered the release of tumor necrosis factor alpha (TNF-α), uptake of amastigotes preferentially resulted in the secretion of interleukin-10 (IL-10) from neutrophils. Finally, the majority of promastigotes were killed by neutrophils, while axenic culture- and lesion-derived amastigotes were highly resistant to neutrophil microbicidal mechanisms. This study indicates that neutrophils exhibit distinct responses to promastigote and amastigote infection. Our findings have important implications for determining the impact of sustained neutrophil recruitment and amastigote-neutrophil interactions during the late phase of cutaneous leishmaniasis.
Collapse
|
35
|
Neu C, Sedlag A, Bayer C, Förster S, Crauwels P, Niess JH, van Zandbergen G, Frascaroli G, Riedel CU. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages. PLoS One 2013; 8:e66898. [PMID: 23776701 PMCID: PMC3679097 DOI: 10.1371/journal.pone.0066898] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/28/2023] Open
Abstract
Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm) infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF) into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ) stained positive for CD206 and M-CSF-derived macrophages (M-Mφ) for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most suitable model to study Lm infection of macrophages.
Collapse
Affiliation(s)
- Caroline Neu
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Anne Sedlag
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Carina Bayer
- Institute of Virology, University Medical Center Ulm, Ulm, Germany
| | - Sabine Förster
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Peter Crauwels
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Jan-Hendrik Niess
- Department of Visceral Medicine and Surgery, Inselspital, Bern, Switzerland
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Giada Frascaroli
- Institute of Virology, University Medical Center Ulm, Ulm, Germany
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
36
|
Martins VT, Chávez-Fumagalli MA, Costa LE, Martins AMCC, Lage PS, Lage DP, Duarte MC, Valadares DG, Magalhães RDM, Ribeiro TG, Nagem RAP, DaRocha WD, Régis WCB, Soto M, Coelho EAF, Fernandes AP, Tavares CAP. Antigenicity and protective efficacy of a Leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis. PLoS Negl Trop Dis 2013; 7:e2148. [PMID: 23573301 PMCID: PMC3610918 DOI: 10.1371/journal.pntd.0002148] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/20/2013] [Indexed: 01/20/2023] Open
Abstract
Background The present study aimed to evaluate a hypothetical Leishmania amastigote-specific protein (LiHyp1), previously identified by an immunoproteomic approach performed in Leishmania infantum, which showed homology to the super-oxygenase gene family, attempting to select a new candidate antigen for specific serodiagnosis, as well as to compose a vaccine against VL. Methodology/Principal Findings The LiHyp1 DNA sequence was cloned; the recombinant protein (rLiHyp1) was purified and evaluated for its antigenicity and immunogenicity. The rLiHyp1 protein was recognized by antibodies from sera of asymptomatic and symptomatic animals with canine visceral leishmaniasis (CVL), but presented no cross-reactivity with sera of dogs vaccinated with Leish-Tec, a Brazilian commercial vaccine; with Chagas' disease or healthy animals. In addition, the immunogenicity and protective efficacy of rLiHyp1 plus saponin was evaluated in BALB/c mice challenged subcutaneously with virulent L. infantum promastigotes. rLiHyp1 plus saponin vaccinated mice showed a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with the recombinant protein. Immunized and infected mice, as compared to the control groups (saline and saponin), showed significant reductions in the number of parasites found in the liver, spleen, bone marrow, and in the paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, produced mainly by CD4 T cells. In these mice, a decrease in the parasite-mediated IL-4 and IL-10 response could also be observed. Conclusions/Significance The present study showed that this Leishmania oxygenase amastigote-specific protein can be used for a more sensitive and specific serodiagnosis of asymptomatic and symptomatic CVL and, when combined with a Th1-type adjuvant, can also be employ as a candidate antigen to develop vaccines against VL. Life-long immunity to leishmaniasis in recovered patients has inspired the development of vaccines against disease. The present study aimed to evaluate a non-described hypothetical Leishmania amastigote-specific protein, identified by an immunoproteomic approach in L. infantum, attempting to select a new candidate antigen for specific serodiagnosis and a vaccine against visceral leishmaniasis (VL). The recombinant protein (rLiHyp1) was recognized by antibodies from sera of asymptomatic and symptomatic canine visceral leishmaniasis (CVL), but presented no cross-reactivity with sera of vaccinated dogs, those with Chagas' disease or healthy animals. In addition, the rLiHyp1 plus saponin was able to induce a Th1 response, which was based on the production of high levels of IFN-γ, IL-12, and GM-CSF after in vitro stimulation in BALB/c mice. The protective efficacy of rLiHyp1 plus saponin was evaluated in mice challenged with L. infantum promastigotes. Challenged and vaccinated mice showed significant reductions in the number of parasites in all evaluated organs, and the protection was associated with a Th1-type response. Therefore, the present study reveals a new potential candidate for the improvement of serodiagnosis of CVL, as well as an effective vaccine candidate against VL.
Collapse
MESH Headings
- Animal Structures/parasitology
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/isolation & purification
- CD4-Positive T-Lymphocytes/immunology
- Cloning, Molecular
- Cross Reactions
- Disease Models, Animal
- Dog Diseases/immunology
- Dog Diseases/parasitology
- Dogs
- Immunoassay/methods
- Interferon-gamma/metabolism
- Interleukin-12/metabolism
- Leishmania infantum/immunology
- Leishmaniasis/immunology
- Leishmaniasis/prevention & control
- Leishmaniasis/veterinary
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/prevention & control
- Mice
- Mice, Inbred BALB C
- Oxygenases/genetics
- Oxygenases/immunology
- Oxygenases/isolation & purification
- Parasite Load
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Vivian T. Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lourena E. Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana M. C. C. Martins
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P. Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo G. Valadares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rubens D. M. Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiana G. Ribeiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo A. P. Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Wiliam C. B. Régis
- PUC Minas and Minasfungi do Brasil LTDA, Belo Horizonte, Minas Gerais, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
37
|
Hartley MA, Kohl K, Ronet C, Fasel N. The therapeutic potential of immune cross-talk in leishmaniasis. Clin Microbiol Infect 2013; 19:119-30. [DOI: 10.1111/1469-0691.12095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 11/30/2022]
|
38
|
Ueno N, Wilson ME. Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. Trends Parasitol 2012; 28:335-44. [PMID: 22726697 DOI: 10.1016/j.pt.2012.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 01/12/2023]
Abstract
The extracellular promastigote stage of Leishmania spp. is transmitted to mammals by a sand fly vector. Leishmania promastigotes ligate host macrophage receptors, triggering phagocytosis and subsequent internalization, a crucial step for survival. Parasites transform intracellularly to the amastigote stage. Many studies document different receptors detecting promastigotes and amastigotes, but the relative importance of each interaction is ill-defined. Recent studies suggest that the macrophage receptors utilized during phagocytosis impact the intracellular fate of the parasite. This review summarizes the receptors implicated in Leishmania phagocytosis over the past 30 years. It then proceeds to weigh the evidence for or against their potential roles in intracellular parasite trafficking.
Collapse
Affiliation(s)
- Norikiyo Ueno
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
39
|
Fernandes AP, Coelho EAF, Machado-Coelho GLL, Grimaldi G, Gazzinelli RT. Making an anti-amastigote vaccine for visceral leishmaniasis: rational, update and perspectives. Curr Opin Microbiol 2012; 15:476-85. [PMID: 22698479 DOI: 10.1016/j.mib.2012.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 11/28/2022]
Abstract
Visceral leishmaniasis is a major health problem in Latina America, as well as the Mediterranean region of Europe and Asia. We aimed to develop a vaccine against visceral leishmaniasis targeting the intracellular amastigotes, which is the parasite stage that persists throughout infections with Leishmania parasites. With this in mind, we identified an amastigote specific antigen (A2) that contains an immunogenic epitope for CD4+ T helper (Th) cells and multiple repetitive units encoding CD8+ cytotoxic T lymphocyte (CTL) epitopes. Vaccine formulations containing the recombinant A2 associated with saponin, alum and IL-12 or expressed by attenuated adenovirus were shown to be protective in mice, dogs and nonhuman-primates. We are currently identifying novel amastigote specific immunogenic proteins that could be aggregated to A2 to further improve the level of vaccine-induced cell-mediated immunity and protection against visceral leishmaniasis.
Collapse
Affiliation(s)
- Ana Paula Fernandes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
40
|
Schmid M, Wege AK, Ritter U. Characteristics of "Tip-DCs and MDSCs" and Their Potential Role in Leishmaniasis. Front Microbiol 2012; 3:74. [PMID: 22416241 PMCID: PMC3298847 DOI: 10.3389/fmicb.2012.00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/13/2012] [Indexed: 12/23/2022] Open
Abstract
Since the first description of dendritic cells (DCs) by Steinman and Cohn (1973), the myeloid lineage of leukocytes was investigated intensively. Nowadays it is obvious that myeloid cells, especially DCs, are crucial for the adaptive and innate immune response against intracellular pathogens such as Leishmania major parasites. Based on the overlapping expression of molecules that were commonly used to classify myeloid cells, it becomes difficult to denominate those cell types precisely. Of note, most of these markers used for myeloid cell identification are expressed on a broad range of myeloid cells, and should therefore be handled with care if used for subtyping of myeloid cells. In this mini-review we aim to discuss the relative impact of DCs that release TNF and nitric oxide (Tip-DCs) and myeloid cells with suppressive capacities (myeloid-derived suppressor cells, MDSCs) in infectious diseases such as experimental leishmaniasis. In our point of view it cannot be excluded that the novel subsets that were denominated as “Tip-DCs” and “MDSCs” might not be classical “subsets” but rather represent myeloid cells in a transient maturation stage expressing different genes, in response to the surrounding environment.
Collapse
Affiliation(s)
- Maximilian Schmid
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | | | | |
Collapse
|