1
|
Pashkova N, Peterson TA, Ptak CP, Winistorfer SC, Guerrero-Given D, Kamasawa N, Ahern CA, Shy ME, Piper RC. Disrupting the transmembrane domain interface between PMP22 and MPZ causes peripheral neuropathy. iScience 2024; 27:110989. [PMID: 39759075 PMCID: PMC11700639 DOI: 10.1016/j.isci.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 09/16/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral Myelin Protein 22 (PMP22) and MPZ are abundant myelin membrane proteins in Schwann cells. The MPZ adhesion protein holds myelin wraps together across the intraperiod line. PMP22 is a tetraspan protein belonging to the Claudin superfamily. Loss of either MPZ or PMP22 causes severe demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy, and duplication of PMP22 causes the most common form of CMT, CMT1A. Yet, the molecular functions provided by PMP22 and how its alteration causes CMT are unknown. Here, we find MPZ and PMP22 form a specific complex through interfaces within their transmembrane domains. We also find that the PMP22 A67T patient variant that causes a loss-of-function (hereditary neuropathy with pressure palsies) phenotype maps to this interface, and blocks MPZ association without affecting localization to the plasma membrane or interactions with other proteins. These data define the molecular basis for the MPZ ∼ PMP22 interaction and indicate this complex fulfills an important function in myelinating cells.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tabitha A. Peterson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher P. Ptak
- Carver College of Medicine NMR Facility, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley C. Winistorfer
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Debbie Guerrero-Given
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael E. Shy
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Hahn KR, Kwon HJ, Kim DW, Hwang IK, Yoon YS. Therapeutic Options of Crystallin Mu and Protein Disulfide Isomerase A3 for Cuprizone-Induced Demyelination in Mouse Hippocampus. Neurochem Res 2024; 49:3078-3093. [PMID: 39164609 PMCID: PMC11449959 DOI: 10.1007/s11064-024-04227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
This study investigates the changes in hippocampal proteomic profiles during demyelination and remyelination using the cuprizone model. Employing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry for protein profiling, we observed significant alterations in the expression of ketimine reductase mu-crystallin (CRYM) and protein disulfide isomerase A3 precursor (PDIA3) following exposure to and subsequent withdrawal from cuprizone. Immunohistochemical staining validated these protein expression patterns in the hippocampus, revealing that both PDIA3 and CRYM were downregulated in the hippocampal CA1 region during demyelination and upregulated during remyelination. Additionally, we explored the potential protective effects of CRYM and PDIA3 against cuprizone-induced demyelination by synthesizing cell-permeable Tat peptide-fusion proteins (Tat-CRYM and Tat-PDIA3) to facilitate their crossing through the blood-brain barrier. Our results indicated that administering Tat-CRYM and Tat-PDIA3 mitigated the reduction in proliferating cell and differentiated neuroblast counts compared to the group receiving cuprizone alone. Notably, Tat-PDIA3 demonstrated significant effects in enhancing myelin basic protein expression alongside phosphorylation of CREB in the hippocampus, suggesting its potential therapeutic role in the prevention or treatment of demyelination, and by extension, in conditions such as multiple sclerosis.
Collapse
Affiliation(s)
- Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Pashkova N, Peterson TA, Ptak CP, Winistorfer SC, Guerrero-Given D, Kamasawa N, Ahern CA, Shy ME, Piper RC. Disrupting the transmembrane domain interface between PMP22 and MPZ causes peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573255. [PMID: 38187781 PMCID: PMC10769442 DOI: 10.1101/2023.12.24.573255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
PMP22 and MPZ are abundant myelin membrane proteins in Schwann cells. The MPZ adhesion protein holds myelin wraps together across the intraperiod line. PMP22 is a tetraspan protein belonging to the Claudin superfamily. Loss of either MPZ or PMP22 causes severe demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy, and duplication of PMP22 causes the most common form of CMT, CMT1A. Yet, the molecular functions provided by PMP22 and how its alteration causes CMT are unknown. Here we find MPZ and PMP22 form a specific complex through interfaces within their transmembrane domains. We also find that the PMP22 A67T patient variant that causes a loss-of-function (Hereditary Neuropathy with Pressure Palsies) phenotype maps to this interface, and blocks MPZ association without affecting localization to the plasma membrane or interactions with other proteins. These data define the molecular basis for the MPZ~PMP22 interaction and indicate this complex fulfills an important function in myelinating cells.
Collapse
|
4
|
Jeon H, Jang SY, Kwak G, Yi YW, You MH, Park NY, Jo JH, Yang JW, Jang HJ, Jeong SY, Moon SK, Doo HM, Nahm M, Kim D, Chang JW, Choi BO, Hong YB. TGFβ4 alleviates the phenotype of Charcot-Marie-Tooth disease type 1A. Brain 2023; 146:3608-3615. [PMID: 37143322 DOI: 10.1093/brain/awad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFβ4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFβ4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFβ4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFβ4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.
Collapse
Affiliation(s)
- Hyeonjin Jeon
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - So Young Jang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Mi-Hyeon You
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Na Young Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Ju Hee Jo
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Ji Won Yang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Hye Ji Jang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Sun-Young Jeong
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Seung Kee Moon
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Hyun Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Donghoon Kim
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Department of Pharmacology, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Jong Wook Chang
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
5
|
Intisar A, Shin HY, Kim W, Kang HG, Kim MY, Kim YS, Cho Y, Mo YJ, Lim H, Lee S, Lu QR, Lee Y, Kim MS. Implantable Electroceutical Approach Improves Myelination by Restoring Membrane Integrity in a Mouse Model of Peripheral Demyelinating Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201358. [PMID: 35975427 PMCID: PMC9661852 DOI: 10.1002/advs.202201358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Although many efforts are undertaken to treat peripheral demyelinating neuropathies based on biochemical interventions, unfortunately, there is no approved treatment yet. Furthermore, previous studies have not shown improvement of the myelin membrane at the biomolecular level. Here, an electroceutical treatment is introduced as a biophysical intervention to treat Charcot-Marie-Tooth (CMT) disease-the most prevalent peripheral demyelinating neuropathy worldwide-using a mouse model. The specific electrical stimulation (ES) condition (50 mV mm-1 , 20 Hz, 1 h) for optimal myelination is found via an in vitro ES screening system, and its promyelinating effect is validated with ex vivo dorsal root ganglion model. Biomolecular investigation via time-of-flight secondary ion mass spectrometry shows that ES ameliorates distribution abnormalities of peripheral myelin protein 22 and cholesterol in the myelin membrane, revealing the restoration of myelin membrane integrity. ES intervention in vivo via flexible implantable electrodes shows not only gradual rehabilitation of mouse behavioral phenotypes (balance and endurance), but also restored myelin thickness, compactness, and membrane integrity. This study demonstrates, for the first time, that an electroceutical approach with the optimal ES condition has the potential to treat CMT disease and restore impaired myelin membrane integrity, shifting the paradigm toward practical interventions for peripheral demyelinating neuropathies.
Collapse
Affiliation(s)
- Aseer Intisar
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Hyun Young Shin
- CTCELLS Corp.Daegu42988Republic of Korea
- SBCure Corp.Daegu43017Republic of Korea
| | | | - Hyun Gyu Kang
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Min Young Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Yu Seon Kim
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Youngjun Cho
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Yun Jeoung Mo
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Heejin Lim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Sanghoon Lee
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Q. Richard Lu
- Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| | - Yun‐Il Lee
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Minseok S. Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
- CTCELLS Corp.Daegu42988Republic of Korea
- Translational Responsive Medicine Center (TRMC)DGISTDaegu42988Republic of Korea
- New Biology Research Center (NBRC)DGISTDaegu42988Republic of Korea
| |
Collapse
|
6
|
Msheik Z, Durand S, Pinault E, Caillaud M, Vignaud L, Billet F, El Massry M, Desmouliere A. Charcot-Marie-Tooth-1A and sciatic nerve crush rat models: insights from proteomics. Neural Regen Res 2022; 18:1354-1363. [PMID: 36453423 PMCID: PMC9838138 DOI: 10.4103/1673-5374.357911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The sensorimotor and histological aspects of peripheral neuropathies were already studied by our team in two rat models: the sciatic nerve crush and the Charcot-Marie-Tooth-1A disease. In this study, we sought to highlight and compare the protein signature of these two pathological situations. Indeed, the identification of protein profiles in diseases can play an important role in the development of pharmacological targets. In fact, Charcot-Marie-Tooth-1A rats develop motor impairments that are more severe in the hind limbs. Therefore, for the first time, protein expression in sciatic nerve of Charcot-Marie-Tooth-1A rats was examined. First, distal sciatic nerves were collected from Charcot-Marie-Tooth-1A and uninjured wild-type rats aged 3 months. After protein extraction, sequential window acquisition of all theoretical fragment ion spectra liquid chromatography and mass spectrometry was employed. 445 proteins mapped to Swiss-Prot or trEMBL Uniprot databases were identified and quantified. Of these, 153 proteins showed statistically significant differences between Charcot-Marie-Tooth-1A and wild-type groups. The majority of these proteins were overexpressed in Charcot-Marie-Tooth-1A. Hierarchical clustering and functional enrichment using Gene Ontology were used to group these proteins based on their biological effects concerning Charcot-Marie-Tooth-1A pathophysiology. Second, proteomic characterization of wild-type rats subjected to sciatic nerve crush was performed sequential window acquisition of all theoretical fragment ion spectra liquid chromatography and mass spectrometry. One month after injury, distal sciatic nerves were collected and analyzed as described above. Out of 459 identified proteins, 92 showed significant differences between sciatic nerve crush and the uninjured wild-type rats used in the first study. The results suggest that young adult Charcot-Marie-Tooth-1A rats (3 months old) develop compensatory mechanisms at the level of redox balance, protein folding, myelination, and axonogenesis. These mechanisms seem insufficient to hurdle the progress of the disease. Notably, response to oxidative stress appears to be a significant feature of Charcot-Marie-Tooth-1A, potentially playing a role in the pathological process. In contrast to the first experiment, the majority of the proteins that differed from wild-type were downregulated in the sciatic nerve crush group. Functional enrichment suggested that neurogenesis, response to axon injury, and oxidative stress were important biological processes. Protein analysis revealed an imperfect repair at this time point after injury and identified several distinguishable proteins. In conclusion, we suggest that peripheral neuropathies, whether of a genetic or traumatic cause, share some common pathological pathways. This study may provide directions for better characterization of these models and/or identifying new specific therapeutic targets.
Collapse
Affiliation(s)
- Zeina Msheik
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France
| | - Stephanie Durand
- BISCEm (Biologie Intégrative Santé Chimie Environnement) Platform, US 42 Inserm/UAR 2015 CNRS, University of Limoges, Limoges, France,UMR 1308 Inserm/CHU–CAPTuR (Contrôle de l’Activation cellulaire, Progression Tumorale et Résistance thérapeutique), University of Limoges, Limoges, France
| | - Emilie Pinault
- BISCEm (Biologie Intégrative Santé Chimie Environnement) Platform, US 42 Inserm/UAR 2015 CNRS, University of Limoges, Limoges, France
| | - Martial Caillaud
- Inserm UMR1235–TENS (The Enteric Nervous System in Gut and Brain Diseases), University of Nantes, Nantes, France
| | - Laetitia Vignaud
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France
| | - Fabrice Billet
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France
| | - Mohamed El Massry
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France
| | - Alexis Desmouliere
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France,Correspondence to: Alexis Desmoulière, .
| |
Collapse
|
7
|
Marinko JT, Wright MT, Schlebach JP, Clowes KR, Heintzman DR, Plate L, Sanders CR. Glycosylation limits forward trafficking of the tetraspan membrane protein PMP22. J Biol Chem 2021; 296:100719. [PMID: 33933451 PMCID: PMC8191293 DOI: 10.1016/j.jbc.2021.100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) folds and trafficks inefficiently, with only 20% of newly expressed protein trafficking to the cell surface. This behavior is exacerbated in many of the mutants associated with Charcot–Marie–Tooth disease, motivating further study. Here we characterized the role of N-glycosylation in limiting PMP22 trafficking. We first eliminated N-glycosylation using an N41Q mutation, which resulted in an almost 3-fold increase in trafficking efficiency of wildtype (WT) PMP22 and a 10-fold increase for the severely unstable L16P disease mutant in HEK293 cells, with similar results in Schwann cells. Total cellular levels were also much higher for the WT/N41Q mutant, although not for the L16P/N41Q form. Depletion of oligosaccharyltransferase OST-A and OST-B subunits revealed that WT PMP22 is N-glycosylated posttranslationally by OST-B, whereas L16P is cotranslationally glycosylated by OST-A. Quantitative proteomic screens revealed similarities and differences in the interactome for WT, glycosylation-deficient, and unstable mutant forms of PMP22 and also suggested that L16P is sequestered at earlier stages of endoplasmic reticulum quality control. CRISPR knockout studies revealed a role for retention in endoplasmic reticulum sorting receptor 1 (RER1) in limiting the trafficking of all three forms, for UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1) in limiting the trafficking of WT and L16P but not N41Q, and calnexin (CNX) in limiting the trafficking of WT and N41Q but not L16P. This work shows that N-glycosylation is a limiting factor to forward trafficking PMP22 and sheds light on the proteins involved in its quality control.
Collapse
Affiliation(s)
- Justin T Marinko
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Katherine R Clowes
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
8
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
9
|
Volpi VG, Ferri C, Fregno I, Del Carro U, Bianchi F, Scapin C, Pettinato E, Solda T, Feltri ML, Molinari M, Wrabetz L, D’Antonio M. Schwann cells ER-associated degradation contributes to myelin maintenance in adult nerves and limits demyelination in CMT1B mice. PLoS Genet 2019; 15:e1008069. [PMID: 30995221 PMCID: PMC6488099 DOI: 10.1371/journal.pgen.1008069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/29/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022] Open
Abstract
In the peripheral nervous system (PNS) myelinating Schwann cells synthesize large amounts of myelin protein zero (P0) glycoprotein, an abundant component of peripheral nerve myelin. In humans, mutations in P0 cause the demyelinating Charcot-Marie-Tooth 1B (CMT1B) neuropathy, one of the most diffused genetic disorders of the PNS. We previously showed that several mutations, such as the deletion of serine 63 (P0-S63del), result in misfolding and accumulation of P0 in the endoplasmic reticulum (ER), with activation of the unfolded protein response (UPR). In addition, we observed that S63del mouse nerves display the upregulation of many ER-associated degradation (ERAD) genes, suggesting a possible involvement of this pathway in the clearance of the mutant P0. In ERAD in fact, misfolded proteins are dislocated from the ER and targeted for proteasomal degradation. Taking advantage of inducible cells that express the ER retained P0, here we show that the P0-S63del glycoprotein is degraded via ERAD. Moreover, we provide strong evidence that the Schwann cell-specific ablation of the ERAD factor Derlin-2 in S63del nerves exacerbates both the myelin defects and the UPR in vivo, unveiling a protective role for ERAD in CMT1B neuropathy. We also found that lack of Derlin-2 affects adult myelin maintenance in normal nerves, without compromising their development, pinpointing ERAD as a previously unrecognized player in preserving Schwann cells homeostasis in adulthood. Finally, we provide evidence that treatment of S63del peripheral nerve cultures with N-Acetyl-D-Glucosamine (GlcNAc), known to enhance protein quality control pathways in C.elegans, ameliorates S63del nerve myelination ex vivo. Overall, our study suggests that potentiating adaptive ER quality control pathways might represent an appealing strategy to treat both conformational and age-related PNS disorders. Charcot-Marie-Tooth neuropathies are a large family of peripheral nerve disorders, showing extensive clinical and genetic heterogeneity. Although strong advances have been made in the identification of genes and mutations involved, effective therapies are still lacking. Intracellular retention of abnormal proteins has been recently suggested as one of the pathogenetic events that might underlie several conformational neuropathies. To limit the toxic effects of accumulated mutant proteins, cells have developed efficient protein quality control systems aimed at optimizing both protein folding and degradation. Here we show that ER-associated degradation limits Schwann cells stress and myelin defects caused by the accumulation of a mutant myelin protein into the ER. In addition, we also describe for the first time the importance of Schwann cells ERAD in preserving myelin integrity in adult nerves, showing that genetic ERAD impairment leads to a late onset, motor-predominant, peripheral neuropathy in vivo. Effort in the design of strategies that potentiate ERAD and ER quality controls is therefore highly desirable.
Collapse
Affiliation(s)
- Vera G. Volpi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Fregno
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Ubaldo Del Carro
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Bianchi
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Scapin
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Pettinato
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tatiana Solda
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - M. Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Maurizio Molinari
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
10
|
Song W, Zhao Y, Wu Y, Li Z, Lv H, Li S, Jiang Y, Song C, Wang F, Huang Y. Fabrication, characterization and biocompatibility of collagen/oxidized regenerated cellulose-Ca composite scaffold for carrying Schwann cells. Int J Biol Macromol 2018; 119:1195-1203. [PMID: 30110602 DOI: 10.1016/j.ijbiomac.2018.08.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/14/2023]
Abstract
Schwann cell (SC) is the primary structural and functional part of the peripheral nervous system, and it plays a key role in the repair and regeneration of peripheral nerve. In order to develop a suitable scaffold for SC nerve tissue engineering, three kinds of scaffolds, including pristine collagen, pure oxidized regenerated cellulose-Ca (ORCCa) and collagen/ORC-Ca composite scaffolds, have been fabricated for carrying SC in this study. SC is then seeded on the scaffolds to form SC-scaffold nerve tissue engineering composites and evaluate their biocompatibility. The chemical and physical structure of the scaffolds are investigated by FTIR, NMR and SEM. The wettability of the collagen/ORC-Ca composite scaffold is close to that of pristine collagen, and the tensile strength of the composite scaffold (0.58 MPa) is better than that of pristine collagen (0.36 MPa). Cytotoxicity, cell proliferation, cell adhesion and western blotting assays are conducted to evaluate the biocompatibility and properties of different scaffolds. The results show that the three scaffolds exhibit no toxicity, and the proliferation rate of SC on the collagen/ORC-Ca composite scaffold is significantly higher than that of the other scaffolds (p < 0.05). The number of the adhesion cells on the composite scaffold (244.67 ± 13.02) is much more than that in the pure ORC-Ca group (p < 0.01). Furthermore, the expression of N-Cadheri and PMP22 proteins in the collagen/ORC-Ca composite scaffold is significantly superior to the other two scaffolds (both p < 0.01). Therefore, it could be concluded that the collagen/ORC-Ca composite is a promising candidate as a scaffold for carrying SC to form nerve tissue engineering composites in order to assist the peripheral nervous in the repair and regeneration.
Collapse
Affiliation(s)
- Wenli Song
- Harbin Sport University, Harbin 150008, China
| | - Yuhua Zhao
- Harbin Sport University, Harbin 150008, China
| | - Yadong Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhipeng Li
- Harbin Sport University, Harbin 150008, China
| | - Hui Lv
- The First Affiliated Hospital of Harbin Medical University, Harbin 150007, China
| | - Siyu Li
- Harbin Medical University (Da Qing), Da Qing 163319, China
| | - Yue Jiang
- Harbin Medical University (Da Qing), Da Qing 163319, China
| | - Chun Song
- The First Affiliated Hospital of Harbin Medical University, Harbin 150007, China
| | - Fang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
11
|
Lu H, Zhu L, Zhang C, Chen K, Cui Y. Mixing Assisted “Hot Spots” Occupying SERS Strategy for Highly Sensitive In Situ Study. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b04929] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hui Lu
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| | - Li Zhu
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chuanlong Zhang
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| | - Kexiang Chen
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
12
|
Jung J, Eggleton P, Robinson A, Wang J, Gutowski N, Holley J, Newcombe J, Dudek E, Paul AM, Zochodne D, Kraus A, Power C, Agellon LB, Michalak M. Calnexin is necessary for T cell transmigration into the central nervous system. JCI Insight 2018. [PMID: 29515033 DOI: 10.1172/jci.insight.98410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In multiple sclerosis (MS), a demyelinating inflammatory disease of the CNS, and its animal model (experimental autoimmune encephalomyelitis; EAE), circulating immune cells gain access to the CNS across the blood-brain barrier to cause inflammation, myelin destruction, and neuronal damage. Here, we discovered that calnexin, an ER chaperone, is highly abundant in human brain endothelial cells of MS patients. Conversely, mice lacking calnexin exhibited resistance to EAE induction, no evidence of immune cell infiltration into the CNS, and no induction of inflammation markers within the CNS. Furthermore, calnexin deficiency in mice did not alter the development or function of the immune system. Instead, the loss of calnexin led to a defect in brain endothelial cell function that resulted in reduced T cell trafficking across the blood-brain barrier. These findings identify calnexin in brain endothelial cells as a potentially novel target for developing strategies aimed at managing or preventing the pathogenic cascade that drives neuroinflammation and destruction of the myelin sheath in MS.
Collapse
Affiliation(s)
- Joanna Jung
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Eggleton
- University of Exeter Medical School, Exeter, Devon, United Kingdom.,UCB Pharma, Slough, Berkshire, United Kingdom
| | - Alison Robinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nick Gutowski
- University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Janet Holley
- University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Elzbieta Dudek
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amber M Paul
- Multiple Sclerosis Centre and.,Department of Medicine (Neurology), University of Alberta, Edmonton Alberta, Canada
| | - Douglas Zochodne
- Department of Medicine (Neurology), University of Alberta, Edmonton Alberta, Canada
| | - Allison Kraus
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Power
- Multiple Sclerosis Centre and.,Department of Medicine (Neurology), University of Alberta, Edmonton Alberta, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.,Multiple Sclerosis Centre and
| |
Collapse
|
13
|
Jung J, Michalak M, Agellon LB. Endoplasmic Reticulum Malfunction in the Nervous System. Front Neurosci 2017; 11:220. [PMID: 28487627 PMCID: PMC5403925 DOI: 10.3389/fnins.2017.00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases often have multifactorial causes and are progressive diseases. Some are inherited while others are acquired, and both vary greatly in onset and severity. Impaired endoplasmic reticulum (ER) proteostasis, involving Ca2+ signaling, protein synthesis, processing, trafficking, and degradation, is now recognized as a key risk factor in the pathogenesis of neurological disorders. Lipidostasis involves lipid synthesis, quality control, membrane assembly as well as sequestration of excess lipids or degradation of damaged lipids. Proteostasis and lipidostasis are maintained by interconnected pathways within the cellular reticular network, which includes the ER and Ca2+ signaling. Importantly, lipidostasis is important in the maintenance of membranes and luminal environment that enable optimal protein processing. Accumulating evidence suggest that the loss of coordinate regulation of proteostasis and lipidostasis has a direct and negative impact on the health of the nervous system.
Collapse
Affiliation(s)
- Joanna Jung
- Department of Biochemistry, University of AlbertaEdmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of AlbertaEdmonton, AB, Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill UniversitySte. Anne de Bellevue, QC, Canada
| |
Collapse
|
14
|
Volpi VG, Touvier T, D'Antonio M. Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders. Front Mol Neurosci 2017; 9:162. [PMID: 28101003 PMCID: PMC5209374 DOI: 10.3389/fnmol.2016.00162] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022] Open
Abstract
Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia.
Collapse
Affiliation(s)
- Vera G Volpi
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| | - Thierry Touvier
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| | - Maurizio D'Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| |
Collapse
|
15
|
Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration. PLoS One 2015; 10:e0136620. [PMID: 26361352 PMCID: PMC4567344 DOI: 10.1371/journal.pone.0136620] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
ERp57 (also known as grp58 and PDIA3) is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER) stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, the contribution of this foldase to the physiology of the nervous system remains unknown. Here we developed a transgenic mouse model that overexpresses ERp57 in the nervous system under the control of the prion promoter. We analyzed the susceptibility of ERp57 transgenic mice to undergo neurodegeneration. Unexpectedly, ERp57 overexpression did not affect dopaminergic neuron loss and striatal denervation after injection of a Parkinson’s disease-inducing neurotoxin. In sharp contrast, ERp57 transgenic animals presented enhanced locomotor recovery after mechanical injury to the sciatic nerve. These protective effects were associated with enhanced myelin removal, macrophage infiltration and axonal regeneration. Our results suggest that ERp57 specifically contributes to peripheral nerve regeneration, whereas its activity is dispensable for the survival of a specific neuronal population of the central nervous system. These results demonstrate for the first time a functional role of a component of the ER proteostasis network in peripheral nerve regeneration.
Collapse
|
16
|
Schlebach JP, Narayan M, Alford C, Mittendorf KF, Carter BD, Li J, Sanders CR. Conformational Stability and Pathogenic Misfolding of the Integral Membrane Protein PMP22. J Am Chem Soc 2015; 137:8758-68. [PMID: 26102530 PMCID: PMC4507940 DOI: 10.1021/jacs.5b03743] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Despite broad biochemical
relevance, our understanding of the physiochemical
reactions that limit the assembly and cellular trafficking of integral
membrane proteins remains superficial. In this work, we report the
first experimental assessment of the relationship between the conformational
stability of a eukaryotic membrane protein and the degree to which
it is retained by cellular quality control in the secretory pathway.
We quantitatively assessed both the conformational equilibrium and
cellular trafficking of 12 variants of the α-helical membrane
protein peripheral myelin protein 22 (PMP22), the intracellular misfolding
of which is known to cause peripheral neuropathies associated with
Charcot–Marie–Tooth disease (CMT). We show that the
extent to which these mutations influence the energetics of Zn(II)-mediated
PMP22 folding is proportional to the observed reduction in cellular
trafficking efficiency. Strikingly, quantitative analyses also reveal
that the reduction of motor nerve conduction velocities in affected
patients is proportional to the extent of the mutagenic destabilization.
This finding provides compelling evidence that the effects of these
mutations on the energetics of PMP22 folding lie at the heart of the
molecular basis of CMT. These findings highlight conformational stability
as a key factor governing membrane protein biogenesis and suggest
novel therapeutic strategies for CMT.
Collapse
Affiliation(s)
| | | | - Catherine Alford
- #Flow Cytometry Core, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232, United States
| | | | | | - Jun Li
- ⊥Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
17
|
Jung J, Dudek E, Michalak M. The role of N-glycan in folding, trafficking and pathogenicity of myelin oligodendrocyte glycoprotein (MOG). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2115-21. [PMID: 25541284 DOI: 10.1016/j.bbamcr.2014.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is a type I integral membrane protein that is expressed in the central nervous system. MOG has a single N-glycosylation site within its extracellular domain. MOG has been linked with pathogenesis of multiple sclerosis; anti-MOG antibodies have been detected in the sera of multiple sclerosis patients. N-glycosylation is an important post-translational modification of protein that might impact their folding, localization and function. However, the role of sugar in the biology of MOG is not well understood. In this study, we created a mutant MOG lacking N-linked glycan and tested its properties. We concluded that the lack of sugar did not impact on MOG abundance in the absence of endoplasmic reticulum molecular chaperone calnexin. We also show that the absence of N-glycan did not interfere with MOG's subcellular localization and it did not result in activation of endoplasmic reticulum stress. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Joanna Jung
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Elzbieta Dudek
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
18
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
19
|
Hara T, Hashimoto Y, Akuzawa T, Hirai R, Kobayashi H, Sato K. Rer1 and calnexin regulate endoplasmic reticulum retention of a peripheral myelin protein 22 mutant that causes type 1A Charcot-Marie-Tooth disease. Sci Rep 2014; 4:6992. [PMID: 25385046 PMCID: PMC4227013 DOI: 10.1038/srep06992] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022] Open
Abstract
Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Many PMP22 mutants accumulate in excess in the endoplasmic reticulum (ER) and lead to the inherited neuropathies of Charcot-Marie-Tooth (CMT) disease. However, the mechanism through which PMP22 mutants accumulate in the ER is unknown. Here, we studied the quality control mechanisms for the PMP22 mutants L16P and G150D, which were originally identified in mice and patients with CMT. We found that the ER-localised ubiquitin ligase Hrd1/SYVN1 mediates ER-associated degradation (ERAD) of PMP22(L16P) and PMP22(G150D), and another ubiquitin ligase, gp78/AMFR, mediates ERAD of PMP22(G150D) as well. We also found that PMP22(L16P), but not PMP22(G150D), is partly released from the ER by loss of Rer1, which is a Golgi-localised sorting receptor for ER retrieval. Rer1 interacts with the wild-type and mutant forms of PMP22. Interestingly, release of PMP22(L16P) from the ER was more prominent with simultaneous knockdown of Rer1 and the ER-localised chaperone calnexin than with the knockdown of each gene. These results suggest that CMT disease-related PMP22(L16P) is trapped in the ER by calnexin-dependent ER retention and Rer1-mediated early Golgi retrieval systems and partly degraded by the Hrd1-mediated ERAD system.
Collapse
Affiliation(s)
- Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Yukiko Hashimoto
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Tomoko Akuzawa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Rika Hirai
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Hisae Kobayashi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
20
|
Halperin L, Jung J, Michalak M. The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life 2014; 66:318-26. [PMID: 24839203 DOI: 10.1002/iub.1272] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/24/2014] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) is an essential sub-cellular compartment of the eukaryotic cell performing many diverse functions essential for the cell and the whole organism. ER molecular chaperones and folding enzymes are multidomain proteins that are designed to support nascent proteins entering ER lumen to achieve their native conformation, mediate post-translational modification, prevent misfolded protein aggregation, and facilitate exit from the ER. Typically the role of ER chaperones expands beyond protein folding. Here, we illustrate the multifunctional nature of many ER associated molecular chaperones and folding enzymes and unique functional overlap of these proteins all designed to support the many functions of the ER membrane.
Collapse
Affiliation(s)
- Laura Halperin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
21
|
Gaucci E, Altieri F, Turano C, Chichiarelli S. The protein ERp57 contributes to EGF receptor signaling and internalization in MDA-MB-468 breast cancer cells. J Cell Biochem 2014; 114:2461-70. [PMID: 23696074 DOI: 10.1002/jcb.24590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/03/2013] [Indexed: 12/27/2022]
Abstract
The disulfide isomerase ERp57 is a soluble protein mainly located in the endoplasmic reticulum, where it acts in the quality control of newly synthesized glycoproteins, in association with calreticulin and calnexin. It has been also detected in other cell compartments, such as the cytosol, the plasma membrane and the nucleus. In these locations it is implicated in various processes, participating in the rapid response to calcitriol, modulating the activity of STAT3 and being requested for the pre-apoptotic exposure of calreticulin on the plasma membrane. In the present work, the involvement of ERp57 in the activity of the EGF receptor was evaluated for the first time. EGFR is a tyrosine kinase receptor, which is able to activate numerous signaling cascades, leading to cell proliferation and inhibition of apoptosis. In the MDA-MB-468 breast adenocarcinoma cells, which overexpress EGFR, ERp57 expression has been knocked down by siRNA and the effects on EGFR have been studied. ERp57 silencing did not affect EGFR protein expression, cell membrane exposure or EGF binding, whereas the internalization and the phosphorylation of the receptor were impaired. The implication of ERp57 in the activity of EGFR, whose upregulation is known to be associated with tumors, could be relevant for cancer therapy.
Collapse
Affiliation(s)
- Elisa Gaucci
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | | | | | | |
Collapse
|
22
|
Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro 2013; 5:e00128. [PMID: 24175617 PMCID: PMC3848555 DOI: 10.1042/an20130024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Charcot–Marie–Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin–proteasome system (UPS), autophagosomes and heat-shock proteins (HSPs). Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins. In peripheral nerves of neuropathic C22 mice the frequency of cytosolic PMP22 aggregates increases with age, which elicits a response from protein quality control mechanisms. The combined effects of aging and neuropathic genotype exacerbate disease progression leading to nerve defects.
Collapse
|