1
|
Lee H, Kim J, Lee YJ, Lee S, Ryou C. The Effect of Plasminogen-Derived Peptides to PrPSc Formation. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Huin C, Cronier S, Guégan P, Béringue V, Rezaei H, Noinville S. Conformation-dependent membrane permeabilization by neurotoxic PrP oligomers: The role of the H2H3 oligomerization domain. Arch Biochem Biophys 2020; 692:108517. [PMID: 32738196 DOI: 10.1016/j.abb.2020.108517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
The relationship between prion propagation and the generation of neurotoxic species and clinical onset remains unclear. Several converging lines of evidence suggest that interactions with lipids promote various precursors to form aggregation-prone states that are involved in amyloid fibrils. Here, we compared the cytotoxicities of different soluble isolated oligomeric constructs from murine full-length PrP and from the restricted helical H2H3 domain with their effects on lipid vesicles. The helical H2H3 domain is suggested to be the minimal region of PrP involved in the oligomerization process. The discrete PrP oligomers of both the full-length sequence and the H2H3 domain have de novo β-sheeted structure when interacting with the membrane. They were shown to permeabilize synthetic negatively charged vesicles in a dose-dependent manner. Restricting the polymerization domain of the full-length PrP to the H2H3 helices strongly diminished the ability of the corresponding oligomers to associate with the lipid vesicles. Furthermore, the membrane impairment mechanism occurs differently for the full-length PrP oligomers and the H2H3 helices, as shown by dye-release and black lipid membrane experiments. The membrane damage caused by the full-length PrP oligomers is correlated to their neuronal toxicity at submicromolar concentrations, as shown by cell culture assays. Although oligomers of synthetic H2H3 could compromise in vitro cell homeostasis, they followed a membrane-disruptive pattern that was different from the full-length oligomers, as revealed by the role of PrPC in cell viability assays.
Collapse
Affiliation(s)
- Cécile Huin
- Sorbonne Universités, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, F-75005, Paris, France; University of Evry, F-91025, Evry, France
| | - Sabrina Cronier
- UR892, Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Philippe Guégan
- Sorbonne Universités, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, F-75005, Paris, France
| | - Vincent Béringue
- UR892, Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Human Rezaei
- UR892, Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Sylvie Noinville
- UR892, Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR8233, MONARIS, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
3
|
Harrathi C, Fernández-Borges N, Eraña H, Elezgarai SR, Venegas V, Charco JM, Castilla J. Insights into the Bidirectional Properties of the Sheep-Deer Prion Transmission Barrier. Mol Neurobiol 2018; 56:5287-5303. [PMID: 30592012 PMCID: PMC6614146 DOI: 10.1007/s12035-018-1443-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
The large chronic wasting disease (CWD)-affected cervid population in the USA and Canada, and the risk of the disease being transmitted to humans through intermediate species, is a highly worrying issue that is still poorly understood. In this case, recombinant protein misfolding cyclic amplification was used to determine, in vitro, the relevance of each individual amino acid on cross-species prion transmission. Others and we have found that the β2-α2 loop is a key modulator of transmission barriers between species and markedly influences infection by sheep scrapie, bovine spongiform encephalopathy (BSE), or elk CWD. Amino acids that differentiate ovine and deer normal host prion protein (PrPC) and associated with structural rigidity of the loop β2-α2 (S173N, N177T) appear to confer resistance to some prion diseases. However, addition of methionine at codon 208 together with the previously described rigid loop substitutions seems to hide a key in this species barrier, as it makes sheep recombinant prion protein highly susceptible to CWD-induced misfolding. These studies indicate that interspecies prion transmission is not only governed just by the β2-α2 loop amino acid sequence but also by its interactions with the α3-helix as shown by substitution I208M. Transmissible spongiform encephalopathies, characterized by long incubation periods and spongiform changes associated with neuronal loss in the brain, have been described in several mammalian species appearing either naturally (scrapie in sheep and goats, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids, Creutzfeldt-Jakob disease in humans) or by experimental transmission studies (scrapie in mice and hamsters). Much of the pathogenesis of the prion diseases has been determined in the last 40 years, such as the etiological agent or the fact that prions occur as different strains that show distinct biological and physicochemical properties. However, there are many unanswered questions regarding the strain phenomenon and interspecies transmissibility. To assess the risk of interspecies transmission between scrapie and chronic wasting disease, an in vitro prion propagation method has been used. This technique allows to predict the amino acids preventing the transmission between sheep and deer prion diseases.
Collapse
Affiliation(s)
- Chafik Harrathi
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | | | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Vanessa Venegas
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Jorge M Charco
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain. .,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Bizkaia, Spain.
| |
Collapse
|
4
|
Honda R, Yamaguchi KI, Elhelaly AE, Fuji M, Kuwata K. Poly-L-histidine inhibits prion propagation in a prion-infected cell line. Prion 2018; 12:226-233. [PMID: 30074430 DOI: 10.1080/19336896.2018.1505395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of lethal neurodegenerative diseases involving the structural conversion of cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) for which no effective treatment is currently available. Previous studies have implicated that a polymeric molecule with a repeating unit, such as pentosane polysulfate and polyamidoamide dendrimers, exhibits a potent anti-prion activity, suggesting that poly-(amino acid)s could be a candidate molecule for inhibiting prion propagation. Here, by screening a series of poly-(amino acid)s in a prion-infected neuroblastoma cell line (GTFK), we identified poly-L-His as a novel anti-prion compound with an IC50 value of 1.8 µg/mL (0.18 µM). This potent anti-prion activity was specific to a high-molecular-weight poly-L-His and absent in monomeric histidine or low-molecular-weight poly-L-His. Solution NMR data indicated that poly-L-His directly binds to the loop region connecting Helix 2 and Helix 3 of PrPC and sterically blocks the structural conversion toward PrPSc. Poly-L-His, however, did not inhibit prion propagation in a prion-infected mouse when administered intraperitoneally, suggesting that the penetration of blood-brain barrier and/or the chemical stability of this polypeptide must be addressed before its application in vivo. Taken together, this study revealed the potential use of poly-L-His as a novel treatment against TSEs. (203 words).
Collapse
Affiliation(s)
- Ryo Honda
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan
| | | | - Abdelazim Elsayed Elhelaly
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan
| | - Mitsuhiko Fuji
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan
| | - Kazuo Kuwata
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan.,c Department of Gene and Development , Graduate School of Medicine, Gifu University , Gifu , Japan
| |
Collapse
|
5
|
Waqas M, Lee HM, Kim J, Telling G, Kim JK, Kim DH, Ryou C. Effect of poly-L-arginine in inhibiting scrapie prion protein of cultured cells. Mol Cell Biochem 2017; 428:57-66. [PMID: 28063003 DOI: 10.1007/s11010-016-2916-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/21/2016] [Indexed: 11/26/2022]
Abstract
Biological effect of poly-L-arginine (PLR), the linear homopolymer comprised of L-arginine, was investigated to determine the activity of suppressing prions. PLR decreased the level of scrapie prion protein (PrPSc) in cultured cells permanently infected with prions in a concentration-dependent manner. The PrPSc inhibition efficacy of PLR was greater than that of another prion-suppressant poly-L-lysine (PLK) in a molecular mass-dependent fashion. The effective concentration of PLR to inhibit prions was achieved safely below the cytotoxic concentrations, and overall cytotoxicity of PLR was similar to that of PLK. PLR did not alter the cellular prion protein (PrPC) level and was unable to change the states of preformed recombinant PrP aggregates and PrPSc from prion-infected cells. These data eliminate the possibility that the action mechanism of PLR is through removal of PrPC and pre-existing PrPSc. However, PLR formed complexes with plasminogen that stimulates prion propagation via conversion of PrPC to the misfolded isoform, PrPSc. The plasminogen-PLR complex demonstrated the greater positive surface charge values than the similar complex with PLK, raising the possibility that PLR interferes with the role of cofactor for PrPSc generation better than PLK.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Hye-Mi Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Jeeyoung Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Glenn Telling
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jin-Ki Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Dae-Hwan Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
6
|
Singh J, Udgaonkar JB. The Pathogenic Mutation T182A Converts the Prion Protein into a Molten Globule-like Conformation Whose Misfolding to Oligomers but Not to Fibrils Is Drastically Accelerated. Biochemistry 2016; 55:459-69. [DOI: 10.1021/acs.biochem.5b01266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jogender Singh
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
7
|
Abstract
Poly(l-lysine) was recently discovered to inhibit prion propagation. To develop poly(l-lysine) as a potential therapeutic for prion diseases, the understanding of in vivo poly(l-lysine) behavior is pivotal. Therefore, to determine the poly(l-lysine) distribution in mouse spleen and brain, the primary and ultimate target organs for prions, we performed non-invasive longitudinal in vivo imaging and time course on live mice and ex vivo imaging on mouse organs to confirmed poly(l-lysine) was distributed, including the brain and spleen. By studying the in vivo and ex vivo fluorescence images, characteristic patterns of poly(l-lysine) accumulation and elimination depending on different administration routes were also found. Although only a portion of the administered poly(l-lysine) appears to target the brain and spleen, the specific poly(l-lysine) level in these organs was higher than that previously reported. Furthermore, the poly(l-lysine) retention in the brain and spleen was greater than that found in other organs. These results provide valuable information about poly(l-lysine) behavior in vivo, which will be an aid in designing optimal regimens for potential application of poly(l-lysine) in anti-prion therapeutics.
Collapse
Affiliation(s)
- Hye-Mi Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
8
|
|
9
|
Xu Z, Prigent S, Deslys JP, Rezaei H. Dual conformation of H2H3 domain of prion protein in mammalian cells. J Biol Chem 2011; 286:40060-8. [PMID: 21911495 DOI: 10.1074/jbc.m111.275255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The concept of prion is applied to protein modules that share the ability to switch between at least two conformational states and transmit one of these through intermolecular interaction and change of conformation. Although much progress has been achieved through the understanding of prions from organisms such as Saccharomyces cerevisiae, Podospora anserina, or Aplysia californica, the criteria that qualify a protein module as a prion are still unclear. In addition, the functionality of known prion domains fails to provide clues to understand the first identified prion, the mammalian infectious prion protein, PrP. To address these issues, we generated mammalian cellular models of expression of the C-terminal two helices of PrP, H2 and H3, which have been hypothesized, among other models, to hold the replication and conversion properties of the infectious PrP. We found that the H2H3 domain is an independent folding unit that undergoes glycosylations and glycosylphosphatidylinositol anchoring similar to full-length PrP. Surprisingly, in some conditions the normally folded H2H3 was able to systematically go through a conversion process and generate insoluble proteinase K-resistant aggregates. This structural switch involves the assembly of amyloid structures that bind thioflavin S and oligomers that are reactive to A11 antibody, which specifically detects protein oligomers from neurological disorders. Overall, we show that H2H3 is a conformational switch in a cellular context and is thus suggested to be a candidate for the conversion domain of PrP.
Collapse
Affiliation(s)
- Zhou Xu
- CEA, Institute of Emerging Diseases and Innovative Therapies, SEPIA, 92260 Fontenay-aux-Roses, France
| | | | | | | |
Collapse
|