1
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
2
|
Peng Q, Wu J, Chen X, Qiu L, Zhang J, Tian H, Song F. Disruption of Two-component System LytSR Affects Forespore Engulfment in Bacillus thuringiensis. Front Cell Infect Microbiol 2017; 7:468. [PMID: 29164075 PMCID: PMC5675857 DOI: 10.3389/fcimb.2017.00468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/23/2017] [Indexed: 11/13/2022] Open
Abstract
Two-component regulatory systems (TCSs) play pivotal roles in bacteria sensing many different stimuli from environment. Here, we investigated the role of the LytSR TCS in spore formation in Bacillus thuringiensis (Bt) subsp. kurstaki HD73. lacZ gene fusions revealed that the transcription of the downstream genes, lrgAB, encoding two putative membrane-associated proteins, is regulated by LytSR. The sporulation efficiency of a lytSR mutant was significantly lower than that of wild-type HD73. A confocal microscopic analysis demonstrated that LytSR modulates the process of forespore engulfment. Moreover, the transcription of the lytSR operon is regulated by the mother-cell transcription factor SigE, whereas the transcription of the sporulation gene spoIIP was reduced in the lytSR mutant, as demonstrated with a β-galactosidase activity assay. These results suggest that LytSR modulates forespore engulfment by affecting the transcription of the spoIIP gene in Bt.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianbo Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaomin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongtao Tian
- Institute of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Dennison NJ, Saraiva RG, Cirimotich CM, Mlambo G, Mongodin EF, Dimopoulos G. Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence. Malar J 2016; 15:425. [PMID: 27549662 PMCID: PMC4994321 DOI: 10.1186/s12936-016-1468-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022] Open
Abstract
Background Malaria exerts a tremendous socioeconomic impact worldwide despite current control efforts, and novel disease transmission-blocking strategies are urgently needed. The Enterobacter bacterium Esp_Z, which is naturally harboured in the mosquito midgut, can inhibit the development of Plasmodium parasites prior to their invasion of the midgut epithelium through a mechanism that involves oxidative stress. Here, a multifaceted approach is used to study the tripartite interactions between the mosquito, Esp_Z and Plasmodium, towards addressing the feasibility of using sugar-baited exposure of mosquitoes to the Esp_Z bacterium for interruption of malaria transmission. Methods The ability of Esp_Z to colonize Anopheles gambiae midguts harbouring microbiota derived from wild mosquitoes was determined by qPCR. Upon introduction of Esp_Z via nectar feeding, the permissiveness of colonized mosquitoes to Plasmodium falciparum infection was determined, as well as the impact of Esp_Z on mosquito fitness parameters, such as longevity, number of eggs laid and number of larvae hatched. The genome of Esp_Z was sequenced, and transcriptome analyses were performed to identify bacterial genes that are important for colonization of the mosquito midgut, as well as for ROS-production. A gene expression analysis of members of the oxidative defence pathway of Plasmodium berghei was also conducted to assess the parasite’s oxidative defence response to Esp_Z exposure. Results Esp_Z persisted for up to 4 days in the An. gambiae midgut after introduction via nectar feeding, and was able to significantly inhibit Plasmodium sporogonic development. Introduction of this bacterium did not adversely affect mosquito fitness. Candidate genes involved in the selection of a better fit Esp_Z to the mosquito midgut environment and in its ability to condition oxidative status of its surroundings were identified, and parasite expression data indicated that Esp_Z is able to induce a partial and temporary shutdown of the ookinetes antioxidant response. Conclusions Esp_Z is capable of inhibiting sporogonic development of Plasmodium in the presence of the mosquito’s native microbiota without affecting mosquito fitness. Several candidate bacterial genes are likely mediating midgut colonization and ROS production, and inhibition of Plasmodium development appears to involve a shutdown of the parasite’s oxidative defence system. A better understanding of the complex reciprocal tripartite interactions can facilitate the development and optimization of an Esp_Z-based malaria control strategy. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1468-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathan J Dennison
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Chris M Cirimotich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Diomandé SE, Doublet B, Vasaï F, Guinebretière MH, Broussolle V, Brillard J. Expression of the genes encoding the CasK/R two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol Lett 2016; 363:fnw174. [PMID: 27435329 DOI: 10.1093/femsle/fnw174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Two-component systems (TCS) allow a cell to elaborate a variety of adaptive responses to environment changes. The recently discovered CasK/R TCS plays a role in the optimal unsaturation of fatty acids necessary for cold adaptation of the foodborne-pathogen Bacillus cereus Here, we showed that the promoter activity of the operon encoding this TCS was repressed during growth at low temperature in the stationary phase in the parental strain when compared to the casK/R mutant, suggesting that CasR negatively regulates the activity of its own promoter in these conditions. The promoter activity of the desA gene encoding the Δ5 fatty acid desaturase, providing unsaturated fatty acids (UFAs) required for low temperature adaptation, was repressed in the casK/R mutant grown at 12°C versus 37°C. This result suggests that CasK/R activates desA expression during B. cereus growth at low temperature, allowing an optimal unsaturation of the fatty acids. In contrast, desA expression was repressed during the lag phase at low temperature in presence of UFAs, in a CasK/R-independent manner. Our findings confirm that the involvement of this major TCS in B. cereus cold adaptation is linked to the upregulation of a fatty acid desaturase.
Collapse
Affiliation(s)
| | | | | | | | | | - Julien Brillard
- SQPOV, INRA, Univ. Avignon, 84000 Avignon, France DGIMI, INRA, Univ. Montpellier, 34095 Montpellier, France
| |
Collapse
|
5
|
Warda AK, Siezen RJ, Boekhorst J, Wells-Bennik MHJ, de Jong A, Kuipers OP, Nierop Groot MN, Abee T. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity. PLoS One 2016; 11:e0156796. [PMID: 27272929 PMCID: PMC4896439 DOI: 10.1371/journal.pone.0156796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.
Collapse
Affiliation(s)
- Alicja K. Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| | - Roland J. Siezen
- TI Food and Nutrition, Wageningen, The Netherlands
- Center for Molecular and Biomolecular Informatics, RadboudUMC, Nijmegen, The Netherlands
- Microbial Bioinformatics, Ede, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- Center for Molecular and Biomolecular Informatics, RadboudUMC, Nijmegen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | | | - Anne de Jong
- TI Food and Nutrition, Wageningen, The Netherlands
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P. Kuipers
- TI Food and Nutrition, Wageningen, The Netherlands
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Hayrapetyan H, Tempelaars M, Nierop Groot M, Abee T. Bacillus cereus ATCC 14579 RpoN (Sigma 54) Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production. PLoS One 2015; 10:e0134872. [PMID: 26241851 PMCID: PMC4524646 DOI: 10.1371/journal.pone.0134872] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain. The mutant was impaired in many different cellular functions including low temperature and anaerobic growth, carbohydrate metabolism, sporulation and toxin production. Additionally, the mutant showed lack of motility and biofilm formation at air-liquid interphase, and this correlated with absence of flagella, as flagella staining showed only WT and complemented strain to be highly flagellated. Comparative transcriptome analysis of cells harvested at selected time points during growth in aerated and static conditions in BHI revealed large differences in gene expression associated with loss of phenotypes, including significant down regulation of genes in the mutant encoding enzymes involved in degradation of branched chain amino acids, carbohydrate transport and metabolism, flagella synthesis and virulence factors. Our study provides evidence for a pleiotropic role of Sigma 54 in B. cereus supporting its adaptive response and survival in a range of conditions and environments.
Collapse
Affiliation(s)
- Hasmik Hayrapetyan
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | - Masja Nierop Groot
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- Food and Biobased research, Wageningen UR, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Diomandé SE, Nguyen-the C, Abee T, Tempelaars MH, Broussolle V, Brillard J. Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. Int J Food Microbiol 2015; 213:110-7. [PMID: 25987542 DOI: 10.1016/j.ijfoodmicro.2015.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/26/2022]
Abstract
Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available.
Collapse
Affiliation(s)
- Sara Esther Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Christophe Nguyen-the
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Tjakko Abee
- Top Institute Food and Nutrition, NieuweKanaal 9A, 6709 PA, Wageningen, The Netherlands; Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Marcel H Tempelaars
- Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; INRA, Université Montpellier, UMR1333 Diversité Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France.
| |
Collapse
|
8
|
The CasKR two-component system is required for the growth of mesophilic and psychrotolerant Bacillus cereus strains at low temperatures. Appl Environ Microbiol 2014; 80:2493-503. [PMID: 24509924 DOI: 10.1128/aem.00090-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains.
Collapse
|
9
|
Song F, Peng Q, Brillard J, Lereclus D, Nielsen-LeRoux C. An insect gut environment reveals the induction of a new sugar-phosphate sensor system in Bacillus cereus. Gut Microbes 2014; 5:58-63. [PMID: 24256737 PMCID: PMC4049939 DOI: 10.4161/gmic.27092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteria survive under various conditions by sensing stimuli triggering specific adaptive physiological responses, which are often based on membrane-integrated sensors connected to a cytoplasmic regulator. Recent studies reveal that mucus glycans may act as signal molecules for two-component systems involved in intestinal colonization. Bacillus cereus, a human and insect opportunistic pathogen was used to identify bacterial factors expressed in an insect gut infection model. The screen revealed a promoter involved in the expression of a gene with so far unknown functions. A search for gut-related compounds, inducing its transcription, identified glucose-6-phosphate as an activation signal. The gene is part of a five-gene cluster, including a two-component system. Interestingly such five gene loci are conserved in the pathogenic Bacillus group as well as in various Clostridia bacteria and are with analogy to other multi-component sensor systems in enteropathogenic bacteria, such as E. coli. Thus our results provide insights into the function of two-component and auxiliary sensor systems in host-microbe interactions and opens up possible investigations of such systems in other gut associated bacteria.
Collapse
Affiliation(s)
- Fuping Song
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,State Key Laboratory for Biology of Plant Diseases and Insect Pests; CAAS; Beijing, China
| | - Qi Peng
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,State Key Laboratory for Biology of Plant Diseases and Insect Pests; CAAS; Beijing, China
| | - Julien Brillard
- INRA; UMR408 & Université d'Avignon et des Pays de Vaucluse; Avignon, France
| | - Didier Lereclus
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France
| | - Christina Nielsen-LeRoux
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,Correspondence to: Christina Nielsen-LeRoux,
| |
Collapse
|
10
|
Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 2012; 15:220-31. [PMID: 22633889 DOI: 10.1016/j.mib.2012.04.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen interactions for several insect and mammal pathogens. They are excellent tools to identify pathogen determinants and host tissue cell responses. We focus here on the comparison of effectors used by two different groups of bacterial insect pathogens to accomplish the infection process in their lepidopteran larval host: Bacillus thuringiensis and the nematode-associated bacteria, Photorhabdus and Xenorhabdus. The comparison reveals similarities in function and expression profiles for some genes, which suggest that such factors are conserved during evolution in order to attack the tissue encountered during the infection process.
Collapse
Affiliation(s)
- Christina Nielsen-LeRoux
- INRA, UMR1319, Micalis, Génétique microbienne et Environnement, La Minière, F-78280 Guyancourt, France.
| | | | | | | | | |
Collapse
|