1
|
Identification of Substrates of Cytoplasmic Peptidyl-Prolyl Cis/Trans Isomerases and Their Collective Essentiality in Escherichia Coli. Int J Mol Sci 2020; 21:ijms21124212. [PMID: 32545723 PMCID: PMC7353009 DOI: 10.3390/ijms21124212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
Protein folding often requires molecular chaperones and folding catalysts, such as peptidyl-prolyl cis/trans isomerases (PPIs). The Escherichia coli cytoplasm contains six well-known PPIs, although a requirement of their PPIase activity, the identity of their substrates and relative enzymatic contribution is unknown. Thus, strains lacking all periplasmic and one of the cytoplasmic PPIs were constructed. Measurement of their PPIase activity revealed that PpiB is the major source of PPIase activity in the cytoplasm. Furthermore, viable Δ6ppi strains could be constructed only on minimal medium in the temperature range of 30-37 °C, but not on rich medium. To address the molecular basis of essentiality of PPIs, proteins that aggregate in their absence were identified. Next, wild-type and putative active site variants of FkpB, FklB, PpiB and PpiC were purified and in pull-down experiments substrates specific to each of these PPIs identified, revealing an overlap of some substrates. Substrates of PpiC were validated by immunoprecipitations using extracts from wild-type and PpiC-H81A strains carrying a 3xFLAG-tag appended to the C-terminal end of the ppiC gene on the chromosome. Using isothermal titration calorimetry, RpoE, RseA, S2, and AhpC were established as FkpB substrates and PpiC's PPIase activity was shown to be required for interaction with AhpC.
Collapse
|
2
|
Geitner AJ, Weininger U, Paulsen H, Balbach J, Kovermann M. Structure-Based Insights into the Dynamics and Function of Two-Domain SlpA from Escherichia coli. Biochemistry 2017; 56:6533-6543. [PMID: 29155566 DOI: 10.1021/acs.biochem.7b00786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SlpA (SlyD-like protein A) comprises two domains, a FK506 binding domain (FKBP fold) of moderate prolyl cis/trans-isomerase activity and an inserted in flap (IF) domain that hosts its chaperone activity. Here we present the nuclear magnetic resonance (NMR) solution structure of apo Escherichia coli SlpA determined by NMR that mirrors the structural properties seen for various SlyD homologues. Crucial structural differences in side-chain orientation arise for F37, which points directly into the hydrophobic core of the active site. It forms a prominent aromatic stacking with F15, one of the key residues for PPIase activity, thus giving a possible explanation for the inherently low PPIase activity of SlpA. The IF domain reveals the highest stability within the FKBP-IF protein family, most likely arising from an aromatic cluster formed by four phenylalanine residues. Both the thermodynamic stability and the PPIase and chaperone activity let us speculate that SlpA is a backup system for homologous bacterial systems under unfavorable conditions.
Collapse
Affiliation(s)
| | - Ulrich Weininger
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Hauke Paulsen
- Institut für Physik, Universität Lübeck , Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Jochen Balbach
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Michael Kovermann
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Universität Konstanz , Fachbereich Chemie, Universitätsstraße 10, D-78457 Konstanz, Germany
| |
Collapse
|
3
|
Kumar A, Balbach J. Targeting the molecular chaperone SlyD to inhibit bacterial growth with a small molecule. Sci Rep 2017; 7:42141. [PMID: 28176839 PMCID: PMC5296862 DOI: 10.1038/srep42141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Molecular chaperones are essential molecules for cell growth, whereby they maintain protein homeostasis. Because of their central cellular function, bacterial chaperones might be potential candidates for drug targets. Antimicrobial resistance is currently one of the greatest threats to human health, with gram-negative bacteria being of major concern. We found that a Cu2+ complex readily crosses the bacterial cell wall and inhibits SlyD, which is a molecular chaperone, cis/trans peptidyl prolyl isomerise (PPIase) and involved in various other metabolic pathways. The Cu2+ complex binds to the active sites of SlyD, which suppresses its PPIase and chaperone activities. Significant cell growth retardation could be observed for pathogenic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). We anticipate that rational development of drugs targeting molecular chaperones might help in future control of pathogenic bacterial growth, in an era of rapidly increasing antibiotic resistance.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
- Centre for Structure und Dynamics of Proteins (MZP), Martin Luther University Halle, Wittenberg, Germany
| |
Collapse
|
4
|
Lactobacillus slpA promotes ESC growth through the ERK1/2 pathway. Cytotechnology 2017; 69:117-122. [PMID: 28074388 DOI: 10.1007/s10616-016-0043-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
Bacterial surface layers (S-layers) are cell envelope structures ubiquitously found in gram-negative and gram-positive bacteria, including Lactobacillus. S-layers play a role in the determination and maintenance of cell shape as virulence factors, mediate cell adhesion, and regulate immature dendritic and T cells. In this study, we sought to understand the involvement of MAPK serine/threonine kinases in alterations in Endometrial epithelial cells (ESC) growth induced by Lactobacillus crispatus (L. crispatus) slpA, an S-layer protein. We applied various concentrations of L. crispatus to cultured ESCs and observed growth and changes in the phosphorylation status of ERK1/2, JNK, and p38. Similar experiments were conducted using L. crispatus lacking and overexpressing slpA. We found that ESC growth was altered by slpA primarily via ERK1/2. Our findings suggest that L. crispatus slpA promotes ESC growth mainly through an ERK1/2-dependent pathway.
Collapse
|
5
|
Quistgaard EM, Weininger U, Ural-Blimke Y, Modig K, Nordlund P, Akke M, Löw C. Molecular insights into substrate recognition and catalytic mechanism of the chaperone and FKBP peptidyl-prolyl isomerase SlyD. BMC Biol 2016; 14:82. [PMID: 27664121 PMCID: PMC5034536 DOI: 10.1186/s12915-016-0300-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background Peptidyl-prolyl isomerases (PPIases) catalyze cis/trans isomerization of peptidyl-prolyl bonds, which is often rate-limiting for protein folding. SlyD is a two-domain enzyme containing both a PPIase FK506-binding protein (FKBP) domain and an insert-in-flap (IF) chaperone domain. To date, the interactions of these domains with unfolded proteins have remained rather obscure, with structural information on binding to the FKBP domain being limited to complexes involving various inhibitor compounds or a chemically modified tetrapeptide. Results We have characterized the binding of 15-residue-long unmodified peptides to SlyD from Thermus thermophilus (TtSlyD) in terms of binding thermodynamics and enzyme kinetics through the use of isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, and site-directed mutagenesis. We show that the affinities and enzymatic activity of TtSlyD towards these peptides are much higher than for the chemically modified tetrapeptides that are typically used for activity measurements on FKBPs. In addition, we present a series of crystal structures of TtSlyD with the inhibitor FK506 bound to the FKBP domain, and with 15-residue-long peptides bound to either one or both domains, which reveals that substrates bind in a highly adaptable fashion to the IF domain through β-strand augmentation, and can bind to the FKBP domain as both types VIa1 and VIb-like cis-proline β-turns. Our results furthermore provide important clues to the catalytic mechanism and support the notion of inter-domain cross talk. Conclusions We found that 15-residue-long unmodified peptides can serve as better substrate mimics for the IF and FKBP domains than chemically modified tetrapeptides. We furthermore show how such peptides are recognized by each of these domains in TtSlyD, and propose a novel general model for the catalytic mechanism of FKBPs that involves C-terminal rotation around the peptidyl-prolyl bond mediated by stabilization of the twisted transition state in the hydrophobic binding site. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0300-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden.,Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22603, Hamburg, Germany
| | - Ulrich Weininger
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Yonca Ural-Blimke
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22603, Hamburg, Germany
| | - Kristofer Modig
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Pär Nordlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden.,School of Biological Sciences, Nanyang Technological University, 639798, Singapore, Singapore
| | - Mikael Akke
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Christian Löw
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden. .,Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22603, Hamburg, Germany.
| |
Collapse
|
6
|
Löw C, Quistgaard EM, Kovermann M, Anandapadamanaban M, Balbach J, Nordlund P. Structural basis for PTPA interaction with the invariant C-terminal tail of PP2A. Biol Chem 2014; 395:881-9. [DOI: 10.1515/hsz-2014-0106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/20/2014] [Indexed: 01/04/2023]
Abstract
Abstract
Protein phosphatase 2A (PP2A) is a highly abundant heterotrimeric Ser/Thr phosphatase involved in the regulation of a variety of signaling pathways. The PP2A phosphatase activator (PTPA) is an ATP-dependent activation chaperone, which plays a key role in the biogenesis of active PP2A. The C-terminal tail of the catalytic subunit of PP2A is highly conserved and can undergo a number of posttranslational modifications that serve to regulate the function of PP2A. Here we have studied structurally the interaction of PTPA with the conserved C-terminal tail of the catalytic subunit carrying different posttranslational modifications. We have identified an additional interaction site for the invariant C-terminal tail of the catalytic subunit on PTPA, which can be modulated via posttranslational modifications. We show that phosphorylation of Tyr307PP2A-C or carboxymethylation of Leu309PP2A-C abrogates or diminishes binding of the C-terminal tail, whereas phosphorylation of Thr304PP2A-C is of no consequence. We suggest that the invariant C-terminal residues of the catalytic subunit can act as affinity enhancer for different PP2A interaction partners, including PTPA, and a different ‘code’ of posttranslational modifications can favour interactions to one subunit over others.
Collapse
|
7
|
Kovermann M, Schmid FX, Balbach J. Molecular function of the prolyl cis/trans isomerase and metallochaperone SlyD. Biol Chem 2014; 394:965-75. [PMID: 23585180 DOI: 10.1515/hsz-2013-0137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/26/2013] [Indexed: 11/15/2022]
Abstract
SlyD is a bacterial two-domain protein that functions as a molecular chaperone, a prolyl cis/trans isomerase, and a nickel-binding protein. This review summarizes recent findings about the molecular enzyme mechanism of SlyD. The chaperone function located in one domain of SlyD is involved in twin-arginine translocation and increases the catalytic efficiency of the prolyl cis/trans isomerase domain in protein folding by two orders of magnitude. The C-terminal tail of SlyD binds Ni2+ ions and supplies them for the maturation of [NiFe] hydrogenases. A combined biochemical and biophysical analysis revealed the molecular basis of the delicate interplay of the different domains of SlyD for optimal function.
Collapse
Affiliation(s)
- Michael Kovermann
- Institut für Physik, Biophysik, und Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine MZP, Martin-Luther Universität Halle-Wittenberg, D-06120 Halle, Germany
| | | | | |
Collapse
|
8
|
Generation of a Highly Active Folding Enzyme by Combining a Parvulin-Type Prolyl Isomerase from SurA with an Unrelated Chaperone Domain. J Mol Biol 2013; 425:4089-98. [DOI: 10.1016/j.jmb.2013.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022]
|