1
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Zhou D, Lu P, Mo X, Yang B, Chen T, Yao Y, Xiong T, Yue L, Yang X. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications. Front Endocrinol (Lausanne) 2024; 14:1248934. [PMID: 38260171 PMCID: PMC10800994 DOI: 10.3389/fendo.2023.1248934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome is a medical condition characterized by several metabolic disorders in the body. Long-term metabolic disorders raise the risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Therefore, it is essential to actively explore the aetiology of metabolic syndrome (MetS) and its comorbidities to provide effective treatment options. Ferroptosis is a new form of cell death that is characterized by iron overload, lipid peroxide accumulation, and decreased glutathione peroxidase 4(GPX4) activity, and it involves the pathological processes of a variety of diseases. Lipid deposition caused by lipid diseases and iron overload is significant in metabolic syndrome, providing the theoretical conditions for developing ferroptosis. Recent studies have found that the major molecules of ferroptosis are linked to common metabolic syndrome consequences, such as T2DM and atherosclerosis. In this review, we first discussed the mechanics of ferroptosis, the regulatory function of inducers and inhibitors of ferroptosis, and the significance of iron loading in MetS. Next, we summarized the role of ferroptosis in the pathogenesis of MetS, such as obesity, type 2 diabetes, and atherosclerosis. Finally, we discussed relevant ferroptosis-targeted therapies and raised some crucial issues of concern to provide directions for future Mets-related treatments and research.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bing Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ting Chen
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - You Yao
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Tian Xiong
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Xi Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Qu HQ, Glessner J, Qu J, Mentch F, Campbell I, Sleiman P, Connolly JJ, Hakonarson H. Metabolomic profiling for dyslipidemia in pediatric patients with sickle cell disease, on behalf of the IHCC consortium. Metabolomics 2022; 18:101. [PMID: 36459297 PMCID: PMC9718871 DOI: 10.1007/s11306-022-01954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Previous study has shown that dyslipidemia is common in patients with Sickle cell disease (SCD) and is associated with more serious SCD complications. METHODS This study investigated systematically dyslipidemia in SCD using a state-of-art nuclear magnetic resonance (NMR) metabolomics platform, including 147 pediatric cases with SCD and 1234 controls without SCD. We examined 249 metabolomic biomarkers, including 98 biomarkers for lipoprotein subclasses, 70 biomarkers for relative lipoprotein lipid concentrations, plus biomarkers for fatty acids and phospholipids. RESULTS Specific patterns of hypolipoproteinemia and hypocholesterolemia in pediatric SCD were observed in lipoprotein subclasses other than larger VLDL subclasses. Triglycerides are not significantly changed in SCD, except increased relative concentrations in lipoprotein subclasses. Decreased plasma FFAs (including total-FA, SFA, PUFA, Omega-6, and linoleic acid) and decreased plasma phospholipids were observed in SCD. CONCLUSION This study scrutinized, for the first time, lipoprotein subclasses in pediatric patients with SCD, and identified SCD-specific dyslipidemia from altered lipoprotein metabolism. The findings of this study depict a broad panorama of lipid metabolism and nutrition in SCD, suggesting the potential of specific dietary supplementation of the deficient nutrients for the management of SCD.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
| | - Joseph Glessner
- The Center for Applied Genomics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
| | - Jingchun Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
| | - Frank Mentch
- The Center for Applied Genomics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
| | - Ian Campbell
- The Center for Applied Genomics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
| | - Patrick Sleiman
- The Center for Applied Genomics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
| | - John J Connolly
- The Center for Applied Genomics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA.
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA.
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
4
|
Effects of high dietary iron on the lipid metabolism in the liver and adipose tissue of male broiler chickens. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Kang H, Han M, Xue J, Baek Y, Chang J, Hu S, Nam H, Jo MJ, El Fakhri G, Hutchens MP, Choi HS, Kim J. Renal clearable nanochelators for iron overload therapy. Nat Commun 2019; 10:5134. [PMID: 31723130 PMCID: PMC6853917 DOI: 10.1038/s41467-019-13143-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/22/2019] [Indexed: 01/19/2023] Open
Abstract
Iron chelators have been widely used to remove excess toxic iron from patients with secondary iron overload. However, small molecule-based iron chelators can cause adverse side effects such as infection, gastrointestinal bleeding, kidney failure, and liver fibrosis. Here we report renal clearable nanochelators for iron overload disorders. First, after a singledose intravenous injection, the nanochelator shows favorable pharmacokinetic properties, such as kidney-specific biodistribution and rapid renal excretion (>80% injected dose in 4 h), compared to native deferoxamine (DFO). Second, subcutaneous (SC) administration of nanochelators improves pharmacodynamics, as evidenced by a 7-fold increase in efficiency of urinary iron excretion compared to intravenous injection. Third, daily SC injections of the nanochelator for 5 days to iron overload mice and rats decrease iron levels in serum and liver. Furthermore, the nanochelator significantly reduces kidney damage caused by iron overload without demonstrating DFO's own nephrotoxicity. This renal clearable nanochelator provides enhanced efficacy and safety.
Collapse
Affiliation(s)
- Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Jie Xue
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Shuang Hu
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - HaYoung Nam
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Min Joo Jo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Michael P Hutchens
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Portland Veterans Affairs Medical Center, Portland, OR, 97239, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Bradshaw AD, DeLeon-Pennell KY. Iron overload: what's TIMP-3 got to do with it. Am J Physiol Heart Circ Physiol 2018. [PMID: 29522369 DOI: 10.1152/ajpheart.00161.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Amy D Bradshaw
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center and Division of Cardiology, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| | - Kristine Y DeLeon-Pennell
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center and Division of Cardiology, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
7
|
Ye Q, Kim J. Mutation in HFE gene decreases manganese accumulation and oxidative stress in the brain after olfactory manganese exposure. Metallomics 2017; 8:618-27. [PMID: 27295312 DOI: 10.1039/c6mt00080k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Increased accumulation of manganese (Mn) in the brain is significantly associated with neurobehavioral deficits and impaired brain function. Airborne Mn has a high systemic bioavailability and can be directly taken up into the brain, making it highly neurotoxic. While Mn transport is in part mediated by several iron transporters, the expression of these transporters is altered by the iron regulatory gene, HFE. Mutations in the HFE gene are the major cause of the iron overload disorder, hereditary hemochromatosis, one of the prevalent genetic diseases in humans. However, whether or not HFE mutation modifies Mn-induced neurotoxicity has not been evaluated. Therefore, our goal was to define the role of HFE mutation in Mn deposition in the brain and the resultant neurotoxic effects after olfactory Mn exposure. Mice carrying the H67D HFE mutation, which is homologous to the H63D mutation in humans, and their control, wild-type mice, were intranasally instilled with MnCl2 with different doses (0, 0.2, 1.0 and 5.0 mg kg(-1)) daily for 3 days. Mn levels in the blood, liver and brain were determined using inductively-coupled plasma mass spectrometry (ICP-MS). H67D mutant mice showed significantly lower Mn levels in the blood, liver, and most brain regions, especially in the striatum, while mice fed an iron-overload diet did not. Moreover, mRNA expression of ferroportin, an essential exporter of iron and Mn, was up-regulated in the striatum. In addition, the levels of isoprostane, a marker of lipid peroxidation, were increased in the striatum after Mn exposure in wild-type mice, but were unchanged in H67D mice. Together, our results suggest that the H67D mutation provides decreased susceptibility to Mn accumulation in the brain and neurotoxicity induced by inhaled Mn.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue 148TF, Boston, MA 02115, USA.
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue 148TF, Boston, MA 02115, USA.
| |
Collapse
|
8
|
El Ayed M, Kadri S, Smine S, Elkahoui S, Limam F, Aouani E. Protective effects of grape seed and skin extract against high-fat-diet-induced lipotoxicity in rat lung. Lipids Health Dis 2017; 16:174. [PMID: 28903761 PMCID: PMC5598067 DOI: 10.1186/s12944-017-0561-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity is a public health problem characterized by increased fat accumulation in different tissues. Obesity is directly linked to breathing problems and medical complications with lung, including obstructive sleep apnea syndrome, obesity hypoventilation syndrome, chronic obstructive pulmonary disease, asthma….In the present work, we aimed to investigate the effect of high fat diet (HFD) on lung lipotoxicity, oxidative stress, fatty acid composition and proportions in lung and implication in asthma development. The likely protection provided by grape seed extract (GSSE) was also investigated. METHODS In order to assess HFD effect on lung and GSSE protection we used a rat model. We analyzed the lipid plasma profile, lung peroxidation and antioxidant activities (SOD, CAT and POD). We also analyzed transition metals (Ca2+, Mg2+, Zn2+ and iron) and lung free fatty acids using gas chromatography coupled to mass spectrometry (GC-MS). RESULTS HFD induced lipid profile imbalance increasing cholesterol and VLDL-C. HFD also induced an oxidative stress assessed by elevated MDA level and the drop of antioxidant activities such as SOD, CAT and POD. Moreover, HFD induced mineral disturbances by decreasing magnesium level and increasing Calcium and iron levels. HFD induced also disturbances in lung fatty acid composition by increasing oleic, stearic and arachidonic acids. Interestingly, GSSE alleviated all these deleterious effects of HFD treatment. CONCLUSION As a whole, GSSE had a significant preventive effect against HFD-induced obesity, and hence may be used as an anti-obesity agent, and a benefic agent with potential applications against damages in lung tissue.
Collapse
Affiliation(s)
- Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia.
| | - Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Selima Smine
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia.,Proteomic Platform PISSARO, Institut de Recherche et d'Innovation Biomédicale (IRIB), University of Rouen, 76821, Mont Saint Aignan, Cedex, France
| | - Salem Elkahoui
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
9
|
Attarwala H, Han M, Kim J, Amiji M. Oral nucleic acid therapy using multicompartmental delivery systems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544521 DOI: 10.1002/wnan.1478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/12/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid-based therapeutics has the potential for treating numerous diseases by correcting abnormal expression of specific genes. Lack of safe and efficacious delivery strategies poses a major obstacle limiting clinical advancement of nucleic acid therapeutics. Oral route of drug administration has greater delivery challenges, because the administered genes or oligonucleotides have to bypass degrading environment of the gastrointestinal (GI) tract in addition to overcoming other cellular barriers preventing nucleic acid delivery. For efficient oral nucleic acid delivery, vector should be such that it can protect encapsulated material during transit through the GI tract, facilitate efficient uptake and intracellular trafficking at desired target sites, along with being safe and well tolerated. In this review, we have discussed multicompartmental systems for overcoming extracellular and intracellular barriers to oral delivery of nucleic acids. A nanoparticles-in-microsphere oral system-based multicompartmental system was developed and tested for in vivo gene and small interfering RNA delivery for treating colitis in mice. This system has shown efficient transgene expression or gene silencing when delivered orally along with favorable downstream anti-inflammatory effects, when tested in a mouse model of intestinal bowel disease. WIREs Nanomed Nanobiotechnol 2018, 10:e1478. doi: 10.1002/wnan.1478 This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Husain Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Han M, Chang J, Kim J. Loss of divalent metal transporter 1 function promotes brain copper accumulation and increases impulsivity. J Neurochem 2016; 138:918-28. [PMID: 27331785 DOI: 10.1111/jnc.13717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
The divalent metal transporter 1 (DMT1) is a major iron transporter required for iron absorption and erythropoiesis. Loss of DMT1 function results in microcytic anemia. While iron plays an important role in neural function, the behavioral consequences of DMT1 deficiency are largely unexplored. The goal of this study was to define the neurobehavioral and neurochemical phenotypes of homozygous Belgrade (b/b) rats that carry DMT1 mutation and explore potential mechanisms of these phenotypes. The b/b rats (11-12 weeks old) and their healthy littermate heterozygous (+/b) Belgrade rats were subject to elevated plus maze tasks. The b/b rats spent more time in open arms, entered open arms more frequently and traveled more distance in the maze than +/b controls, suggesting increased impulsivity. Impaired emotional behavior was associated with down-regulation of GABA in the hippocampus in b/b rats. Also, b/b rats showed increased GABAA receptor α1 and GABA transporter, indicating altered GABAergic function. Furthermore, metal analysis revealed that b/b rats have decreased total iron, but normal non-heme iron, in the brain. Interestingly, b/b rats exhibited unusually high copper levels in most brain regions, including striatum and hippocampus. Quantitative PCR analysis showed that both copper importer copper transporter 1 and exporter copper-transporting ATPase 1 were up-regulated in the hippocampus from b/b rats. Finally, b/b rats exhibited increased 8-isoprostane levels and decreased glutathione/glutathione disulfide ratio in the hippocampus, reflecting elevated oxidative stress. Combined, our results suggest that copper loading in DMT1 deficiency could induce oxidative stress and impair GABA metabolism, which promote impulsivity-like behavior. Iron-copper model: Mutations in the divalent metal transporter 1 (DMT1) decrease body iron status and up-regulate copper absorption, which leads to copper loading in the brain and consequently increases metal-induced oxidative stress. This event disrupts GABAergic neurotransmission and promotes impulsivity-like behavior. Our model provides better understanding of physiological risks associated with imbalanced metal metabolism in mental function and, more specifically, the interactions with GABA and redox control in the treatment of emotional disorders.
Collapse
Affiliation(s)
- Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Alsulimani HH, Ye Q, Kim J. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice. Toxicol Res 2016; 31:347-54. [PMID: 26877837 PMCID: PMC4751444 DOI: 10.5487/tr.2015.31.4.347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe (-/-)) and their control wild-type (Hfe (+/+)) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe (+/+) mice, but not in Hfe (-/-) mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe (+/+) compared with water-drinking Hfe (+/+) mice. However, Mn-exposed Hfe (-/-) mice spent more time to find the target hole than Mn-drinking Hfe (+/+) mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and other iron overload disorders.
Collapse
Affiliation(s)
| | - Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Menon AV, Chang J, Kim J. Mechanisms of divalent metal toxicity in affective disorders. Toxicology 2015; 339:58-72. [PMID: 26551072 DOI: 10.1016/j.tox.2015.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
Metals are required for proper brain development and play an important role in a number of neurobiological functions. The divalent metal transporter 1 (DMT1) is a major metal transporter involved in the absorption and metabolism of several essential metals like iron and manganese. However, non-essential divalent metals are also transported through this transporter. Therefore, altered expression of DMT1 can modify the absorption of toxic metals and metal-induced toxicity. An accumulating body of evidence has suggested that increased metal stores in the brain are associated with elevated oxidative stress promoted by the ability of metals to catalyze redox reactions, resulting in abnormal neurobehavioral function and the progression of neurodegenerative diseases. Metal overload has also been implicated in impaired emotional behavior, although the underlying mechanisms are not well understood with limited information. The current review focuses on psychiatric dysfunction associated with imbalanced metabolism of metals that are transported by DMT1. The investigations with respect to the toxic effects of metal overload on behavior and their underlying mechanisms of toxicity could provide several new therapeutic targets to treat metal-associated affective disorders.
Collapse
Affiliation(s)
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Cai Y, Ying F, Song E, Wang Y, Xu A, Vanhoutte PM, Tang EHC. Mice lacking prostaglandin E receptor subtype 4 manifest disrupted lipid metabolism attributable to impaired triglyceride clearance. FASEB J 2015; 29:4924-36. [PMID: 26271253 DOI: 10.1096/fj.15-274597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Abstract
Upon high-fat feeding, prostaglandin E receptor subtype 4 (EP4)-knockout mice gain less body weight than their EP4(+/+) littermates. We investigated the cause of the lean phenotype. The mice showed a 68.8% reduction in weight gain with diminished fat mass that was not attributable to reduced food intake, fat malabsorption, or increased energy expenditure. Plasma triglycerides in the mice were elevated by 244.9%. The increase in plasma triglycerides was independent of changes in hepatic very low density lipoprotein (VLDL)-triglyceride production or intestinal chylomicron-triglyceride synthesis. However, VLDL-triglyceride clearance was drastically impaired in the EP4-knockout mice. The absence of EP4 in mice compromised the activation of lipoprotein lipase (LPL), the key enzyme responsible for trafficking of plasma triglycerides into peripheral tissues. Deficiency in EP4 reduced hepatic mRNA expression of the transcriptional factor cAMP response element binding protein H (by 36.8%) and LPL activators, including apolipoprotein (Apo)a5 (by 40.2%) and Apoc2 (by 61.3%). In summary, the lean phenotype of EP4-deficient mice resulted from reduction in adipose tissue and accretion of other peripheral organs caused by impaired triglyceride clearance. The findings identify a new metabolic dimension in the physiologic role played by endogenous EP4.
Collapse
Affiliation(s)
- Yin Cai
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fan Ying
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Erfei Song
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eva Hoi-Ching Tang
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Effect of dietary iron loading on recognition memory in growing rats. PLoS One 2015; 10:e0120609. [PMID: 25746420 PMCID: PMC4352024 DOI: 10.1371/journal.pone.0120609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/26/2015] [Indexed: 11/22/2022] Open
Abstract
While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet) or iron-adequate control diet (50 mg/kg) for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value) than control rats (12% increase; P=0.047). Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002). Furthermore, levels of glutamate receptors (both NMDA and AMPA) and nicotinic acetylcholine receptor (nAChR) were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR). Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the role of iron loading in improved memory.
Collapse
|
15
|
Veuthey T, Wessling-Resnick M. Pathophysiology of the Belgrade rat. Front Pharmacol 2014; 5:82. [PMID: 24795636 PMCID: PMC4000996 DOI: 10.3389/fphar.2014.00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/02/2014] [Indexed: 01/01/2023] Open
Abstract
The Belgrade rat is an animal model of divalent metal transporter 1 (DMT1) deficiency. This strain originates from an X-irradiation experiment first reported in 1966. Since then, the Belgrade rat’s pathophysiology has helped to reveal the importance of iron balance and the role of DMT1. This review discusses our current understanding of iron transport homeostasis and summarizes molecular details of DMT1 function. We describe how studies of the Belgrade rat have revealed key roles for DMT1 in iron distribution to red blood cells as well as duodenal iron absorption. The Belgrade rat’s pathology has extended our knowledge of hepatic iron handling, pulmonary and olfactory iron transport as well as brain iron uptake and renal iron handling. For example, relationships between iron and manganese metabolism have been discerned since both are essential metals transported by DMT1. Pathophysiologic features of the Belgrade rat provide us with a unique and interesting animal model to understand iron homeostasis.
Collapse
Affiliation(s)
- Tania Veuthey
- Department of Genetics and Complex Diseases, Harvard School of Public Health Boston, MA, USA
| | | |
Collapse
|
16
|
Veuthey T, Hoffmann D, Vaidya VS, Wessling-Resnick M. Impaired renal function and development in Belgrade rats. Am J Physiol Renal Physiol 2013; 306:F333-43. [PMID: 24226520 DOI: 10.1152/ajprenal.00285.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Belgrade rats carry a disabling mutation in the iron transporter divalent metal transporter 1 (DMT1). Although DMT1 plays a major role in intestinal iron absorption, the transporter is also highly expressed in the kidney, where its function remains unknown. The goal of this study was to characterize renal physiology of Belgrade rats. Male Belgrade rats died prematurely with ∼50% survival at 20 wk of age. Necropsy results indicated marked glomerular nephritis and chronic end-stage renal disease. By 15 wk of age, Belgrade rats displayed altered renal morphology associated with sclerosis and fibrosis. Creatinine clearance was significantly lower compared with heterozygote littermates. Urinary biomarkers of kidney injury, including albumin, fibrinogen, and kidney injury molecule-1, were significantly elevated. Pilot morphological studies suggest that nephrogenesis is delayed in Belgrade rat pups due to their low iron status and fetal growth restriction. Such defects in renal development most likely underlie the compromised renal metabolism observed in adult b/b rats. Belgrade rat kidney nonheme iron levels were not different from controls but urinary iron and transferrin levels were higher. These results further implicate an important role for the transporter in kidney function not only in iron reabsorption but also in glomerular filtration of the serum protein.
Collapse
Affiliation(s)
- Tania Veuthey
- Dept. of Genetics & Complex Diseases, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115.
| | | | | | | |
Collapse
|
17
|
Charradi K, Elkahoui S, Limam F, Aouani E. High-fat diet induced an oxidative stress in white adipose tissue and disturbed plasma transition metals in rat: prevention by grape seed and skin extract. J Physiol Sci 2013; 63:445-55. [PMID: 24158847 DOI: 10.1007/s12576-013-0283-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/22/2013] [Indexed: 12/22/2022]
Abstract
Obesity is a public health problem characterized by increased accumulation of fat into adipose tissues leading to oxidative stress, dyslipidemia, and chronic inflammatory status. We used an experimental model of high-fat diet-induced obesity to analyze the link between dyslipidemia, oxidative stress, and fat accumulation into adipose tissue of rats, as well as the involvement of intracellular mediators such as transition metals on signal transduction. We also looked at the ability of a grape seed and skin extract (GSSE) from a Tunisian cultivar to prevent fat-induced disturbances. Data showed that a high-fat diet (HFD) provoked dyslipidemia into plasma which is linked to an oxidative stress, an accumulation of transition metals such as manganese, copper, and zinc and a depletion of iron. GSSE prevented dyslipidemia by modulating lipase activity, together with increased antioxidant capacity and depletion of transition metals as well as of free radicals such as O2 (-) and OH. These data indicated that GSSE has important preventive effects on HFD-induced obesity and oxidative stress whose transduction seems to involve transition metals. GSSE should be used as a safe anti-obesity agent that could find potential applications in metabolic disorders involving transition metals dyshomeostasis.
Collapse
Affiliation(s)
- Kamel Charradi
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia,
| | | | | | | |
Collapse
|