1
|
Aymoz-Bressot T, Canis M, Meurisse F, Wijkhuisen A, Favier B, Mousseau G, Dupressoir A, Heidmann T, Bacquin A. Cell-Int: a cell-cell interaction assay to identify native membrane protein interactions. Life Sci Alliance 2024; 7:e202402844. [PMID: 39237366 PMCID: PMC11377309 DOI: 10.26508/lsa.202402844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Intercellular protein-protein interactions (PPIs) have pivotal roles in biological functions and diseases. Membrane proteins are therefore a major class of drug targets. However, studying such intercellular PPIs is challenging because of the properties of membrane proteins. Current methods commonly use purified or modified proteins that are not physiologically relevant and hence might mischaracterize interactions occurring in vivo. Here, we describe Cell-Int: a cell interaction assay for studying plasma membrane PPIs. The interaction signal is measured through conjugate formation between two populations of cells each expressing either a ligand or a receptor. In these settings, membrane proteins are in their native environment thus being physiologically relevant. Cell-Int has been applied to the study of diverse protein partners, and enables to investigate the inhibitory potential of blocking antibodies, as well as the retargeting of fusion proteins for therapeutic development. The assay was also validated for screening applications and could serve as a platform for identifying new protein interactors.
Collapse
Affiliation(s)
- Thibaud Aymoz-Bressot
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie Canis
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | - Florian Meurisse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | - Anne Wijkhuisen
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | | | - Anne Dupressoir
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thierry Heidmann
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | | |
Collapse
|
2
|
Le Floc’h B, Costet N, Vu N, Bernabeu-Gentey P, Pronier C, Houssel-Debry P, Boudjéma K, Renac V, Samson M, Amiot L. Involvement of circulating soluble HLA-G after liver transplantation in the low immunogenicity of hepatic allograft. PLoS One 2023; 18:e0282736. [PMID: 36897848 PMCID: PMC10004504 DOI: 10.1371/journal.pone.0282736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Graft rejection is a critical risk in solid-organ transplantation. To decrease such risk, an understanding of the factors involved in low immunogenicity of liver allografts could potentially make it possible to transfer this tolerogenic property to other transplanted organs. HLA-G, a natural physiological molecule belonging to the Human Leukocyte Antigen class (HLA) Ib family that induces tolerance, is associated with fewer rejections in solid-organ transplantation. In contrast to HLA-G, HLA antigen incompatibilities between donor and recipient can lead to rejection, except in liver transplantation. We compared HLA-G plasma levels and the presence of anti-HLA antibodies before and after LT to understand the low immunogenicity of the liver. We conducted a large prospective study that included 118 patients on HLA-G plasma levels during a 12-month follow-up and compared them to the status of anti-HLA antibodies. HLA-G plasma levels were evaluated by ELISA at seven defined pre- and post-LT time points. HLA-G plasma levels were stable over time pre-LT and were not associated with patient characteristics. The level increased until the third month post-LT, before decreasing to a level comparable to that of the pre-LT period at one year of follow-up. Such evolution was independent of biological markers and immunosuppressive treatment, except with glucocorticoids. An HLA-G plasma level ≤ 50 ng/ml on day 8 after LT was significantly associated with a higher rejection risk. We also observed a higher percentage of rejection in the presence of donor specific anti-HLA antibodies (DSA) and an association between the increase in HLA-G plasma levels at three months and the absence of DSA. The low immunogenicity of liver allografts could be related to early elevated levels of HLA-G, which lead, in turn, to a decrease in anti-HLA antibodies, opening potential new therapeutic strategies using synthetic HLA-G proteins.
Collapse
Affiliation(s)
- Bastien Le Floc’h
- Service de Chirurgie Digestive, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, CHU Rennes, Univ Rennes, Rennes, France
| | - Nathalie Costet
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Univ Rennes, Rennes, France
| | - Nicolas Vu
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Univ Rennes, Rennes, France
| | - Pénélope Bernabeu-Gentey
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Univ Rennes, Rennes, France
| | - Charlotte Pronier
- Pôle de Biologie, Service de Virologie Générale et Rétrovirologie, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, CHU Rennes, Univ Rennes, Rennes, France
| | - Pauline Houssel-Debry
- Service des Maladies du Foie (SMF), Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, CHU Rennes, Univ Rennes, Rennes, France
| | - Karim Boudjéma
- Service de Chirurgie Digestive, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, CHU Rennes, Univ Rennes, Rennes, France
| | - Virginie Renac
- EFS Rennes, Laboratoire Histocompatibilité-Immunogénétique / Immunologie Leuco-plaquettaire (HLA/HPA), Rennes, France
| | - Michel Samson
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Univ Rennes, Rennes, France
| | - Laurence Amiot
- Pôle de Biologie, Laboratoire de Cytologie-Cytometrie en flux Inserm, EHESP, IRSET (Institut de Recherche en santé, Environnement et Travail) - UMR_S 1085, CHU Rennes, Univ Rennes, Rennes, France
- * E-mail:
| |
Collapse
|
3
|
Hu L, He D, Zeng H. Association of parental HLA-G polymorphisms with soluble HLA-G expressions and their roles on recurrent implantation failure: A systematic review and meta-analysis. Front Immunol 2022; 13:988370. [PMID: 36532068 PMCID: PMC9751038 DOI: 10.3389/fimmu.2022.988370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction HLA-G plays a central role in immune tolerance at the maternal-fetal interface. The HLA-G gene is characterized by low allelic polymorphism and restricted tissue expression compared with classical HLA genes. HLA-G polymorphism is associated with HLA-G expression and linked to pregnancy complications. However, the association of parental HLA-G polymorphisms with soluble HLA-G (sHLA-G) expression and their roles in recurrent implantation failure (RIF) is unclear. The study aims to systematically review the association of HLA-G polymorphisms with RIF, the association of sHLA-G expression with RIF, and the association of HLA-G polymorphisms with sHLA-G expressions in patients attending in-vitro fertilization (IVF) treatment. Methods Studies that evaluated the association of HLA-G polymorphisms with RIF, the association between sHLA-G expression with RIF, and the association between HLA-G polymorphisms with sHLA-G expressions in patients attending IVF treatment were included. Meta-analysis was performed by random-effect models. Sensitivity analysis was performed by excluding one study each time. Subgroup analysis was performed based on ethnicity. Results HLA-G 14bp ins variant is associated with a lower expression of sHLA-G in seminal or blood plasma of couples attending IVF treatment. The maternal HLA-G*010101 and paternal HLA-G*010102 alleles are associated with RIF risk compared to other alleles. However, single maternal HLA-G 14bp ins/del polymorphism, HLA-G -725 C>G/T polymorphism, or circulating sHLA-G concentration was not significantly associated with RIF in the general population. HLA-G 14bp ins/ins homozygous genotype or ins variant was associated with a higher risk of RIF in the Caucasian population. Discussion Specific HLA-G alleles or HLA-G polymorphisms are associated with sHLA-G expression in couples attending IVF treatment. Several HLA-G polymorphisms may be related to RIF, considering different ethnic backgrounds. A combined genetic effect should be considered in future studies to confirm the association of HLA-G polymorphisms and sHLA-G expressions in relation to RIF.
Collapse
Affiliation(s)
- Lian Hu
- Department of Gynecology and Obstetrics, The Fourth Changsha Hospital, Changsha, China
| | - Dongmei He
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Zeng
- Department of Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Guangzhou, China,Department of Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Hong Zeng,
| |
Collapse
|
4
|
Scavuzzi BM, van Drongelen V, Holoshitz J. HLA-G and the MHC Cusp Theory. Front Immunol 2022; 13:814967. [PMID: 35281038 PMCID: PMC8913506 DOI: 10.3389/fimmu.2022.814967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigens (HLA) are significant genetic risk factors in a long list of diseases. However, the mechanisms underlying these associations remain elusive in many cases. The best-characterized function of classical major histocompatibility complex (MHC) antigens is to allow safe presentation of antigenic peptides via a self/non-self-discrimination process. Therefore, most hypotheses to date have posited that the observed associations between certain HLA molecules and human diseases involve antigen presentation (AP). However, these hypotheses often represent inconsistencies with current knowledge. To offer answers to the inconsistencies, a decade ago we have invoked the MHC Cusp theory, postulating that in addition to its main role in AP, the MHC codes for allele-specific molecules that act as ligands in a conformationally-conserved cusp-like fold, which upon interaction with cognate receptors can trigger MHC-associated diseases. In the ensuing years, we have provided empirical evidence that substantiates the theory in several HLA-Class II-associated autoimmune diseases. Notably, in a recent study we have demonstrated that HLA-DRB1 alleles known to protect against several autoimmune diseases encode a protective epitope at the cusp region, which activates anti-inflammatory signaling leading to transcriptional and functional modulatory effects. Relevant to the topic of this session, cusp ligands demonstrate several similarities to the functional effects of HLA-G. The overall goal of this opinion article is to delineate the parallels and distinctive features of the MHC Cusp theory with structural and functional aspects of HLA-G molecules.
Collapse
Affiliation(s)
| | - Vincent van Drongelen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Mestrallet G, Rouas-Freiss N, LeMaoult J, Fortunel NO, Martin MT. Skin Immunity and Tolerance: Focus on Epidermal Keratinocytes Expressing HLA-G. Front Immunol 2021; 12:772516. [PMID: 34938293 PMCID: PMC8685247 DOI: 10.3389/fimmu.2021.772516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Although the role of epidermal cells in skin regeneration has been extensively documented, their functions in immunity and tolerance mechanisms are largely underestimated. The aim of the present review was to outline the state of knowledge on resident immune cells of hematopoietic origin hosted in the epidermis, and then to focus on the involvement of keratinocytes in the complex skin immune networks acting in homeostasis and regeneration conditions. Based on this knowledge, the mechanisms of immune tolerance are reviewed. In particular, strategies based on immunosuppression mediated by HLA-G are highlighted, as recent advances in this field open up perspectives in epidermis-substitute bioengineering for temporary and permanent skin replacement strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Nathalie Rouas-Freiss
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Joel LeMaoult
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Nicolas O Fortunel
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Michele T Martin
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| |
Collapse
|
6
|
Mestrallet G, Auvré F, Schenowitz C, Carosella ED, LeMaoult J, Martin MT, Rouas-Freiss N, Fortunel NO. Human Keratinocytes Inhibit CD4 + T-Cell Proliferation through TGFB1 Secretion and Surface Expression of HLA-G1 and PD-L1 Immune Checkpoints. Cells 2021; 10:cells10061438. [PMID: 34201301 PMCID: PMC8227977 DOI: 10.3390/cells10061438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Human skin protects the body against infection and injury. This protection involves immune and epithelial cells, but their interactions remain largely unknown. Here, we show that cultured epidermal keratinocytes inhibit allogenic CD4+ T-cell proliferation under both normal and inflammatory conditions. Inhibition occurs through the secretion of soluble factors, including TGFB1 and the cell-surface expression of HLA-G1 and PD-L1 immune checkpoints. For the first time, we here describe the expression of the HLA-G1 protein in healthy human skin and its role in keratinocyte-driven tissue immunomodulation. The overexpression of HLA-G1 with an inducible vector increased the immunosuppressive properties of keratinocytes, opening up perspectives for their use in allogeneic settings for cell therapy.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Frédéric Auvré
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Chantal Schenowitz
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
| | - Edgardo D. Carosella
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
| | - Joel LeMaoult
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Michèle T. Martin
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Nathalie Rouas-Freiss
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Nicolas O. Fortunel
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| |
Collapse
|
7
|
Bu X, Zhong J, Li W, Cai S, Gao Y, Ping B. Immunomodulating functions of human leukocyte antigen-G and its role in graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2021; 100:1391-1400. [PMID: 33709198 PMCID: PMC8116272 DOI: 10.1007/s00277-021-04486-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapeutic strategy to treat several hematological malignancies and non-hematological malignancies. However, graft-versus-host disease (GVHD) is a frequent and serious transplant-related complication which dramatically restrains the curative effect of allo-HSCT and a significant cause of morbidity and mortality in allogeneic HCT recipients. Effective prevention of GVHD mainly depends on the induction of peripheral immune tolerance. Human leukocyte antigen-G (HLA-G) is a non-classical MHC class I molecule with a strong immunosuppressive function, which plays a prominent role in immune tolerance. HLA-G triggers different reactions depending on the activation state of the immune cells and system. It also exerts a long-term immune tolerance mechanism by inducing regulatory cells. In this present review, we demonstrate the immunomodulatory properties of human leukocyte antigen-G and highlight the role of HLA-G as an immune regulator of GVHD. Furthermore, HLA-G could also serve as a good predictor of GVHD and represent a new therapeutic target for GVHD.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jinman Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Weiru Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shengchun Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ya Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
- Department of Huiqiao, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
8
|
Li X, Sheng Z, Sun Y, Wang Y, Xu M, Zhang Z, Li H, Shao L, Zhang Y, Yu J, Ma C, Gao C, Hou M, Ni H, Peng J, Ma J, Feng Q. Human leukocyte antigen-G upregulates immunoglobulin-like transcripts and corrects dysfunction of immune cells in immune thrombocytopenia. Haematologica 2021; 106:770-781. [PMID: 32079695 PMCID: PMC7927897 DOI: 10.3324/haematol.2018.204040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex class I antigen with potent immune-inhibitory function. HLA-G benefit patients in allotransplantation and autoimmune diseases by interacting with its receptors, immunoglobulinlike transcripts. Here we observed significantly less HLA-G in plasma from immune thrombocytopenia (ITP) patients positive for anti-platelet autoantibodies compared with autoantibodies-negative patients or healthy controls, while we found that HLA-G is positively correlated with platelet counts in both patients and healthy controls. We also found less membranebound HLA-G and immunoglobulin-like transcripts on CD4+ and CD14+ cells in patients. Recombinant HLA-G upregulated immunoglobulin-like transcript 2 expression on CD4+ and immunoglobulin-like transcript 4 on CD14+ cells. HLA-G upregulated IL-4 and IL-10, and downregulated tumor necrosis factor-a, IL-12 and IL-17 secreted by patient peripheral blood mononuclear cells, suggesting a stimulation of Th2 differentiation and downregulation of Th1 and Th17 immune response. HLA-G-modulated dendritic cells from ITP patients showed decreased expression of CD80 and CD86, and suppressed CD4+ T-cell proliferation compared to unmodulated cells. Moreover, HLA-G-modulated cells from patients induced less platelet apoptosis. HLA-G administration also significantly alleviated thrombocytopenia in a murine model of ITP. In conclusion, our data demonstrated that impaired expression of HLA-G and immunoglobulin-like transcripts is involved in the pathogenesis of ITP; recombinant HLA-G can correct this abnormality via upregulation of immunoglobulin-like transcripts, indicating that HLA-G can be a diagnostic marker and a therapeutic option for ITP.
Collapse
Affiliation(s)
- Xin Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuanxin Sun
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Yuanjian Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqi Zhang
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Jinming Yu
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chunhong Ma
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Chengjiang Gao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Ming Hou
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada,Department of Laboratory Medicine, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada,Canadian Blood Services Center for Innovation, Toronto, Ontario, Canada
| | - Jun Peng
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Ji Ma
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,Department of Medical Oncology, Tianjin Medical University, Tianjin, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
9
|
Cho K, Kook H, Kang S, Lee J. Study of immune-tolerized cell lines and extracellular vesicles inductive environment promoting continuous expression and secretion of HLA-G from semiallograft immune tolerance during pregnancy. J Extracell Vesicles 2020; 9:1795364. [PMID: 32944184 PMCID: PMC7480490 DOI: 10.1080/20013078.2020.1795364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An immune reaction is a protector of our body but a target to be overcome for all non-self-derived medicine. Extracellular Vesicles (EVs), noted as a primary alternative to cell therapy products that exhibit immune rejection due to mismatching-major histocompatibility complex (MHC), were discovered to have excellent curative effects through the delivery of various biologically active substances. Although EVs are sure to incur immune reaction by immunogenicity due to alloantigens from their parental cells, their immune rejection is rarely known. Hence, to develop cell lines and EVs as medicines with no immune rejection, we noted the immune tolerance where the foetus, as semi-allograft, is perfectly protected from the maternal immune system. We designed the ex-vivo culture systems to simulate in-vivo environmental factors inducing extravillous trophoblast (EVT)-specific Human Leukocyte Antigen-G (HLA-G) expression and secretion of HLA-G-bearing EVs at the mother-foetus interface. Using them, we confirmed that immune-tolerized stem cells (itSCs) continuously expressing and secreting HLA-G like EVTs during pregnancy can be induced. Also, EVs secreted from itSCs are verified as immune-tolerized EVs (itSC-EVs) containing HLA-G and not causing immune rejection through various analytical methods. These findings can provide a new perspective on the local and extensive immune tolerance environment where HLA-G is expressed and secreted by pregnancy-related hormones and different biological conditions. Furthermore, they show the new way to develop itSCs-EVs-based therapeutics that are free from time, space, and donor limitation causing immune rejection. Abbreviations CFSE: carboxyfluorescein succinimidyl ester; DC: dendritic cells; ELISA: enzyme-linked immunosorbent assay; EV: extracellular vesicles; EVT: extravillous trophoblast; FSH: follicle stimulating hormone; HA: hyaluronic acid; hCG: human chorionic gonadotropin; HLA-G: human leukocyte antigen G; iPSC: induced pluripotent stem cells; itSC-EVs: immune-tolerized extracellular vesicles from itSCs; itTBC-EVs: immune-tolerized extracellular vesicles from itTBCs; itSCs: immune tolerized stem cells; itTBCs: immune-tolerized trophoblast cells; LH: luteinizing hormone; MHC: major histocompatibility complex; MSC: mesenchymal stem cells; NK: natural killer cells; NTA: nanoparticle tracking analysis; PBMC: peripheral blood mononuclear cells; PHA: phytohemagglutinin; SP-IRIS: single particle interferometric reflectance imaging sensing; STB: syncytiotrophoblast
Collapse
Affiliation(s)
- Kyoungshik Cho
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Hyejin Kook
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Suman Kang
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Jangho Lee
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| |
Collapse
|
10
|
Ajith A, Portik-Dobos V, Horuzsko DD, Kapoor R, Mulloy LL, Horuzsko A. HLA-G and humanized mouse models as a novel therapeutic approach in transplantation. Hum Immunol 2020; 81:178-185. [PMID: 32093884 DOI: 10.1016/j.humimm.2020.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/12/2023]
Abstract
HLA-G is a nonclassical MHC-Class I molecule whose expression, along the feto-maternal barrier contributes towards tolerance of the semiallogeneic fetus during pregnancy. In light of its inhibitory properties, recent research has established HLA-G involvement in mechanisms responsible for directing allogeneic immune responses towards tolerance during allogeneic situations such as organ transplantation. Here, we critically review the data supporting the tolerogenic role of HLA-G in organ transplantation, the various factors influencing its expression, and the introduction of novel humanized mouse models that are one of the best approaches to assess the utility of HLA-G as a therapeutic tool in organ transplantation.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Canter, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Vera Portik-Dobos
- Georgia Cancer Canter, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daniel D Horuzsko
- Philadelphia College of Osteopathic Medicine South Georgia, Moultrie, GA, USA
| | - Rajan Kapoor
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Laura L Mulloy
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Anatolij Horuzsko
- Georgia Cancer Canter, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
11
|
Toni Ho GG, Heinen F, Stieglitz F, Blasczyk R, Bade-Döding C. Dynamic Interaction between Immune Escape Mechanism and HLA-Ib Regulation. Immunogenetics 2019. [DOI: 10.5772/intechopen.80731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Ajith A, Portik-Dobos V, Nguyen-Lefebvre AT, Callaway C, Horuzsko DD, Kapoor R, Zayas C, Maenaka K, Mulloy LL, Horuzsko A. HLA-G dimer targets Granzyme B pathway to prolong human renal allograft survival. FASEB J 2019; 33:5220-5236. [PMID: 30620626 DOI: 10.1096/fj.201802017r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human leukocyte antigen G (HLA-G), a nonclassic HLA class Ib molecule involved in the maintenance of maternal tolerance to semiallogeneic fetal tissues during pregnancy, has emerged as a potential therapeutic target to control allograft rejection. We demonstrate here that the level of soluble HLA-G dimer was higher in a group of 90 patients with a functioning renal allograft compared with 40 patients who rejected (RJ) their transplants. The HLA-G dimer level was not affected by demographic status. One of the potential mechanisms in tissue-organ allograft rejection involves the induction of granzymes and perforin, which are the main effector molecules expressed by CD8+ cytotoxic T lymphocytes and function to destroy allogeneic transplants. Using genomics and molecular and cellular analyses of cells from T-cell-mediated RJ and nonrejected kidney transplant patients, cells from leukocyte Ig-like receptor B1 (LILRB1) transgenic mice, humanized mice, and genetically engineered HLA-G dimer, we demonstrated a novel mechanism by which HLA-G dimer inhibits activation and cytotoxic capabilities of human CD8+ T cells. This mechanism implicated the down-regulation of Granzyme B expression and the essential involvement of LILRB1. Thus, HLA-G dimer has the potential to be a specific and effective therapy for prevention of allograft rejection and prolongation of graft survival.-Ajith, A., Portik-Dobos, V., Nguyen-Lefebvre, A. T., Callaway, C., Horuzsko, D. D., Kapoor, R., Zayas, C., Maenaka, K., Mulloy, L. L., Horuzsko, A. HLA-G dimer targets Granzyme B pathway to prolong human renal allograft survival.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vera Portik-Dobos
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Anh Thu Nguyen-Lefebvre
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Christine Callaway
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Daniel D Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rajan Kapoor
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Carlos Zayas
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Laura L Mulloy
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Anatolij Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
13
|
Lazarte J, Adamson MB, Tumiati LC, Delgado DH. 10-Year Experience with HLA-G in Heart Transplantation. Hum Immunol 2018; 79:587-593. [PMID: 29859206 DOI: 10.1016/j.humimm.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 11/19/2022]
Abstract
The Human Leukocyte Antigen-G (HLA-G) is a MHC-class Ib molecule with robust immunomodulatory properties; in transplant, it inhibits cytotoxic activity of immune cells and thus has a pivotal role in protecting the allograft from immune attack. The present review details a 10-year experience investigating the influence of HLA-G on heart transplantation, allograft rejection and cardiac allograft vasculopathy development. Exploration of HLA-G in transplantation began with the initial findings of its increased expression in allograft hearts. Since then, HLA-G has been recognized as an important factor in transplant immunology. We discuss inducers of HLA-G expression, and the importance of HLA-G as a potential biomarker in allograft rejection and heart failure. We also highlight the importance of polymorphisms and how they may influence both HLA-G expression and clinical outcomes. There remains much to be done in this field, however we hope that findings from our group and other groups will ignite interest and facilitate further expansion of HLA-G research in transplantation.
Collapse
Affiliation(s)
- Julieta Lazarte
- Departments of Medicine, Schulich School of Medicine, Western University, London, Ontario, Canada.
| | - Mitchell B Adamson
- Department of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Laura C Tumiati
- Department of Cardiovascular Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Diego H Delgado
- Department of Cardiology, Hear Failure and Transplant Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Jasinski-Bergner S, Reches A, Stoehr C, Massa C, Gonschorek E, Huettelmaier S, Braun J, Wach S, Wullich B, Spath V, Wang E, Marincola FM, Mandelboim O, Hartmann A, Seliger B. Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma. Oncotarget 2018; 7:26866-78. [PMID: 27057628 PMCID: PMC5042021 DOI: 10.18632/oncotarget.8567] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/11/2016] [Indexed: 12/18/2022] Open
Abstract
The non-classical human leukocyte antigen G (HLA-G) is expressed at a high frequency in renal cell carcinoma (RCC) and is associated with a higher tumor grade and a poor clinical outcome. This might be caused by the HLA-G-mediated inhibition of the cytotoxicity of T and NK cells. Therefore a selective targeting of HLA-G might represent a powerful strategy to enhance the immunogenicity of RCC lesions. Recent studies identified a number of HLA-G-regulating microRNAs (miRs) and demonstrated an inverse expression of some of these miRs with HLA-G in RCC in vitro and in vivo. However, it was postulated that further miRs might exist contributing to the tightly controlled selective HLA-G expression.By application of a miR enrichment assay (miTRAP) in combination with in silico profiling two novel HLA-G-regulatory miRs, miR-548q and miR-628-5p, were identified. Direct interactions of both miRs with the 3' untranslated region of HLA-G were confirmed with luciferase reporter gene assays. In addition, qPCR analyses and immunohistochemical staining revealed an inverse, expression of miR-628-5p, but not of miR-548q to the HLA-G protein in primary RCC lesions and cell lines. Stable overexpression of miR-548q and miR-628-5p caused a downregulation of HLA-G mRNA and protein. This leads in case of miR-548q to an enhanced NK cell-mediated HLA-G-dependent cytotoxicity, which could be reverted by ILT2 blockade suggesting a control of the immune effector cell activity at least by this miR. The identification of two novel HLA-G-regulatory miRs extends the number of HLA-G-relevant miRs tuning the HLA-G expression and might serve as future therapeutic targets.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Adi Reches
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Christine Stoehr
- Institute of Pathology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Evamaria Gonschorek
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Huettelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Juliane Braun
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sven Wach
- Clinic of Urology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Bernd Wullich
- Clinic of Urology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Verena Spath
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Ena Wang
- Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar
| | | | - Ofer Mandelboim
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Arndt Hartmann
- Institute of Pathology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
15
|
Tronik‐Le Roux D, Renard J, Vérine J, Renault V, Tubacher E, LeMaoult J, Rouas‐Freiss N, Deleuze J, Desgrandschamps F, Carosella ED. Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol Oncol 2017; 11:1561-1578. [PMID: 28815885 PMCID: PMC5664004 DOI: 10.1002/1878-0261.12119] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoints are powerful inhibitory molecules that promote tumor survival. Their blockade is now recognized as providing effective therapeutic benefit against cancer. Human leukocyte antigen G (HLA-G), a recently identified immune checkpoint, has been detected in many types of primary tumors and metastases, in malignant effusions as well as on tumor-infiltrating cells, particularly in patients with clear cell renal cell carcinoma (ccRCC). Here, in order to define a possible anticancer therapy, we used a molecular approach based on an unbiased strategy that combines transcriptome determination and immunohistochemical labeling, to analyze in-depth the HLA-G isoforms expressed in these tumors. We found that the expression of HLA-G is highly variable among tumors and distinct areas of the same tumor, testifying a marked inter- and intratumor heterogeneity. Moreover, our results generate an inventory of novel HLA-G isoforms which includes spliced forms that have an extended 5'-region and lack the transmembrane and alpha-1 domains. So far, these isoforms could not be detected by any method available and their assessment may improve the procedure by which tumors are analyzed. Collectively, our approach provides the first extensive portrait of HLA-G in ccRCC and reveals data that should prove suitable for the tailoring of future clinical applications.
Collapse
Affiliation(s)
- Diana Tronik‐Le Roux
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| | - Julie Renard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| | - Jérôme Vérine
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- Service d'Anatomo‐PathologieAP‐HP, Hôpital Saint‐LouisParisFrance
| | - Victor Renault
- Centre d'Etudes du Polymorphisme HumainFondation Jean DaussetParisFrance
| | - Emmanuel Tubacher
- Centre d'Etudes du Polymorphisme HumainFondation Jean DaussetParisFrance
| | - Joel LeMaoult
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| | - Nathalie Rouas‐Freiss
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| | - Jean‐François Deleuze
- Centre d'Etudes du Polymorphisme HumainFondation Jean DaussetParisFrance
- Centre National de GénotypageInstitut de GénomiqueCEAEvryFrance
| | - François Desgrandschamps
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- Service d'UrologieAP‐HP, Hôpital Saint‐LouisParisFrance
| | - Edgardo D. Carosella
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| |
Collapse
|
16
|
Heidari MH, Movafagh A, Abdollahifar MA, Abdi S, Barez MM, Azimi H, Moradi A, Bagheri A, Heidari M, Hessam Mohseni J, Tadayon M, Mirsafian H, Ghatrehsamani M. Evaluation of sHLA-G levels in serum of patients with prostate cancer identify as a potential of tumor marker. Anat Cell Biol 2017; 50:69-72. [PMID: 28417057 PMCID: PMC5386928 DOI: 10.5115/acb.2017.50.1.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is the most common cancer type in men and is the second cause of death, due to cancer, in patients over 50, after lung cancer. Prostate specific antigen (PSA) is a widely used tumor marker for prostate cancer. Recently, PSA is discovered in non-prostatic cancer tissues in men and women raising doubts about its specificity for prostatic tissues. PSA exists in low serum level in healthy men and in higher levels in many prostate disorders, including prostatitis and prostate cancer. Thus, a supplementary tumor marker is needed to accurately diagnose the cancer and to observe the patient after treatment. Recently, soluble human leukocyte antigen-G (sHLA-G) has been introduced as a new tumor marker for different cancer types, including colorectal, breast, lung, and ovary. The present descriptive-experimental study was carried out including patients with malignant prostate tumor, patients with benign prostate tumor, and a group of health men as the control group, as judged by an oncologist as well as a pathologist. After sterile blood sampling, sHLA-G was measured by enzyme-linked immunosorbent assay in each group. The data was then analyzed using one-way ANOVA. P≤0.05 was considered as statistically significant. The results showed that the mean of sHLA-G level was high in patients. Also, it was found that there was a significant difference in sHLA serum level between the three groups. The data revealed that sHLA-G can be a novel supplementary tumor marker in addition to PSA to diagnose prostate cancer.
Collapse
Affiliation(s)
- Mohammad Hassan Heidari
- Department of Anatomy and Biology, Faculty of Medicine, Shahid Beheshti University, Tehran, Iran.,Department of Anatomical Sciences and Biology, Proteomics Laboratory, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, Cancer Research Center, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Shabnam Abdi
- Department of Anatomical Sciences and Biology, School of Medicine, Azad University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Mashhoudi Barez
- Department of Anatomical Sciences and Biology, Proteomics Laboratory, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Azimi
- Department of English Language Teaching, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moradi
- Department of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Amin Bagheri
- Cardiac Surgery and Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Matineh Heidari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Tadayon
- Department of Education Region 1 Tehran (Shemiranat), Tehran, Iran
| | - Hoda Mirsafian
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Biology Research Centre, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
17
|
Simple in vitro generation of human leukocyte antigen-G–expressing T-regulatory cells through pharmacological hypomethylation for adoptive cellular immunotherapy against graft-versus-host disease. Cytotherapy 2017; 19:521-530. [DOI: 10.1016/j.jcyt.2017.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/03/2023]
|
18
|
Takahashi A, Kuroki K, Okabe Y, Kasai Y, Matsumoto N, Yamada C, Takai T, Ose T, Kon S, Matsuda T, Maenaka K. The immunosuppressive effect of domain-deleted dimer of HLA-G2 isoform in collagen-induced arthritis mice. Hum Immunol 2016; 77:754-9. [DOI: 10.1016/j.humimm.2016.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 11/26/2022]
|
19
|
von Websky MW, Kitamura K, Ludwig-Portugall I, Kurts C, von Laffert M, LeMaoult J, Carosella ED, Abu-Elmagd K, Kalff JC, Schäfer N. Recombinant HLA-G as Tolerogenic Immunomodulant in Experimental Small Bowel Transplantation. PLoS One 2016; 11:e0158907. [PMID: 27404095 PMCID: PMC4942037 DOI: 10.1371/journal.pone.0158907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/23/2016] [Indexed: 11/18/2022] Open
Abstract
The non-classical MHC I paralogue HLA-G is expressed by cytotrophoblast cells and implicated with fetomaternal tolerance by downregulating the maternal adaptive and innate immune response against the fetus. HLA-G expression correlates with favorable graft outcome in humans and recently promising immunosuppressive effects of therapeutic HLA-G in experimental transplantation (skin allograft acceptance) were shown. Consequently, we examined this novel therapeutic approach in solid organ transplantation. In this study, therapeutic recombinant HLA-G5 was evaluated for the first time in a solid organ model of acute rejection (ACR) after orthotopic intestinal transplantation (ITX). Allogenic ITX was performed in rats (Brown Norway to Lewis) with and without HLA-G treatment. It was found that HLA-G treatment significantly reduced histologically proven ACR at both an early and late postoperative timepoint (POD 4/7), concomitant to a functionally preserved graft contractility at POD 7. Interestingly, graft infiltration by myeloperoxidase+ cells was significantly reduced at POD7 by HLA-G treatment. Moreover, HLA-G treatment showed an effect on the allogenic T-cell immune response as assessed by flow cytometry: The influx of recipient-derived CD8+ T-cells into the graft mesenteric lymphnodes at POD7 was significantly reduced while CD4+ populations were not affected. As a potential mechanism of action, an induction of T-reg populations in the mesenteric lymphnodes was postulated, but flow cytometric analysis of classical CD4+/CD25+/FoxP3+Treg-cells showed no significant alteration by HLA-G treatment. The novel therapeutic approach using recombinant HLA-G5 reported herein demonstrates a significant immunosuppressive effect in this model of allogenic experimental intestinal transplantation. This effect may be mediated via inhibition of recipient-derived CD8+ T-cell populations either directly or by induction of non-classical Treg populations.
Collapse
Affiliation(s)
| | - Koji Kitamura
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
- Department of Hepatobiliary Pancreatic Surgery and Transplantation, Kyoto University Hospital, Kyoto, Japan
| | | | - Christian Kurts
- Institute for Experimental Immunology, University of Bonn, Germany
| | | | - Joel LeMaoult
- CEA, iMETI, Research Division in Hematology and Immunology, Saint-Louis Hospital, Paris, France
| | - Edgardo D. Carosella
- CEA, iMETI, Research Division in Hematology and Immunology, Saint-Louis Hospital, Paris, France
| | - Kareem Abu-Elmagd
- Transplant Center, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Joerg C. Kalff
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Nico Schäfer
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
20
|
Nguyen-Lefebvre AT, Ajith A, Portik-Dobos V, Horuzsko DD, Mulloy LL, Horuzsko A. Mouse models for studies of HLA-G functions in basic science and pre-clinical research. Hum Immunol 2016; 77:711-9. [PMID: 27085792 DOI: 10.1016/j.humimm.2016.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/27/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Abstract
HLA-G was described originally as a tolerogenic molecule that allows the semiallogeneic fetus to escape from recognition by the maternal immune response. This review will discuss different steps in the study of HLA-G expression and functions in vivo, starting with analyses of expression of the HLA-G gene and its receptors in transgenic mice, and continuing with applications of HLA-G and its receptors in prevention of allograft rejection, transplantation tolerance, and controlling the development of infection. Humanized mouse models have been discussed for developing in vivo studies of HLA-G in physiological and pathological conditions. Collectively, animal models provide an opportunity to evaluate the importance of the interaction between HLA-G and its receptors in terms of its ability to regulate immune responses during maternal-fetal tolerance, survival of allografts, tumor-escape mechanisms, and development of infections when both HLA-G and its receptors are expressed. In addition, in vivo studies on HLA-G also offer novel approaches to achieve a reproducible transplantation tolerance and to develop personalized medicine to prevent allograft rejection.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Ashwin Ajith
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Vera Portik-Dobos
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Daniel D Horuzsko
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Laura L Mulloy
- Department of Medicine, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Anatolij Horuzsko
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA; Department of Medicine, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
21
|
Amiot L, Vu N, Samson M. Biology of the immunomodulatory molecule HLA-G in human liver diseases. J Hepatol 2015; 62:1430-7. [PMID: 25772038 DOI: 10.1016/j.jhep.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/05/2015] [Accepted: 03/02/2015] [Indexed: 01/16/2023]
Abstract
The non-classical human leukocyte antigen-G (HLA-G), plays an important role in inducing tolerance, through its immunosuppressive effects on all types of immune cells. Immune tolerance is a key issue in the liver, both in liver homeostasis and in the response to liver injury or cancer. It would therefore appear likely that HLA-G plays an important role in liver diseases. Indeed, this molecule was recently shown to be produced by mast cells in the livers of patients infected with hepatitis C virus (HCV). Furthermore, the number of HLA-G-positive mast cells was significantly associated with fibrosis progression. The generation of immune tolerance is a role common to both HLA-G, as a molecule, and the liver, as an organ. This review provides a summary of the evidence implicating HLA-G in liver diseases. In the normal liver, HLA-G transcripts can be detected, but there is no HLA-G protein. However, HLA-G protein is detectable in the liver tissues and/or plasma of patients suffering from hepatocellular carcinoma, hepatitis B or C, or visceral leishmaniasis and in liver transplant recipients. The cells responsible for producing HLA-G differ between diseases. HLA-G expression is probably induced by microenvironmental factors, such as cytokines. The expression of HLA-G receptors, such as ILT2, ILT4, and KIRD2L4, on liver cells has yet to be investigated, but these receptors have been detected on all types of immune cells, and such cells are present in liver. The tolerogenic properties of HLA-G explain its deleterious effects in cancers and its beneficial effects in transplantation. Given the key role of HLA-G in immune tolerance, new therapeutic agents targeting HLA-G could be tested for the treatment of these diseases in the future.
Collapse
Affiliation(s)
- Laurence Amiot
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement & Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Fédération de Recherche BioSit de Rennes UMS 3480, F-35043 Rennes, France; Department of Biology, University Hospital Pontchaillou, CHU Pontchaillou, Rennes, France.
| | - Nicolas Vu
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement & Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Fédération de Recherche BioSit de Rennes UMS 3480, F-35043 Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement & Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Fédération de Recherche BioSit de Rennes UMS 3480, F-35043 Rennes, France
| |
Collapse
|
22
|
Suppression of human macrophage-mediated cytotoxicity by transgenic swine endothelial cell expression of HLA-G. Transpl Immunol 2015; 32:109-15. [DOI: 10.1016/j.trim.2014.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 11/15/2022]
|
23
|
|
24
|
Teklemariam T, Zhao L, Hantash BM. Heterologous expression of mutated HLA-G1 reduces alloreactivity of human dermal fibroblasts. Regen Med 2014; 9:775-84. [DOI: 10.2217/rme.14.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To engineer a stable HLA-G molecule and evaluate its immunomodulatory properties in transgenic human dermal fibroblasts (HDFs). Materials & methods: A mutated HLA-G1 (mHLA-G1) molecule was generated by modifying the endoplasmic reticulum retrieval motif and 3′-untranslated region miRNA-binding sites of HLA-G1. Immunomodulatory properties of transgenic HDF-mHLA-G1 were evaluated in vitro. Results: Stable mHLA-G1 expressing HDF cells were successfully generated and flow cytometry analysis revealed that mHLA-G1 efficiently localized to the cell surface. Natural killer cell-mediated cytolysis of HDF-mHLA-G1/green fluorescent protein (GFP) was reduced by 73% compared with HDF-GDP. HDF-mHLA-G1/GFP decreased phytohemagglutinin-activated peripheral blood mononuclear cell proliferation by 30% versus HDF-GFP. Conclusion: We are the first to successfully create a human fibroblast source with reduced alloreactivity using a novel mHLA-G1 construct. This approach may be extended to other cell types including human embryonic stem cells for use in allogeneic transplantation for cell-based regenerative medicine applications.
Collapse
Affiliation(s)
| | | | - Basil M Hantash
- Escape Therapeutics, Inc., San Jose, CA, USA
- Elixir Institute of Regenerative Medicine, Inc., San Jose, CA, USA
| |
Collapse
|
25
|
Rebmann V, da Silva Nardi F, Wagner B, Horn PA. HLA-G as a tolerogenic molecule in transplantation and pregnancy. J Immunol Res 2014; 2014:297073. [PMID: 25143957 PMCID: PMC4131093 DOI: 10.1155/2014/297073] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022] Open
Abstract
HLA-G is a nonclassical HLA class I molecule. In allogeneic situations such as pregnancy or allograft transplantation, the expression of HLA-G has been related to a better acceptance of the fetus or the allograft. Thus, it seems that HLA-G is crucially involved in mechanisms shaping an allogeneic immune response into tolerance. In this contribution we focus on (i) how HLA-G is involved in transplantation and human reproduction, (ii) how HLA-G is regulated by genetic and microenvironmental factors, and (iii) how HLA-G can offer novel perspectives with respect to therapy.
Collapse
Affiliation(s)
- Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Fabiola da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
- CAPES Foundation, Ministry of Education of Brazil, 70.040-020 Brasília, DF, Brazil
| | - Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| |
Collapse
|
26
|
Lynge Nilsson L, Djurisic S, Hviid TVF. Controlling the Immunological Crosstalk during Conception and Pregnancy: HLA-G in Reproduction. Front Immunol 2014; 5:198. [PMID: 24860568 PMCID: PMC4026753 DOI: 10.3389/fimmu.2014.00198] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/22/2014] [Indexed: 01/27/2023] Open
Abstract
In several years after its discovery in the placenta, the human leukocyte antigen (HLA) class Ib protein, HLA-G, was not given much attention, nor was it assigned great importance. As time has unraveled, HLA-G has proven to have distinctive functions and an unforeseen and possibly important role in reproduction. HLA-G is characterized mainly by its low polymorphism and restricted tissue distribution in non-pathological conditions. In fact, its expression pattern is primarily limited to extravillous cytotrophoblast cells at the maternal-fetal interface during pregnancy. Due to low polymorphism, almost the same protein is expressed by virtually all individuals. It is these unique features that make HLA-G differ from its highly polymorphic HLA class Ia counterparts, the HLA-A, -B, and -C molecules. Its function, seemingly diverse, is typically receptor-mediated, and involves interactions with a wide range of immune cells. As the expression of HLA-G primarily is limited to gestation, this has given rise to the hypothesis that HLA-G plays an important role in the immunological tolerance of the fetus by the mother. In keeping with this, it might not be surprising that polymorphisms in the HLA-G gene, and levels of HLA-G expression, have been linked to reproductive failure and pre-eclampsia. Based on recent studies, we speculate that HLA-G might be involved in mechanisms in reproductive immunology even before conception because HLA-G can be detected in the genital tract and in the blood of non-pregnant women, and is present in seminal fluid from men. In addition, HLA-G expression has been found in the pre-implanted embryo. Therefore, we propose that a combined contribution from the mother, the father, and the embryo/fetus is likely to be important. Furthermore, this review presents important aspects of HLA-G in relation to reproduction: from genetics to physiological effects, from pregnancy and pregnancy complications to a short discussion on future possible means of preventative measures and therapy.
Collapse
Affiliation(s)
- Line Lynge Nilsson
- Centre for Immune Regulation and Reproductive Immunology, Department of Clinical Biochemistry, Copenhagen University Hospital , Roskilde , Denmark
| | - Snezana Djurisic
- Centre for Immune Regulation and Reproductive Immunology, Department of Clinical Biochemistry, Copenhagen University Hospital , Roskilde , Denmark
| | - Thomas Vauvert F Hviid
- Centre for Immune Regulation and Reproductive Immunology, Department of Clinical Biochemistry, Copenhagen University Hospital , Roskilde , Denmark
| |
Collapse
|
27
|
Amiot L, Vu N, Samson M. Immunomodulatory properties of HLA-G in infectious diseases. J Immunol Res 2014; 2014:298569. [PMID: 24839609 PMCID: PMC4009271 DOI: 10.1155/2014/298569] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/04/2022] Open
Abstract
HLA-G is a nonclassical major histocompatibility complex molecule first described at the maternal-fetal interface, on extravillous cytotrophoblasts. Its expression is restricted to some tissues in normal conditions but increases strongly in pathological conditions. The expression of this molecule has been studied in detail in cancers and is now also beginning to be described in infectious diseases. The relevance of studies on HLA-G expression lies in the well known inhibitory effect of this molecule on all cell types involved in innate and adaptive immunity, favoring escape from immune control. In this review, we summarize the features of HLA-G expression by type of infections (i.e, bacterial, viral, or parasitic) detailing the state of knowledge for each pathogenic agent. The polymorphism, the interference of viral proteins with HLA-G intracellular trafficking, and various cytokines have been described to modulate HLA-G expression during infections. We also discuss the cellular source of HLA-G, according to the type of infection and the potential role of HLA-G. New therapeutic approaches based on synthetic HLA-G-derived proteins or antibodies are emerging in mouse models of cancer or transplantation, and these new therapeutic tools may eventually prove useful for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Laurence Amiot
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche sur la Santé, l'Environnement, et le Travail (IRSET), 2 Avenue du Pr. Leon Bernard CS 34317, 35043 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
- Fédération de Recherche BioSit de Rennes UMS 3480, 35043 Rennes, France
- Department of Biology, University Hospital Pontchaillou, CHU Pontchaillou, 35033 Rennes, France
| | - Nicolas Vu
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche sur la Santé, l'Environnement, et le Travail (IRSET), 2 Avenue du Pr. Leon Bernard CS 34317, 35043 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
- Fédération de Recherche BioSit de Rennes UMS 3480, 35043 Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche sur la Santé, l'Environnement, et le Travail (IRSET), 2 Avenue du Pr. Leon Bernard CS 34317, 35043 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
- Fédération de Recherche BioSit de Rennes UMS 3480, 35043 Rennes, France
| |
Collapse
|
28
|
Rouas-Freiss N, Moreau P, LeMaoult J, Carosella ED. The dual role of HLA-G in cancer. J Immunol Res 2014; 2014:359748. [PMID: 24800261 PMCID: PMC3995100 DOI: 10.1155/2014/359748] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
We here review the current data on the role of HLA-G in cancer based on recent findings of an unexpected antitumor activity of HLA-G in hematological malignancies. For the past decade, HLA-G has been described as a tumor-escape mechanism favoring cancer progression, and blocking strategies have been proposed to counteract it. Aside from these numerous studies on solid tumors, recent data showed that HLA-G inhibits the proliferation of malignant B cells due to the interaction between HLA-G and its receptor ILT2, which mediates negative signaling on B cell proliferation. These results led to the conjecture that, according to the malignant cell type, HLA-G should be blocked or conversely induced to counteract tumor progression. In this context, we will here present (i) the dual role of HLA-G in solid and liquid tumors with special emphasis on (ii) the HLA-G active structures and their related ILT2 and ILT4 receptors and (iii) the current knowledge on regulatory mechanisms of HLA-G expression in tumors.
Collapse
Affiliation(s)
- Nathalie Rouas-Freiss
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, 75010 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hopital Saint-Louis, UMR_E5, 75010 Paris, France
| | - Philippe Moreau
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, 75010 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hopital Saint-Louis, UMR_E5, 75010 Paris, France
| | - Joel LeMaoult
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, 75010 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hopital Saint-Louis, UMR_E5, 75010 Paris, France
| | - Edgardo D. Carosella
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, 75010 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hopital Saint-Louis, UMR_E5, 75010 Paris, France
| |
Collapse
|
29
|
HLA-G dimers in the prolongation of kidney allograft survival. J Immunol Res 2014; 2014:153981. [PMID: 24741575 PMCID: PMC3985180 DOI: 10.1155/2014/153981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/23/2014] [Accepted: 02/27/2014] [Indexed: 01/01/2023] Open
Abstract
Human leukocyte antigen-G (HLA-G) contributes to acceptance of allografts in solid organ/tissue transplantation. Most studies have determined that soluble HLA-G isoforms are systematically detected in serum/plasma of transplanted patients with significantly fewer episodes of acute and/or chronic rejection of allogeneic tissue/organ. Current models of the interactions of HLA-G and its specific receptors explain it as functioning in a monomeric form. However, in recent years, new data has revealed the ability of HLA-G to form disulfide-linked dimeric complexes with high preferential binding and functional activities. Limited data are available on the role of soluble HLA-G dimers in clinical pathological conditions. We describe here the presence of soluble HLA-G dimers in kidney transplant patients. Our study showed that a high level of HLA-G dimers in plasma and increased expression of the membrane-bound form of HLA-G on monocytes are associated with prolongation of kidney allograft survival. We also determined that the presence of soluble HLA-G dimers links to the lower levels of proinflammatory cytokines, suggesting a potential role of HLA-G dimers in controlling the accompanying inflammatory state.
Collapse
|
30
|
The many faces of human leukocyte antigen-G: relevance to the fate of pregnancy. J Immunol Res 2014; 2014:591489. [PMID: 24741608 PMCID: PMC3987982 DOI: 10.1155/2014/591489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pregnancy is an immunological paradox, where fetal antigens encoded by polymorphic genes inherited from the father do not provoke a maternal immune response. The fetus is not rejected as it would be theorized according to principles of tissue transplantation. A major contribution to fetal tolerance is the human leukocyte antigen (HLA)-G, a nonclassical HLA protein displaying limited polymorphism, restricted tissue distribution, and a unique alternative splice pattern. HLA-G is primarily expressed in placenta and plays multifaceted roles during pregnancy, both as a soluble and a membrane-bound molecule. Its immunomodulatory functions involve interactions with different immune cells and possibly regulation of cell migration during placental development. Recent findings include HLA-G contributions from the father and the fetus itself. Much effort has been put into clarifying the role of HLA-G during pregnancy and pregnancy complications, such as preeclampsia, recurrent spontaneous abortions, and subfertility or infertility. This review aims to clarify the multifunctional role of HLA-G in pregnancy-related disorders by focusing on genetic variation, differences in mRNA stability between HLA-G alleles, differences in HLA-G isoform expression, and possible differences in functional activity. Furthermore, we highlight important observations regarding HLA-G genetics and expression in preeclampsia that future research should address.
Collapse
|
31
|
HLA-G polymorphism (rs16375) and acute rejection in liver transplant recipients. DISEASE MARKERS 2014; 2014:814182. [PMID: 24591768 PMCID: PMC3925595 DOI: 10.1155/2014/814182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/28/2013] [Indexed: 11/17/2022]
Abstract
Background. HLA-G molecules exhibit immunomodulatory properties that can delay graft rejection. The 14 bp insertion/deletion polymorphism (INDEL) (rs16375) influences the stability of final HLA-G mRNA and its soluble isoforms. Objective. The present study aimed to investigate the possible association between this polymorphism and the incidence of acute rejection in Iranian liver transplant recipients. Methods. Different genotypes were evaluated by PCR. The patients who had acute rejection within 6 months after transplantation were classified as acute rejection (AR) group, while others were considered as nonacute rejection (NAR) group. Results. Among the recipients, 21 patients (21%) had at least one episode of AR, while the other 79 patients (79%) had normal liver function. No significant differences were found between the two groups regarding sex, MELD score, and primary liver disease. Also, no difference was observed concerning rs16375 genotype and allele frequency (P = 0.44, OR: 0.69; CI: 0.21–2.10). Conclusion. The study results revealed no significant difference between the AR and the NAR groups regarding the 14 bp INDEL genotypes and alleles. Further studies are recommended to be conducted on other polymorphic sites as well as monitoring of serum HLA-G concentration in order to ascertain the potential implications of this marker in our population.
Collapse
|
32
|
Zhao L, Teklemariam T, Hantash BM. Mutated HLA-G3 localizes to the cell surface but does not inhibit cytotoxicity of natural killer cells. Cell Immunol 2013; 287:23-6. [PMID: 24355712 DOI: 10.1016/j.cellimm.2013.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/29/2022]
Abstract
HLA-G plays an important role in the induction of immune tolerance. Various attempts to produce good manufacturing practice levels of HLA-G as a therapeutic molecule have failed to date partly due to the complicated structure of full-length HLA-G1. Truncated HLA-G3 is simpler and easier to produce than HLA-G1 and contains the expected functional epitope in its only α1 monomorphic domain. In this study, we engineered the ER retrieval and retention signal on HLA-G3's cytoplasmic tail by replacing its RKKSSD motif with RAASSD. We observed that mutated HLA-G3 was highly expressed on the cell surface of transduced K562 cells but did not inhibit cytotoxicity of natural killer cells.
Collapse
Affiliation(s)
- Longmei Zhao
- Escape Therapeutics, Inc., San Jose, CA, United States
| | | | | |
Collapse
|