1
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Eraña H, Sampedro-Torres-Quevedo C, Charco JM, Díaz-Domínguez CM, Peccati F, San-Juan-Ansoleaga M, Vidal E, Gonçalves-Anjo N, Pérez-Castro MA, González-Miranda E, Piñeiro P, Fernández-Veiga L, Galarza-Ahumada J, Fernández-Muñoz E, Perez de Nanclares G, Telling G, Geijo M, Jiménez-Osés G, Castilla J. A Protein Misfolding Shaking Amplification-based method for the spontaneous generation of hundreds of bona fide prions. Nat Commun 2024; 15:2112. [PMID: 38459071 PMCID: PMC10923866 DOI: 10.1038/s41467-024-46360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.
Collapse
Affiliation(s)
- Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- ATLAS Molecular Pharma S. L, Derio, Spain
| | | | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- ATLAS Molecular Pharma S. L, Derio, Spain
| | - Carlos M Díaz-Domínguez
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Maitena San-Juan-Ansoleaga
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Enric Vidal
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Nuno Gonçalves-Anjo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Miguel A Pérez-Castro
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ezequiel González-Miranda
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Patricia Piñeiro
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Leire Fernández-Veiga
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Josu Galarza-Ahumada
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Eva Fernández-Muñoz
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Glenn Telling
- Prion Research Center, Colorado State University, Fort Collins, CO, USA
| | - Mariví Geijo
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Eraña H, Díaz-Domínguez CM, Charco JM, Vidal E, González-Miranda E, Pérez-Castro MA, Piñeiro P, López-Moreno R, Sampedro-Torres-Quevedo C, Fernández-Veiga L, Tasis-Galarza J, Lorenzo NL, Santini-Santiago A, Lázaro M, García-Martínez S, Gonçalves-Anjo N, San-Juan-Ansoleaga M, Galarza-Ahumada J, Fernández-Muñoz E, Giler S, Valle M, Telling GC, Geijó M, Requena JR, Castilla J. Understanding the key features of the spontaneous formation of bona fide prions through a novel methodology that enables their swift and consistent generation. Acta Neuropathol Commun 2023; 11:145. [PMID: 37679832 PMCID: PMC10486007 DOI: 10.1186/s40478-023-01640-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Among transmissible spongiform encephalopathies or prion diseases affecting humans, sporadic forms such as sporadic Creutzfeldt-Jakob disease are the vast majority. Unlike genetic or acquired forms of the disease, these idiopathic forms occur seemingly due to a random event of spontaneous misfolding of the cellular PrP (PrPC) into the pathogenic isoform (PrPSc). Currently, the molecular mechanisms that trigger and drive this event, which occurs in approximately one individual per million each year, remain completely unknown. Modelling this phenomenon in experimental settings is highly challenging due to its sporadic and rare occurrence. Previous attempts to model spontaneous prion misfolding in vitro have not been fully successful, as the spontaneous formation of prions is infrequent and stochastic, hindering the systematic study of the phenomenon. In this study, we present the first method that consistently induces spontaneous misfolding of recombinant PrP into bona fide prions within hours, providing unprecedented possibilities to investigate the mechanisms underlying sporadic prionopathies. By fine-tuning the Protein Misfolding Shaking Amplification method, which was initially developed to propagate recombinant prions, we have created a methodology that consistently produces spontaneously misfolded recombinant prions in 100% of the cases. Furthermore, this method gives rise to distinct strains and reveals the critical influence of charged surfaces in this process.
Collapse
Affiliation(s)
- Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
- ATLAS Molecular Pharma S. L. Bizkaia Technology Park, 48160, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain
| | - Carlos M Díaz-Domínguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain
| | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
- ATLAS Molecular Pharma S. L. Bizkaia Technology Park, 48160, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain
| | - Enric Vidal
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Ezequiel González-Miranda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Miguel A Pérez-Castro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Patricia Piñeiro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Rafael López-Moreno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Cristina Sampedro-Torres-Quevedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Leire Fernández-Veiga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Juan Tasis-Galarza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Nuria L Lorenzo
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
| | - Aileen Santini-Santiago
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Melisa Lázaro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Sandra García-Martínez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Nuno Gonçalves-Anjo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Maitena San-Juan-Ansoleaga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Josu Galarza-Ahumada
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Eva Fernández-Muñoz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Samanta Giler
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Mikel Valle
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Glenn C Telling
- Prion Research Center (PRC), Colorado State University, Fort Collins, CO, 80523, USA
| | - Mariví Geijó
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain
| | - Jesús R Requena
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| |
Collapse
|
4
|
Esmaili M, Eldeeb M. Cellular toxicity of scrapie prions in prion diseases; a biochemical and molecular overview. Mol Biol Rep 2023; 50:1743-1752. [PMID: 36446981 DOI: 10.1007/s11033-022-07806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases consist of a broad range of fatal neurological disorders affecting humans and animals. Contrary to Watson and Crick's 'central dogma', prion diseases are caused by a protein, devoid of DNA involvement. Herein, we briefly review various cellular and biological aspects of prions and prion pathogenesis focusing mainly on historical milestones, biosynthesis, degradation, structure-function of cellular and scrapie forms of prions .
Collapse
Affiliation(s)
- Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Mohamed Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
6
|
Jack K, Jackson GS, Bieschke J. Essential Components of Synthetic Infectious Prion Formation De Novo. Biomolecules 2022; 12:1694. [PMID: 36421708 PMCID: PMC9687555 DOI: 10.3390/biom12111694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2024] Open
Abstract
Prion diseases are a class of neurodegenerative diseases that are uniquely infectious. Whilst their general replication mechanism is well understood, the components required for the formation and propagation of highly infectious prions are poorly characterized. The protein-only hypothesis posits that the prion protein (PrP) is the only component of the prion; however, additional co-factors are required for its assembly into infectious prions. These can be provided by brain homogenate, but synthetic lipids and non-coding RNA have also been used in vitro. Here, we review a range of experimental approaches, which generate PrP amyloid assemblies de novo. These synthetic PrP assemblies share some, but not necessarily all, properties of genuine infectious prions. We will discuss the different experimental approaches, how a prion is defined, the non-protein requirements of a prion, and provide an overview of the current state of prion amplification and generation in vitro.
Collapse
Affiliation(s)
| | | | - Jan Bieschke
- MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, 33, Cleveland Street, London W1W 7FF, UK
| |
Collapse
|
7
|
Ma J, Zhang J, Yan R. Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers. Viruses 2022; 14:v14091940. [PMID: 36146746 PMCID: PMC9504972 DOI: 10.3390/v14091940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Generating a prion with exogenously produced recombinant prion protein is widely accepted as the ultimate proof of the prion hypothesis. Over the years, a plethora of misfolded recPrP conformers have been generated, but despite their seeding capability, many of them have failed to elicit a fatal neurodegenerative disorder in wild-type animals like a naturally occurring prion. The application of the protein misfolding cyclic amplification technique and the inclusion of non-protein cofactors in the reaction mixture have led to the generation of authentic recombinant prions that fully recapitulate the characteristics of native prions. Together, these studies reveal that recPrP can stably exist in a variety of misfolded conformations and when inoculated into wild-type animals, misfolded recPrP conformers cause a wide range of outcomes, from being completely innocuous to lethal. Since all these recPrP conformers possess seeding capabilities, these results clearly suggest that seeding activity alone is not equivalent to prion activity. Instead, authentic prions are those PrP conformers that are not only heritable (the ability to seed the conversion of normal PrP) but also pathogenic (the ability to cause fatal neurodegeneration). The knowledge gained from the studies of the recombinant prion is important for us to understand the pathogenesis of prion disease and the roles of misfolded proteins in other neurodegenerative disorders.
Collapse
|
8
|
Zhang X, Pan YH, Chen Y, Pan C, Ma J, Yuan C, Yu G, Ma J. The protease-sensitive N-terminal polybasic region of prion protein modulates its conversion to the pathogenic prion conformer. J Biol Chem 2021; 297:101344. [PMID: 34710372 PMCID: PMC8604679 DOI: 10.1016/j.jbc.2021.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt-Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.
Collapse
Affiliation(s)
- Xiangyi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ying Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chenhua Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Guohua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan, China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China; Department of Neurodegeneraive Science, Van Andel Institute, Grand Rapids, Michigan, USA; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
9
|
Siddiqi MK, Kim C, Haldiman T, Kacirova M, Wang B, Bohon J, Chance MR, Kiselar J, Safar JG. Structurally distinct external solvent-exposed domains drive replication of major human prions. PLoS Pathog 2021; 17:e1009642. [PMID: 34138981 PMCID: PMC8211289 DOI: 10.1371/journal.ppat.1009642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/13/2021] [Indexed: 12/01/2022] Open
Abstract
There is a limited understanding of structural attributes that encode the iatrogenic transmissibility and various phenotypes of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD). Here we report the detailed structural differences between major sCJD MM1, MM2, and VV2 prions determined with two complementary synchrotron hydroxyl radical footprinting techniques—mass spectrometry (MS) and conformation dependent immunoassay (CDI) with a panel of Europium-labeled antibodies. Both approaches clearly demonstrate that the phenotypically distant prions differ in a major way with regard to their structural organization, and synchrotron-generated hydroxyl radicals progressively inhibit their seeding potency in a strain and structure-specific manner. Moreover, the seeding rate of sCJD prions is primarily determined by strain-specific structural organization of solvent-exposed external domains of human prion particles that control the seeding activity. Structural characteristics of human prion strains suggest that subtle changes in the organization of surface domains play a critical role as a determinant of human prion infectivity, propagation rate, and targeting of specific brain structures. Sporadic human prion diseases are conceivably the most heterogenous neurodegenerative disorders and a growing body of research indicates that they are caused by distinct strains of prions. By parallel monitoring their replication potency and progressive hydroxyl radical modification of amino acid side chains during synchrotron irradiation, we identified major differences in the structural organization that correlate with distinct inactivation susceptibility of a given human prion strain. Furthermore, our data demonstrated, for the first time, that seeding activity of different strains of infectious brain-derived human prions is primarily function of distinct solvent-exposed structural domains, and implicate them in the initial binding of cellular isoform of prion protein (PrPC) as a critical step in human prion replication and infectivity.
Collapse
Affiliation(s)
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Miroslava Kacirova
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Benlian Wang
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America.,Center for Proteomics and Bioinformatics, Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Jen Bohon
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America.,Center for Proteomics and Bioinformatics, Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Mark R Chance
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America.,Center for Proteomics and Bioinformatics, Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Janna Kiselar
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America.,Center for Proteomics and Bioinformatics, Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America.,Department of Neurology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
10
|
Drew SC. Aldehyde Production as a Calibrant of Ultrasonic Power Delivery During Protein Misfolding Cyclic Amplification. Protein J 2020; 39:501-508. [PMID: 33011953 DOI: 10.1007/s10930-020-09920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
The protein misfolding cyclic amplification (PMCA) technique employs repeated cycles of incubation and sonication to amplify minute amounts of misfolded protein conformers. Spontaneous (de novo) prion formation and ultrasonic power level represent two potentially interrelated sources of variation that frustrate attempts to replicate results from different laboratories. We previously established that water splitting during PMCA provides a radical-rich environment leading to oxidative damage to substrate molecules as well as the polypropylene PCR tubes used for sample containment. Here it is shown that the cross-linking agent formaldehyde is generated from buffer ions that are attacked by hydroxyl radicals. In addition, free radical damage to protein, nucleic acid, lipid, and detergent molecules produces a substantial concentration of aldehydes (hundreds of micromolar). The measurement of aldehydes using the Hantzsch reaction provides a reliable and inexpensive method for measuring the power delivered to individual PMCA samples, and for calibrating the power output characteristics of an individual sonicator. The proposed method may also be used to better account for inter-assay and inter-laboratory variation in prion replication and de novo prion generation, the latter of which may correlate with aldehyde-induced cross-linking of substrate molecules.
Collapse
Affiliation(s)
- Simon C Drew
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Victoria, 3010, Australia. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland.
| |
Collapse
|
11
|
Spagnolli G, Requena JR, Biasini E. Understanding prion structure and conversion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:19-30. [PMID: 32958233 DOI: 10.1016/bs.pmbts.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since their original identification, prions have represented enigmatic agents that defy the classical concept of genetic inheritance. For almost four decades, the high-resolution structure of PrPSc, the infectious and misfolded counterpart of the cellular prion protein (PrPC), has remained elusive, mostly due to technical challenges posed by its high insolubility and aggregation propensity. As a result, such a lack of information has critically hampered the search for an effective therapy against prion diseases. Nevertheless, multiple attempts to get insights into the structure of PrPSc have provided important experimental constraints that, despite being at limited resolution, are paving the way for the application of computer-aided technologies to model the three-dimensional architecture of prions and their templated replication mechanism. Here, we review the most relevant studies carried out so far to elucidate the conformation of infectious PrPSc and offer an overview of the most advanced molecular models to explain prion structure and conversion.
Collapse
Affiliation(s)
- Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, TN, Italy; Dulbecco Telethon Institute, University of Trento, Trento, TN, Italy
| | - Jesús R Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, TN, Italy; Dulbecco Telethon Institute, University of Trento, Trento, TN, Italy.
| |
Collapse
|
12
|
Pan C, Yang J, Zhang X, Chen Y, Wei S, Yu G, Pan YH, Ma J, Yuan C. Oral Ingestion of Synthetically Generated Recombinant Prion Is Sufficient to Cause Prion Disease in Wild-Type Mice. Pathogens 2020; 9:pathogens9080653. [PMID: 32823763 PMCID: PMC7459977 DOI: 10.3390/pathogens9080653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Prion disease is a group of transmissible neurodegenerative disorders affecting humans and animals. The prion hypothesis postulates that PrPSc, the pathogenic conformer of host-encoded prion protein (PrP), is the unconventional proteinaceous infectious agent called prion. Supporting this hypothesis, highly infectious prion has been generated in vitro with recombinant PrP plus defined non-protein cofactors and the synthetically generated prion (recPrPSc) is capable of causing prion disease in wild-type mice through intracerebral (i.c.) or intraperitoneal (i.p.) inoculation. Given that many of the naturally occurring prion diseases are acquired through oral route, demonstrating the capability of recPrPSc to cause prion disease via oral transmission is important, but has never been proven. Here we showed for the first time that oral ingestion of recPrPSc is sufficient to cause prion disease in wild-type mice, which was supported by the development of fatal neurodegeneration in exposed mice, biochemical and histopathological analyses of diseased brains, and second round transmission. Our results demonstrate the oral transmissibility of recPrPSc and provide the missing evidence to support that the in vitro generated recPrPSc recapitulates all the important properties of naturally occurring prions.
Collapse
Affiliation(s)
- Chenhua Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, China; (C.P.); (J.Y.); (X.Z.); (Y.C.); (S.W.); (Y.-H.P.)
| | - Junwei Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, China; (C.P.); (J.Y.); (X.Z.); (Y.C.); (S.W.); (Y.-H.P.)
| | - Xiangyi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, China; (C.P.); (J.Y.); (X.Z.); (Y.C.); (S.W.); (Y.-H.P.)
| | - Ying Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, China; (C.P.); (J.Y.); (X.Z.); (Y.C.); (S.W.); (Y.-H.P.)
| | - Shunxiong Wei
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, China; (C.P.); (J.Y.); (X.Z.); (Y.C.); (S.W.); (Y.-H.P.)
| | - Guohua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan 364012, China;
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, China; (C.P.); (J.Y.); (X.Z.); (Y.C.); (S.W.); (Y.-H.P.)
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Correspondence: (J.M.); (C.Y.)
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, China; (C.P.); (J.Y.); (X.Z.); (Y.C.); (S.W.); (Y.-H.P.)
- Correspondence: (J.M.); (C.Y.)
| |
Collapse
|
13
|
Abstract
In sheep, scrapie is a fatal neurologic disease that is caused by a misfolded protein called a prion (designated PrPSc). The normal cellular prion protein (PrPC) is encoded by an endogenous gene, PRNP, that is present in high concentrations within the CNS. Although a broad range of functions has been described for PrPC, its entire range of functions has yet to be fully elucidated. Accumulation of PrPSc results in neurodegeneration. The PRNP gene has several naturally occurring polymorphisms, and there is a strong correlation between scrapie susceptibility and PRNP genotype. The cornerstone of scrapie eradication programs is the selection of scrapie-resistant genotypes to eliminate classical scrapie. Transmission of classical scrapie in sheep occurs during the prenatal and periparturient periods when lambs are highly susceptible. Initially, the scrapie agent is disseminated throughout the lymphoid system and into the CNS. Shedding of the scrapie agent occurs before the onset of clinical signs. In contrast to classical scrapie, atypical scrapie is believed to be a spontaneous disease that occurs in isolated instances in older animals within a flock. The agent that causes atypical scrapie is not considered to be naturally transmissible. Transmission of the scrapie agent to species other than sheep, including deer, has been experimentally demonstrated as has the transmission of nonscrapie prion agents to sheep. The purpose of this review is to outline the current methods for diagnosing scrapie in sheep and the techniques used for studying the pathogenesis and host range of the scrapie agent. Also discussed is the US scrapie eradication program including recent updates.
Collapse
|
14
|
Glynn C, Sawaya MR, Ge P, Gallagher-Jones M, Short CW, Bowman R, Apostol M, Zhou ZH, Eisenberg DS, Rodriguez JA. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol 2020; 27:417-423. [PMID: 32284600 PMCID: PMC7338044 DOI: 10.1038/s41594-020-0403-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023]
Abstract
Self-templating assemblies of the human prion protein are clinically associated with transmissible spongiform encephalopathies. Here we present the cryo-EM structure of a denaturant- and protease-resistant fibril formed in vitro spontaneously by a 9.7-kDa unglycosylated fragment of the human prion protein. This human prion fibril contains two protofilaments intertwined with screw symmetry and linked by a tightly packed hydrophobic interface. Each protofilament consists of an extended beta arch formed by residues 106 to 145 of the prion protein, a hydrophobic and highly fibrillogenic disease-associated segment. Such structures of prion polymorphs serve as blueprints on which to evaluate the potential impact of sequence variants on prion disease.
Collapse
Affiliation(s)
- Calina Glynn
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Sawaya
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Ge
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Marcus Gallagher-Jones
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Connor W Short
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ronquiajah Bowman
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcin Apostol
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
- ADRx, Thousand Oaks, CA, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - David S Eisenberg
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jose A Rodriguez
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Scialò C, De Cecco E, Manganotti P, Legname G. Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses 2019; 11:E261. [PMID: 30875755 PMCID: PMC6466326 DOI: 10.3390/v11030261] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that neurodegenerative disorders share a common pathogenic feature: the presence of deposits of misfolded proteins with altered physicochemical properties in the Central Nervous System. Despite a lack of infectivity, experimental data show that the replication and propagation of neurodegenerative disease-related proteins including amyloid-β (Aβ), tau, α-synuclein and the transactive response DNA-binding protein of 43 kDa (TDP-43) share a similar pathological mechanism with prions. These observations have led to the terminology of "prion-like" to distinguish between conditions with noninfectious characteristics but similarities with the prion replication and propagation process. Prions are considered to adapt their conformation to changes in the context of the environment of replication. This process is known as either prion selection or adaptation, where a distinct conformer present in the initial prion population with higher propensity to propagate in the new environment is able to prevail over the others during the replication process. In the last years, many studies have shown that prion-like proteins share not only the prion replication paradigm but also the specific ability to aggregate in different conformations, i.e., strains, with relevant clinical, diagnostic and therapeutic implications. This review focuses on the molecular basis of the strain phenomenon in prion and prion-like proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34149 Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
16
|
Sang J, Meisl G, Thackray AM, Hong L, Ponjavic A, Knowles TPJ, Bujdoso R, Klenerman D. Direct Observation of Murine Prion Protein Replication in Vitro. J Am Chem Soc 2018; 140:14789-14798. [PMID: 30351023 PMCID: PMC6225343 DOI: 10.1021/jacs.8b08311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prions are believed to propagate when an assembly of prion protein (PrP) enters a cell and replicates to produce two or more fibrils, leading to an exponential increase in PrP aggregate number with time. However, the molecular basis of this process has not yet been established in detail. Here, we use single-aggregate imaging to study fibril fragmentation and elongation of individual murine PrP aggregates from seeded aggregation in vitro. We found that PrP elongation occurs via a structural conversion from a PK-sensitive to PK-resistant conformer. Fibril fragmentation was found to be length-dependent and resulted in the formation of PK-sensitive fragments. Measurement of the rate constants for these processes also allowed us to predict a simple spreading model for aggregate propagation through the brain, assuming that doubling of the aggregate number is rate-limiting. In contrast, while α-synuclein aggregated by the same mechanism, it showed significantly slower elongation and fragmentation rate constants than PrP, leading to much slower replication rate. Overall, our study shows that fibril elongation with fragmentation are key molecular processes in PrP and α-synuclein aggregate replication, an important concept in prion biology, and also establishes a simple framework to start to determine the main factors that control the rate of prion and prion-like spreading in animals.
Collapse
Affiliation(s)
- Jason
C. Sang
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Georg Meisl
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Alana M. Thackray
- Department
of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, U.K.
| | - Liu Hong
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.,Zhou
Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, PR China
| | - Aleks Ponjavic
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.,Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Raymond Bujdoso
- Department
of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, U.K.
| | - David Klenerman
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.,
| |
Collapse
|
17
|
Makarava N, Savtchenko R, Lasch P, Beekes M, Baskakov IV. Preserving prion strain identity upon replication of prions in vitro using recombinant prion protein. Acta Neuropathol Commun 2018; 6:92. [PMID: 30208966 PMCID: PMC6134792 DOI: 10.1186/s40478-018-0597-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022] Open
Abstract
Last decade witnessed an enormous progress in generating authentic infectious prions or PrPSc in vitro using recombinant prion protein (rPrP). Previous work established that rPrP that lacks posttranslational modification is able to support replication of highly infectious PrPSc with assistance of cofactors of polyanionic nature and/or lipids. Unexpectedly, previous studies also revealed that seeding of rPrP by brain-derived PrPSc gave rise to new prion strains with new disease phenotypes documenting loss of a strain identity upon replication in rPrP substrate. Up to now, it remains unclear whether prion strain identity can be preserved upon replication in rPrP. The current study reports that faithful replication of hamster strain SSLOW could be achieved in vitro using rPrP as a substrate. We found that a mixture of phosphatidylethanolamine (PE) and synthetic nucleic acid polyA was sufficient for stable replication of hamster brain-derived SSLOW PrPSc in serial Protein Misfolding Cyclic Amplification (sPMCA) that uses hamster rPrP as a substrate. The disease phenotype generated in hamsters upon transmission of recombinant PrPSc produced in vitro was strikingly similar to the original SSLOW diseases phenotype with respect to the incubation time to disease, as well as clinical, neuropathological and biochemical features. Infrared microspectroscopy (IR-MSP) indicated that PrPSc produced in animals upon transmission of recombinant PrPSc is structurally similar if not identical to the original SSLOW PrPSc. The current study is the first to demonstrate that rPrP can support replication of brain-derived PrPSc while preserving its strain identity. In addition, the current work is the first to document that successful propagation of a hamster strain could be achieved in vitro using hamster rPrP.
Collapse
|
18
|
Kim C, Xiao X, Chen S, Haldiman T, Smirnovas V, Kofskey D, Warren M, Surewicz K, Maurer NR, Kong Q, Surewicz W, Safar JG. Artificial strain of human prions created in vitro. Nat Commun 2018; 9:2166. [PMID: 29867164 PMCID: PMC5986862 DOI: 10.1038/s41467-018-04584-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanism that determines under physiological conditions transmissibility of the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD) is unknown. We report the synthesis of new human prion from the recombinant human prion protein expressed in bacteria in reaction seeded with sCJD MM1 prions and cofactor, ganglioside GM1. These synthetic human prions were infectious to transgenic mice expressing non-glycosylated human prion protein, causing neurologic dysfunction after 459 and 224 days in the first and second passage, respectively. The neuropathology, replication potency, and biophysical profiling suggest that a novel, particularly neurotoxic human prion strain was created. Distinct biological and structural characteristics of our synthetic human prions suggest that subtle changes in the structural organization of critical domains, some linked to posttranslational modifications of the pathogenic prion protein (PrPSc), play a crucial role as a determinant of human prion infectivity, host range, and targetting of specific brain structures in mice models.
Collapse
Affiliation(s)
- Chae Kim
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Xiangzhu Xiao
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Shugui Chen
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- GlaxoSmithKline, 709 Swedeland Rd., King of Prussia, PA19406, UK
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Vitautas Smirnovas
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius, 02241, Lithuania
| | - Diane Kofskey
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Miriam Warren
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Krystyna Surewicz
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Nicholas R Maurer
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Neurology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Witold Surewicz
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA.
- Department of Neurology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
Wang F, Wang X, Abskharon R, Ma J. Prion infectivity is encoded exclusively within the structure of proteinase K-resistant fragments of synthetically generated recombinant PrP Sc. Acta Neuropathol Commun 2018; 6:30. [PMID: 29699569 PMCID: PMC5921397 DOI: 10.1186/s40478-018-0534-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/11/2018] [Indexed: 02/04/2023] Open
Abstract
Transmissible spongiform encephalopathies, also known as prion diseases, are a group of fatal neurodegenerative disorders affecting both humans and animals. The central pathogenic event in prion disease is the misfolding of normal prion protein (PrPC) into the pathogenic conformer, PrPSc, which self-replicates by converting PrPC to more of itself. The biochemical hallmark of PrPSc is its C-terminal resistance to proteinase K (PK) digestion, which has been historically used to define PrPSc and is still the most widely used characteristic for prion detection. We used PK-resistance as a biochemical measure for the generation of recombinant prion from bacterially expressed recombinant PrP. However, the existence of both PK- resistant and -sensitive PrPSc forms in animal and human prion disease led to the question of whether the in vitro-generated recombinant prion infectivity is due to the PK-resistant or -sensitive recombinant PrP forms. In this study, we compared undigested and PK-digested recombinant prions for their infectivity using both the classical rodent bioassay and the cell-based prion infectivity assay. Similar levels of infectivity were detected in PK-digested and -undigested samples by both assays. A time course study of recombinant prion propagation showed that the increased capability to seed the conversion of endogenous PrP in cultured cells coincided with an increase of the PK-resistant form of recombinant PrP. Moreover, prion infectivity diminished when recombinant prion was subjected to an extremely harsh PK digestion. These results demonstrated that the infectivity of recombinant prion is encoded within the structure of the PK-resistant PrP fragments. This characteristic of recombinant prion, that a simple PK digestion is able to eliminate all PK-sensitive (non-infectious) PrP species, makes possible a more homogenous material that will be ideal for dissecting the molecular basis of prion infectivity.
Collapse
|
20
|
Comoy EE, Mikol J, Jaffré N, Lebon V, Levavasseur E, Streichenberger N, Sumian C, Perret-Liaudet A, Eloit M, Andreoletti O, Haïk S, Hantraye P, Deslys JP. Experimental transfusion of variant CJD-infected blood reveals previously uncharacterised prion disorder in mice and macaque. Nat Commun 2017; 8:1268. [PMID: 29097653 PMCID: PMC5668246 DOI: 10.1038/s41467-017-01347-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Exposure of human populations to bovine spongiform encephalopathy through contaminated food has resulted in <250 cases of variant Creutzfeldt-Jakob disease (vCJD). However, more than 99% of vCJD infections could have remained silent suggesting a long-term risk of secondary transmission particularly through blood. Here, we present experimental evidence that transfusion in mice and non-human primates of blood products from symptomatic and non-symptomatic infected donors induces not only vCJD, but also a different class of neurological impairments. These impairments can all be retransmitted to mice with a pathognomonic accumulation of abnormal prion protein, thus expanding the spectrum of known prion diseases. Our findings suggest that the intravenous route promotes propagation of masked prion variants according to different mechanisms involved in peripheral replication.
Collapse
Affiliation(s)
- Emmanuel E Comoy
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| | - Jacqueline Mikol
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Nina Jaffré
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
- MacoPharma, 200 Chaussée Fernand Forest, 59200, Tourcoing, France
| | - Vincent Lebon
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Etienne Levavasseur
- Université Pierre et Marie Curie, UMR-S 1127, CNRS UMR 722, Institut du Cerveau et de la Moelle Epinière, G.H. Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| | - Nathalie Streichenberger
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyogène CNRS UMR 5310-INSERM U1217, 59 Boulevard Pinel, 69677, Bron, France
| | - Chryslain Sumian
- MacoPharma, 200 Chaussée Fernand Forest, 59200, Tourcoing, France
| | - Armand Perret-Liaudet
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyogène CNRS UMR 5310-INSERM U1217, 59 Boulevard Pinel, 69677, Bron, France
| | - Marc Eloit
- Institut Pasteur, 15 Rue du Docteur Roux, 75015, Paris, France
| | - Olivier Andreoletti
- UMR INRA-ENVT 1225, Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, 31076, Toulouse, France
| | - Stéphane Haïk
- Université Pierre et Marie Curie, UMR-S 1127, CNRS UMR 722, Institut du Cerveau et de la Moelle Epinière, G.H. Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| | - Philippe Hantraye
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Jean-Philippe Deslys
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
21
|
PrP P102L and Nearby Lysine Mutations Promote Spontaneous In Vitro Formation of Transmissible Prions. J Virol 2017; 91:JVI.01276-17. [PMID: 28835493 DOI: 10.1128/jvi.01276-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulation of fibrillar protein aggregates is a hallmark of many diseases. While numerous proteins form fibrils by prion-like seeded polymerization in vitro, only some are transmissible and pathogenic in vivo To probe the structural features that confer transmissibility to prion protein (PrP) fibrils, we have analyzed synthetic PrP amyloids with or without the human prion disease-associated P102L mutation. The formation of infectious prions from PrP molecules in vitro has required cofactors and/or unphysiological denaturing conditions. Here, we demonstrate that, under physiologically compatible conditions without cofactors, the P102L mutation in recombinant hamster PrP promoted prion formation when seeded by minute amounts of scrapie prions in vitro Surprisingly, combination of the P102L mutation with charge-neutralizing substitutions of four nearby lysines promoted spontaneous prion formation. When inoculated into hamsters, both of these types of synthetic prions initiated substantial accumulation of prion seeding activity and protease-resistant PrP without transmissible spongiform encephalopathy (TSE) clinical signs or notable glial activation. Our evidence suggests that PrP's centrally located proline and lysine residues act as conformational switches in the in vitro formation of transmissible PrP amyloids.IMPORTANCE Many diseases involve the damaging accumulation of specific misfolded proteins in thread-like aggregates. These threads (fibrils) are capable of growing on the ends by seeding the refolding and incorporation of the normal form of the given protein. In many cases such aggregates can be infectious and propagate like prions when transmitted from one individual host to another. Some transmitted aggregates can cause fatal disease, as with human iatrogenic prion diseases, while other aggregates appear to be relatively innocuous. The factors that distinguish infectious and pathogenic protein aggregates from more innocuous ones are poorly understood. Here we have compared the combined effects of prion seeding and mutations of prion protein (PrP) on the structure and transmission properties of synthetic PrP aggregates. Our results highlight the influence of specific sequence features in the normally unstructured region of PrP that influence the infectious and neuropathogenic properties of PrP-derived aggregates.
Collapse
|
22
|
Legname G, Moda F. The Prion Concept and Synthetic Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:147-156. [PMID: 28838659 DOI: 10.1016/bs.pmbts.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrPSc). Prions derive from a conformational conversion of the normally folded prion protein (PrPC), which acquires pathological and infectious features. Moreover, PrPSc is able to transmit the pathological conformation to PrPC through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrPC conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents.
Collapse
Affiliation(s)
- Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| | - Fabio Moda
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.
| |
Collapse
|
23
|
Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog 2017; 13:e1006491. [PMID: 28704563 PMCID: PMC5524416 DOI: 10.1371/journal.ppat.1006491] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Prions, characterized by self-propagating protease-resistant prion protein (PrP) conformations, are agents causing prion disease. Recent studies generated several such self-propagating protease-resistant recombinant PrP (rPrP-res) conformers. While some cause prion disease, others fail to induce any pathology. Here we showed that although distinctly different, the pathogenic and non-pathogenic rPrP-res conformers were similarly recognized by a group of conformational antibodies against prions and shared a similar guanidine hydrochloride denaturation profile, suggesting a similar overall architecture. Interestingly, two independently generated non-pathogenic rPrP-res were almost identical, indicating that the particular rPrP-res resulted from cofactor-guided PrP misfolding, rather than stochastic PrP aggregation. Consistent with the notion that cofactors influence rPrP-res conformation, the propagation of all rPrP-res formed with phosphatidylglycerol/RNA was cofactor-dependent, which is different from rPrP-res generated with a single cofactor, phosphatidylethanolamine. Unexpectedly, despite the dramatic difference in disease-causing capability, RT-QuIC assays detected large increases in seeding activity in both pathogenic and non-pathogenic rPrP-res inoculated mice, indicating that the non-pathogenic rPrP-res is not completely inert in vivo. Together, our study supported a role of cofactors in guiding PrP misfolding, indicated that relatively small structural features determine rPrP-res’ pathogenicity, and revealed that the in vivo seeding ability of rPrP-res does not necessarily result in pathogenicity. Many neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease and Prion disease, are caused by misfolded proteins that can self-propagate in vivo and in vitro. Misfolded self-replicating recombinant prion protein (PrP) conformers have been generated in vitro with defined cofactors, some of which are highly infectious and cause bona fide prion diseases, while others completely fail to induce any pathology. Here we compare these misfolded recombinant PrP conformers and show that the non-pathogenic misfolded recombinant PrP is not completely inert in vivo. We also found that the pathogenic and non-pathogenic recombinant PrP conformers share a similar overall architecture. Importantly, our study clearly shows that in vivo seeded spread of misfolded conformation does not necessarily lead to pathogenic change or cause disease. These findings not only are important for understanding the molecular basis for prion infectivity, but also may have important implications for the “prion-like” spread of misfolded proteins in other neurodegenerative diseases.
Collapse
|
24
|
The role of the unusual threonine string in the conversion of prion protein. Sci Rep 2016; 6:38877. [PMID: 27982059 PMCID: PMC5159806 DOI: 10.1038/srep38877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023] Open
Abstract
The conversion of normal prion protein (PrP) into pathogenic PrP conformers is central to prion disease, but the mechanism remains unclear. The α-helix 2 of PrP contains a string of four threonines, which is unusual due to the high propensity of threonine to form β-sheets. This structural feature was proposed as the basis for initiating PrP conversion, but experimental results have been conflicting. We studied the role of the threonine string on PrP conversion by analyzing mouse Prnpa and Prnpb polymorphism that contains a polymorphic residue at the beginning of the threonine string, and PrP mutants in which threonine 191 was replaced by valine, alanine, or proline. The PMCA (protein misfolding cyclic amplification) assay was able to recapitulate the in vivo transmission barrier between PrPa and PrPb. Relative to PMCA, the amyloid fibril growth assay is less restrictive, but it did reflect certain properties of in vivo prion transmission. Our results suggest a plausible theory explaining the apparently contradictory results in the role of the threonine string in PrP conversion and provide novel insights into the complicated relationship among PrP stability, seeded conformational change, and prion structure, which is critical for understanding the molecular basis of prion infectivity.
Collapse
|
25
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
26
|
Vanni I, Migliore S, Cosseddu GM, Di Bari MA, Pirisinu L, D’Agostino C, Riccardi G, Agrimi U, Nonno R. Isolation of a Defective Prion Mutant from Natural Scrapie. PLoS Pathog 2016; 12:e1006016. [PMID: 27880822 PMCID: PMC5120856 DOI: 10.1371/journal.ppat.1006016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
It is widely known that prion strains can mutate in response to modification of the replication environment and we have recently reported that prion mutations can occur in vitro during amplification of vole-adapted prions by Protein Misfolding Cyclic Amplification on bank vole substrate (bvPMCA). Here we exploited the high efficiency of prion replication by bvPMCA to study the in vitro propagation of natural scrapie isolates. Although in vitro vole-adapted PrPSc conformers were usually similar to the sheep counterpart, we repeatedly isolated a PrPSc mutant exclusively when starting from extremely diluted seeds of a single sheep isolate. The mutant and faithful PrPSc conformers showed to be efficiently autocatalytic in vitro and were characterized by different PrP protease resistant cores, spanning aa ∼155–231 and ∼80–231 respectively, and by different conformational stabilities. The two conformers could thus be seen as different bona fide PrPSc types, putatively accounting for prion populations with different biological properties. Indeed, once inoculated in bank vole the faithful conformer was competent for in vivo replication while the mutant was unable to infect voles, de facto behaving like a defective prion mutant. Overall, our findings confirm that prions can adapt and evolve in the new replication environments and that the starting population size can affect their evolutionary landscape, at least in vitro. Furthermore, we report the first example of “authentic” defective prion mutant, composed of brain-derived PrPC and originating from a natural scrapie isolate. Our results clearly indicate that the defective mutant lacks of some structural characteristics, that presumably involve the central region ∼90–155, critical for infectivity but not for in vitro replication. Finally, we propose a molecular mechanism able to account for the discordant in vitro and in vivo behavior, suggesting possible new paths for investigating the molecular bases of prion infectivity. Prions are unique infectious agents, consisting of PrPSc, a self-propagating aggregated conformer of the host-encoded prion protein PrPC. Despite the absence of any nucleic acid information, prions exist as distinct strains that share the same amino acid sequence but differ in their conformation. Moreover, prions can mutate and are thus heterogeneous populations able to evolve and adapt to new replication environments. During in vitro amplification of sheep scrapie, we found that a prion mutant could be obtained from one natural isolate. The prion mutant identified was characterized in vivo and in vitro, showing unusual biochemical and biological features: a smaller than usual C-terminal proteinase resistant core of PrPSc, which spans aa ∼155–231, and the inability to propagate in vivo despite an efficient autocatalytic replication in vitro. With such a signature, we denoted the mutant as a “defective” prion mutant. We thus postulate a new hypothesis for the discrepancy between the in vitro and in vivo behavior of the defective mutant and suggest that the central PrPSc domain ∼90–160 might have a key role in prion replication. This work provides important new insights into the mechanism underpinning prion replication and has numerous implications for understanding the molecular requirements indispensable for prion infectivity.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Sergio Migliore
- Istituto Zooprofilattico Sperimentale of Sicily "A. Mirri", Palermo, Italy
| | - Gian Mario Cosseddu
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Geraldina Riccardi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
27
|
Imamura M, Tabeta N, Kato N, Matsuura Y, Iwamaru Y, Yokoyama T, Murayama Y. Heparan Sulfate and Heparin Promote Faithful Prion Replication in Vitro by Binding to Normal and Abnormal Prion Proteins in Protein Misfolding Cyclic Amplification. J Biol Chem 2016; 291:26478-26486. [PMID: 27821590 DOI: 10.1074/jbc.m116.745851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/26/2016] [Indexed: 11/06/2022] Open
Abstract
The precise mechanism underlying the conversion of normal prion protein (PrPC) into abnormal prion protein (PrPSc) remains unclear. Protein misfolding cyclic amplification (PMCA), an in vitro technique used for amplifying PrPSc, results in PrPSc replication that preserves the strain-specific characteristics of the input PrPSc; thus, PMCA mimics the process of in vivo PrPSc replication. Previous work has demonstrated that in PMCA, nucleic acids are critical for PrPSc amplification, but little information has been reported on glycosaminoglycan (GAG) participation in PrPSc replication in vitro Here, we investigated whether GAGs play a role in the faithful replication of PrPSc by using a modified PMCA performed with baculovirus-derived recombinant PrP (Bac-PrP) as a substrate. The addition of heparan sulfate (HS) or its analog heparin (HP) restored the conversion efficiency in PMCA that was inhibited through nucleic acid depletion. Moreover, the PMCA products obtained under these conditions were infectious and preserved the properties of the input PrPSc These data suggest that HS and HP play the same role as nucleic acids in facilitating faithful replication of prions in PMCA. Furthermore, we showed that HP binds to both Bac-PrP and Bac-PrPSc through the sulfated groups present on HP and that the N-terminal domain of Bac-PrPSc might potentially not be involved in the binding to HP. These results suggest that the interaction of GAGs such as HS and HP with PrPC and/or PrPSc through their sulfate groups is critical for the faithful replication of prions.
Collapse
Affiliation(s)
- Morikazu Imamura
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Naoko Tabeta
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Nobuko Kato
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Yuichi Matsuura
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshifumi Iwamaru
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Takashi Yokoyama
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Yuichi Murayama
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
28
|
MacLea KS. What Makes a Prion: Infectious Proteins From Animals to Yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:227-276. [PMID: 28109329 DOI: 10.1016/bs.ircmb.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While philosophers in ancient times had many ideas for the cause of contagion, the modern study of infective agents began with Fracastoro's 1546 proposal that invisible "spores" spread infectious disease. However, firm categorization of the pathogens of the natural world would need to await a mature germ theory that would not arise for 300 years. In the 19th century, the earliest pathogens described were bacteria and other cellular microbes. By the close of that century, the work of Ivanovsky and Beijerinck introduced the concept of a virus, an infective particle smaller than any known cell. Extending into the early-mid-20th century there was an explosive growth in pathogenic microbiology, with a cellular or viral cause identified for nearly every transmissible disease. A few occult pathogens remained to be discovered, including the infectious proteins (prions) proposed by Prusiner in 1982. This review discusses the prions identified in mammals, yeasts, and other organisms, focusing on the amyloid-based prions. I discuss the essential biochemical properties of these agents and the application of this knowledge to diseases of protein misfolding and aggregation, as well as the utility of yeast as a model organism to study prion and amyloid proteins that affect human and animal health. Further, I summarize the ideas emerging out of these studies that the prion concept may go beyond proteinaceous infectious particles and that prions may be a subset of proteins having general nucleating or seeding functions involved in noninfectious as well as infectious pathogenic protein aggregation.
Collapse
Affiliation(s)
- K S MacLea
- University of New Hampshire, Manchester, NH, United States.
| |
Collapse
|
29
|
Schmidt C, Fizet J, Properzi F, Batchelor M, Sandberg MK, Edgeworth JA, Afran L, Ho S, Badhan A, Klier S, Linehan JM, Brandner S, Hosszu LLP, Tattum MH, Jat P, Clarke AR, Klöhn PC, Wadsworth JDF, Jackson GS, Collinge J. A systematic investigation of production of synthetic prions from recombinant prion protein. Open Biol 2016; 5:150165. [PMID: 26631378 PMCID: PMC4703057 DOI: 10.1098/rsob.150165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.
Collapse
Affiliation(s)
- Christian Schmidt
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jeremie Fizet
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Francesca Properzi
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Mark Batchelor
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Malin K Sandberg
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Julie A Edgeworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Louise Afran
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sammy Ho
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Anjna Badhan
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Steffi Klier
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jacqueline M Linehan
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Laszlo L P Hosszu
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - M Howard Tattum
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Parmjit Jat
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Anthony R Clarke
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Peter C Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Graham S Jackson
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
30
|
Abstract
Proteins were described as distinct biological molecules and their significance in cellular processes was recognized as early as the 18th century. At the same time, Spanish shepherds observed a disease that compelled their Merino sheep to pathologically scrape against fences, a defining clinical sign that led to the disease being named scrapie. In the late 19th century, Robert Koch published his postulates for defining causative agents of disease. In the early 20th century, pathologists Creutzfeldt and Jakob described a neurodegenerative disease that would later be included with scrapie into a group of diseases known as transmissible spongiform encephalopathies (TSEs). Later that century, mounting evidence compelled a handful of scientists to betray the prevailing biological dogma governing pathogen replication that Watson and Crick so convincingly explained by cracking the genetic code just two decades earlier. Because TSEs seemed to defy these new rules, J.S. Griffith theorized mechanisms by which a pathogenic protein could encipher its own replication blueprint without a genetic code. Stanley Prusiner called this proteinaceous infectious pathogen a prion. Here we offer a concise account of the discovery of prions, the causative agent of TSEs, in the wider context of protein biochemistry and infectious disease. We highlight the discovery of prions in yeast and discuss the implication of prions as epigenomic carriers of biological and pathological information. We also consider expanding the prion hypothesis to include other proteins whose alternate isoforms confer new biological or pathological properties.
Collapse
Affiliation(s)
- Mark D Zabel
- Prion Research Center at Colorado State University, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO 80521, USA
| | - Crystal Reid
- Prion Research Center at Colorado State University, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO 80521, USA
| |
Collapse
|
31
|
Makarava N, Savtchenko R, Baskakov IV. Two alternative pathways for generating transmissible prion disease de novo. Acta Neuropathol Commun 2015; 3:69. [PMID: 26556038 PMCID: PMC4641408 DOI: 10.1186/s40478-015-0248-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
Introduction Previous studies established that prion disease with unique strain-specific phenotypes could be induced by in vitro-formed recombinant PrP (rPrP) fibrils with structures different from that of authentic prions, or PrPSc. To explain the etiology of prion diseases, new mechanism proposed that in animals the transition from rPrP fibrils to PrPSc consists of two main steps: the first involves fibril-induced formation of atypical PrPres, a self-replicating but clinically silent state, and the second consists of atypical PrPres-dependent formation of PrPSc via rare deformed templating events. Results In the current study, atypical PrPres with characteristics similar to those of brain-derived atypical PrPres was generated in vitro. Upon inoculation into animals, in vitro-generated atypical PrPres gave rise to PrPSc and prion disease with a phenotype similar to those induced by rPrP fibrils. Significant differences in the sialylation pattern between atypical PrPres and PrPSc suggested that only a small sub-fraction of the PrPC that is acceptable as a substrate for PrPSc could be also recruited by atypical PrPres. This can explain why atypical PrPres replicates slower than PrPSc and why PrPSc outcompetes atypical PrPres. Conclusions This study illustrates that transmissible prion diseases with very similar disease phenotypes could be produced via two alternative procedures: direct inoculation of recombinant PrP amyloid fibrils or in vitro-produced atypical PrPres. Moreover, this work showed that preparations of atypical PrPres free of PrPSc can give rise to transmissible diseases in wild type animals and that atypical PrPres generated in vitro is an adequate model for brain-derived atypical PrPres. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0248-5) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW. Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 2015; 14:759-80. [PMID: 26338154 PMCID: PMC4628595 DOI: 10.1038/nrd4593] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aggregation of specific proteins is hypothesized to underlie several degenerative diseases, which are collectively known as amyloid disorders. However, the mechanistic connection between the process of protein aggregation and tissue degeneration is not yet fully understood. Here, we review current and emerging strategies to ameliorate aggregation-associated degenerative disorders, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates. Persuasive pharmacological and genetic evidence now supports protein aggregation as the cause of postmitotic tissue dysfunction or loss. However, a more detailed understanding of the factors that trigger and sustain aggregate formation and of the structure-activity relationships underlying proteotoxicity is needed to develop future disease-modifying therapies.
Collapse
Affiliation(s)
- Yvonne S. Eisele
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Cecilia Monteiro
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Colleen Fearns
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sandra E. Encalada
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - R. Luke Wiseman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
33
|
Wang X, McGovern G, Zhang Y, Wang F, Zha L, Jeffrey M, Ma J. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion. PLoS Pathog 2015; 11:e1004958. [PMID: 26136122 PMCID: PMC4489884 DOI: 10.1371/journal.ppat.1004958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/14/2015] [Indexed: 11/23/2022] Open
Abstract
The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / μg. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. The transmissible spongiform encephalopathies (TSEs) are a group of infectious neurodegenerative diseases affecting both humans and animals. The prion hypothesis postulates that prions are protein conformation based infectious agents responsible for TSE infectivity. Prions have been synthetically generated in vitro, but it remains unclear whether the properties of synthetically generated prion are the same as those of TSE agents and whether the disease caused by synthetically generated prion is identical to naturally occurring TSEs. In this study, we demonstrated that similar to the classical TSE agents, the synthetically generated prion has a titratable infectivity and is able to cause prion disease in wild-type mice via routes other than direct intra-cerebral inoculation. More importantly, we showed that the synthetically generated prion induced pathological changes, including the dissemination of disease-specific prion protein accumulation and the route and mechanism of neuroinvasion, were all typical of classical TSEs. These results demonstrate the similarity of synthetically generated prion to the infectious agent in TSEs, providing strong evidence supporting the prion hypothesis.
Collapse
Affiliation(s)
- Xinhe Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Gillian McGovern
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Yi Zhang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Liang Zha
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Martin Jeffrey
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
34
|
Contrasting Effects of Two Lipid Cofactors of Prion Replication on the Conformation of the Prion Protein. PLoS One 2015; 10:e0130283. [PMID: 26090881 PMCID: PMC4474664 DOI: 10.1371/journal.pone.0130283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/18/2015] [Indexed: 01/03/2023] Open
Abstract
Recent studies introduced two experimental protocols for converting full-length recombinant prion protein (rPrP) purified from E.coli into the infectious prion state (PrPSc) with high infectivity titers. Both protocols employed protein misfolding cyclic amplification (PMCA) for generating PrPScde novo, but used two different lipids, 1-palmitoyl-2-oleolyl-sn-glycero-3-phospho(1’-rac-glycerol) (POPG) or phosphatidylethanolamine (PE), as conversion cofactors. The current study compares the effect of POPG and PE on the physical properties of native, α-helical full-length mouse rPrP under the solvent conditions used for converting rPrP into PrPSc. Surprisingly, the effects of POPG and PE on rPrP physical properties, including its conformation, thermodynamic stability, aggregation state and interaction with a lipid, were found to be remarkably different. PE was shown to have minimal, if any, effects on rPrP thermodynamic stability, cooperativity of unfolding, immediate solvent environment or aggregation state. In fact, little evidence indicates that PE interacts with rPrP directly. In contrast, POPG was found to bind to and induce dramatic changes in rPrP structure, including a loss of α-helical conformation and formation of large lipid-protein aggregates that were resistant to partially denaturing conditions. These results suggest that the mechanisms by which lipids assist conversion of rPrP into PrPSc might be fundamentally different for POPG and PE.
Collapse
|
35
|
Haigh CL, Drew SC. Cavitation during the protein misfolding cyclic amplification (PMCA) method – The trigger for de novo prion generation? Biochem Biophys Res Commun 2015; 461:494-500. [DOI: 10.1016/j.bbrc.2015.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
|
36
|
Abstract
Prion disease is the only naturally occurring infectious protein misfolding disorder. The chemical nature of the infectious agent has been debated for more than half a century. Early studies on scrapie suggested that the unusual infectious agent might propagate in the absence of nucleic acid. The 'protein-only hypothesis' provides a theoretical model to explain how a protein self-replicates without nucleic acid, which predicts that a prion, the proteinaceous infectious agent, propagates by converting its normal counterpart into the likeness of itself. Decades of studies have provided overwhelming evidence to support this hypothesis. The latest advances in generating infectious prions with bacterially expressed recombinant prion protein in the presence of cofactors not only provide convincing evidence supporting the 'protein-only hypothesis', but also indicate a role of cofactors in forming prion infectivity and encoding prion strains. In the present chapter, we review the literature regarding the chemical nature of the infectious agent, describe recent achievements in proving the 'protein-only hypothesis', and discuss the remaining questions in this research area.
Collapse
|
37
|
Yuan Z, Yang L, Chen B, Zhu T, Hassan MF, Yin X, Zhou X, Zhao D. Protein misfolding cyclic amplification induces the conversion of recombinant prion protein to PrP oligomers causing neuronal apoptosis. J Neurochem 2015; 133:722-9. [DOI: 10.1111/jnc.13098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/12/2015] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Zhen Yuan
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Baian Chen
- Department of Laboratory Animal Science; School of Basic Medical Science; Capital Medical University; Beijing China
| | - Ting Zhu
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Mohammad Farooque Hassan
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xiaomin Yin
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| |
Collapse
|
38
|
Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases. Acta Neuropathol Commun 2015; 3:18. [PMID: 25853328 PMCID: PMC4383067 DOI: 10.1186/s40478-015-0188-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The prion protein (PrP) binds to various molecular partners, but little is known about their potential impact on the pathogenesis of prion diseases RESULTS Here, we show that PrP can interact in vitro with acetylcholinesterase (AChE), a key protein of the cholinergic system in neural and non-neural tissues. This heterologous association induced aggregation of monomeric PrP and modified the structural properties of PrP amyloid fibrils. Following its recruitment into PrP fibrils, AChE loses its enzymatic activity and enhances PrP-mediated cytotoxicity. Using several truncated PrP variants and specific tight-binding AChE inhibitors (AChEis), we then demonstrate that the PrP-AChE interaction requires two mutually exclusive sub-sites in PrP N-terminal domain and an aromatic-rich region at the entrance of AChE active center gorge. We show that AChEis that target this site impair PrP-AChE complex formation and also limit the accumulation of pathological prion protein (PrPSc) in prion-infected cell cultures. Furthermore, reduction of AChE levels in prion-infected heterozygous AChE knock-out mice leads to slightly but significantly prolonged incubation time. Finally, we found that AChE levels were altered in prion-infected cells and tissues, suggesting that AChE might be directly associated with abnormal PrP. CONCLUSION Our results indicate that AChE deserves consideration as a new actor in expanding pathologically relevant PrP morphotypes and as a therapeutic target.
Collapse
|
39
|
Requena JR, Wille H. The structure of the infectious prion protein: experimental data and molecular models. Prion 2015; 8:60-6. [PMID: 24583975 PMCID: PMC7030906 DOI: 10.4161/pri.28368] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The structures of the infectious prion protein, PrP(Sc), and that of its proteolytically truncated variant, PrP 27-30, have evaded experimental determination due to their insolubility and propensity to aggregate. Molecular modeling has been used to fill this void and to predict their structures, but various modeling approaches have produced significantly different models. The disagreement between the different modeling solutions indicates the limitations of this method. Over the years, in absence of a three-dimensional (3D) structure, a variety of experimental techniques have been used to gain insights into the structure of this biologically, medically, and agriculturally important isoform. Here, we present an overview of experimental results that were published in recent years, and which provided new insights into the molecular architecture of PrP(Sc) and PrP 27-30. Furthermore, we evaluate all published models in light of these recent, experimental data, and come to the conclusion that none of the models can accommodate all of the experimental constraints. Moreover, this conclusion constitutes an open invitation for renewed efforts to model the structure of PrP(Sc).
Collapse
|
40
|
Kim DH, Lee HM, Ryou C. Evaluation of infective property of recombinant prion protein amyloids in cultured cells overexpressing cellular prion protein. J Korean Med Sci 2014; 29:1604-9. [PMID: 25469058 PMCID: PMC4248579 DOI: 10.3346/jkms.2014.29.12.1604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/06/2014] [Indexed: 11/22/2022] Open
Abstract
Misfolded isoform of prion protein (PrP), termed scrapie PrP (PrP(Sc)), tends to aggregate into various fibril forms. Previously, we reported various conditions that affect aggregation of recombinant PrP into amyloids. Because amyloidogenesis of PrP is closely associated with transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, we investigated infectivity of recombinant PrP amyloids generated in vitro. Using cultured cell lines which overexpress cellular PrP of different species, we measured the level of de novo synthesized PrP(Sc) in cells inoculated with recombinant mouse PrP amyloids. While PrP-overexpressing cells were susceptible to mouse-adapted scrapie prions used as the positive control, demonstrating the species barrier effect, infection with amyloids made of truncated recombinant PrP (PrP[89-230]) failed to form and propagate PrP(Sc) even in the cells that express mouse cellular PrP. This suggests that infectivity of PrP amyloids generated in vitro is different from that of natural prions. Recombinant PrP (89-230) amyloids tested in the current study retain no or a minute level, if any, of prion infectivity.
Collapse
Affiliation(s)
- Dae-Hwan Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Hye-Mi Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| |
Collapse
|
41
|
Le Brun AP, Haigh CL, Drew SC, James M, Boland MP, Collins SJ. Neutron reflectometry studies define prion protein N-terminal peptide membrane binding. Biophys J 2014; 107:2313-24. [PMID: 25418300 PMCID: PMC4241452 DOI: 10.1016/j.bpj.2014.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022] Open
Abstract
The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and ?-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions.
Collapse
Affiliation(s)
- Anton P Le Brun
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, New South Wales, 2234, Australia
| | - Cathryn L Haigh
- Department of Pathology, Kenneth Myer Building, The University of Melbourne, Victoria, 3010, Australia
| | - Simon C Drew
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Michael James
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, New South Wales, 2234, Australia; School of Chemistry, University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Martin P Boland
- Department of Pathology, Kenneth Myer Building, The University of Melbourne, Victoria, 3010, Australia
| | - Steven J Collins
- Department of Pathology, Kenneth Myer Building, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
42
|
Le NTT, Narkiewicz J, Aulić S, Salzano G, Tran HT, Scaini D, Moda F, Giachin G, Legname G. Synthetic prions and other human neurodegenerative proteinopathies. Virus Res 2014; 207:25-37. [PMID: 25449570 DOI: 10.1016/j.virusres.2014.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/02/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau.
Collapse
Affiliation(s)
- Nhat Tran Thanh Le
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Joanna Narkiewicz
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Suzana Aulić
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giulia Salzano
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Hoa Thanh Tran
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Denis Scaini
- Life Science Department, University of Trieste, Trieste, Italy
| | - Fabio Moda
- Carlo Besta Neurological Institute, Department of Neuropathology and Neurology 5, Milan, Italy
| | - Gabriele Giachin
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy; Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Basovizza, Trieste, Italy.
| |
Collapse
|
43
|
Conformational properties of prion strains can be transmitted to recombinant prion protein fibrils in real-time quaking-induced conversion. J Virol 2014; 88:11791-801. [PMID: 25078700 DOI: 10.1128/jvi.00585-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenomenon of prion strains with distinct biological characteristics has been hypothesized to be involved in the structural diversity of abnormal prion protein (PrP(Sc)). However, the molecular basis of the transmission of strain properties remains poorly understood. Real-time quaking-induced conversion (RT-QUIC) is a cell-free system that uses Escherichia coli-derived recombinant PrP (rPrP) for the sensitive detection of PrP(Sc). To investigate whether the properties of various prion strains can be transmitted to amyloid fibrils consisting of rPrP (rPrP fibrils) using RT-QUIC, we examined the secondary structure, conformational stability, and infectivity of rPrP fibrils seeded with PrP(Sc) derived from either the Chandler or the 22L strain. In the first round of the reaction, there were differences in the secondary structures, especially in bands attributed to β-sheets, as determined by infrared spectroscopy, and conformational stability between Chandler-seeded (1st-rPrP-fib(Ch)) and 22L-seeded (1st-rPrP-fib(22L)) rPrP fibrils. Of note, specific identifying characteristics of the two rPrP fibril types seen in the β-sheets resembled those of the original PrP(Sc). Furthermore, the conformational stability of 1st-rPrP-fib(Ch) was significantly higher than that of 1st-rPrP-fib(22L), as with Chandler and 22L PrP(Sc). The survival periods of mice inoculated with 1st-rPrP-fib(Ch) or 1st-rPrP-fib(22L) were significantly shorter than those of mice inoculated with mixtures from the mock 1st-round RT-QUIC procedure. In contrast, these biochemical characteristics were no longer evident in subsequent rounds, suggesting that nonspecific uninfected rPrP fibrils became predominant probably because of their high growth rate. Together, these findings show that at least some strain-specific conformational properties can be transmitted to rPrP fibrils and unknown cofactors or environmental conditions may be required for further conservation. Importance: The phenomenon of prion strains with distinct biological characteristics is assumed to result from the conformational variations in the abnormal prion protein (PrP(Sc)). However, important questions remain about the mechanistic relationship between the conformational differences and the strain diversity, including how strain-specific conformations are transmitted. In this study, we investigated whether the properties of diverse prion strains can be transmitted to amyloid fibrils consisting of E. coli-derived recombinant PrP (rPrP) generated by real-time quaking-induced conversion (RT-QUIC), a recently developed in vitro PrP(Sc) formation method. We demonstrate that at least some of the strain-specific conformational properties can be transmitted to rPrP fibrils in the first round of RT-QUIC by examining the secondary structure, conformational stability, and infectivity of rPrP fibrils seeded with PrP(Sc) derived from either the Chandler or the 22L prion strain. We believe that these findings will advance our understanding of the conformational basis underlying prion strain diversity.
Collapse
|
44
|
Abstract
Recently, synthetic prions with a high level of specific infectivity have been produced from chemically defined components in vitro. A major insight arising from these studies is that various classes of host-encoded cofactor molecules such as phosphatidylethanolamine and RNA molecules are required to form and maintain the specific conformation of infectious prions. Synthetic mouse prions formed with phosphatidylethanolamine exhibit levels of specific infectivity ∼1 million-fold greater than "protein-only" prions (Deleault, N. R., Walsh, D. J., Piro, J. R., Wang, F., Wang, X., Ma, J., Rees, J. R., and Supattapone, S. (2012) Proc. Natl. Acad. Sci. U.S.A. 109, E1938-E1946). Moreover, cofactor molecules also appear to regulate prion strain properties by limiting the potential conformations of the prion protein (see Deleault et al. above). The production of fully infectious synthetic prions provides new opportunities to study the mechanism of prion infectivity directly by structural and biochemical methods.
Collapse
Affiliation(s)
- Surachai Supattapone
- From the Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| |
Collapse
|
45
|
Zhang Y, Wang F, Wang X, Zhang Z, Xu Y, Yu G, Yuan C, Ma J. Comparison of 2 synthetically generated recombinant prions. Prion 2014; 8:28669. [PMID: 24721728 PMCID: PMC4189893 DOI: 10.4161/pri.28669] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion is a protein-conformation-based infectious agent causing fatal neurodegenerative diseases in humans and animals. Our previous studies revealed that in the presence of cofactors, infectious prions can be synthetically generated in vitro with bacterially expressed recombinant prion protein (PrP). Once initiated, the recombinant prion is able to propagate indefinitely via serial protein misfolding cyclic amplification (sPMCA). In this study, we compared 2 separately initiated recombinant prions. Our results showed that these 2 recombinant prions had distinct biochemical properties and caused different patterns of spongiosis and PrP deposition in inoculated mice. Our findings indicate that various recombinant prions can be initiated in vitro and potential reasons for this variability are discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China; Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| | - Fei Wang
- Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| | - Xinhe Wang
- Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| | - Zhihong Zhang
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Yuanyuan Xu
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Guohua Yu
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China; Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| |
Collapse
|
46
|
Zurawel AA, Walsh DJ, Fortier SM, Chidawanyika T, Sengupta S, Zilm K, Supattapone S. Prion nucleation site unmasked by transient interaction with phospholipid cofactor. Biochemistry 2014; 53:68-76. [PMID: 24328062 DOI: 10.1021/bi4014825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infectious mammalian prions can be formed de novo from purified recombinant prion protein (PrP) substrate through a pathway that requires the sequential addition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and RNA cofactor molecules. Recent studies show that the initial interaction between PrP and POPG causes widespread and persistent conformational changes to form an insoluble intermediate species, termed PrP(Int1). Here, we characterize the mechanism and functional consequences of the interaction between POPG and PrP. Negative-stain electron microscopy of PrP(Int1) revealed the presence of amorphous aggregates. Pull-down and photoaffinity label experiments indicate that POPG induces the formation of a PrP(C) polybasic-domain-binding neoepitope within PrP(Int1). The ongoing presence of POPG is not required to maintain PrP(Int1) structure, as indicated by the absence of stoichiometric levels of POPG in solid-state NMR measurements of PrP(Int1). Together, these results show that a transient interaction with POPG cofactor unmasks a PrP(C) binding site, leading to PrP(Int1) aggregation.
Collapse
Affiliation(s)
- Ashley A Zurawel
- Departments of Biochemistry and ‡Medicine, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | | |
Collapse
|