1
|
Chu KH, Chiang BL. CD200R activation on naïve T cells by B cells induces suppressive activity of T cells via IL-24. Cell Mol Life Sci 2024; 81:231. [PMID: 38780647 PMCID: PMC11116298 DOI: 10.1007/s00018-024-05268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
CD200 is an anti-inflammatory protein that facilitates signal transduction through its receptor, CD200R, in cells, resulting in immune response suppression. This includes reducing M1-like macrophages, enhancing M2-like macrophages, inhibiting NK cell cytotoxicity, and downregulating CTL responses. Activation of CD200R has been found to modulate dendritic cells, leading to the induction or enhancement of Treg cells expressing Foxp3. However, the precise mechanisms behind this process are still unclear. Our previous study demonstrated that B cells in Peyer's patches can induce Treg cells, so-called Treg-of-B (P) cells, through STAT6 phosphorylation. This study aimed to investigate the role of CD200 in Treg-of-B (P) cell generation. To clarify the mechanisms, we used wild-type, STAT6 deficient, and IL-24 deficient T cells to generate Treg-of-B (P) cells, and antagonist antibodies (anti-CD200 and anti-IL-20RB), an agonist anti-CD200R antibody, CD39 inhibitors (ARL67156 and POM-1), a STAT6 inhibitor (AS1517499), and soluble IL-20RB were also applied. Our findings revealed that Peyer's patch B cells expressed CD200 to activate the CD200R on T cells and initiate the process of Treg-of-B (P) cells generation. CD200 and CD200R interaction triggers the phosphorylation of STAT6, which regulated the expression of CD200R, CD39, and IL-24 in T cells. CD39 regulated the expression of IL-24, which sustained the expression of CD223 and IL-10 and maintained the cell viability. In summary, the generation of Treg-of-B (P) cells by Peyer's patch B cells was through the CD200R-STAT6-CD39-IL-24 axis pathway.
Collapse
Affiliation(s)
- Kuan-Hua Chu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
- Allergy Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Menzel S, Duan Y, Hambach J, Albrecht B, Wendt-Cousin D, Winzer R, Tolosa E, Rissiek A, Guse AH, Haag F, Magnus T, Koch-Nolte F, Rissiek B. Generation and characterization of antagonistic anti-human CD39 nanobodies. Front Immunol 2024; 15:1328306. [PMID: 38590528 PMCID: PMC11000232 DOI: 10.3389/fimmu.2024.1328306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
CD39 is the major enzyme controlling the levels of extracellular adenosine triphosphate (ATP) via the stepwise hydrolysis of ATP to adenosine diphosphate (ADP) and adenosine monophosphate (AMP). As extracellular ATP is a strong promoter of inflammation, monoclonal antibodies (mAbs) blocking CD39 are utilized therapeutically in the field of immune-oncology. Though anti-CD39 mAbs are highly specific for their target, they lack deep penetration into the dense tissue of solid tumors, due to their large size. To overcome this limitation, we generated and characterized nanobodies that targeted and blocked human CD39. From cDNA-immunized alpacas we selected 16 clones from seven nanobody families that bind to two distinct epitopes of human CD39. Among these, clone SB24 inhibited the enzymatic activity of CD39. Of note, SB24 blocked ATP degradation by both soluble and cell surface CD39 as a 15kD monomeric nanobody. Dimerization via fusion to an immunoglobulin Fc portion further increased the blocking potency of SB24 on CD39-transfected HEK cells. Finally, we confirmed the CD39 blocking properties of SB24 on human PBMCs. In summary, SB24 provides a new small biological antagonist of human CD39 with potential application in cancer therapy.
Collapse
Affiliation(s)
- Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
| | - Yinghui Duan
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birte Albrecht
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorte Wendt-Cousin
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Cytometry und Cell Sorting Core Unit, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Kroll RG, Powell C, Chen J, Snider NT, St. Hilaire C, Reddy A, Kim J, Pinsky DJ, Murthy VL, Sutton NR. Circulating Ectonucleotidases Signal Impaired Myocardial Perfusion at Rest and Stress. J Am Heart Assoc 2023; 12:e027920. [PMID: 37119076 PMCID: PMC10227209 DOI: 10.1161/jaha.122.027920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 04/30/2023]
Abstract
Background Ectonucleotidases maintain vascular homeostasis by metabolizing extracellular nucleotides, modulating inflammation and thrombosis, and potentially, myocardial flow through adenosine generation. Evidence implicates dysfunction or deficiency of ectonucleotidases CD39 or CD73 in human disease; the utility of measuring levels of circulating ectonucleotidases as plasma biomarkers of coronary artery dysfunction or disease has not been previously reported. Methods and Results A total of 529 individuals undergoing clinically indicated positron emission tomography stress testing between 2015 and 2019 were enrolled in this single-center retrospective analysis. Baseline demographics, clinical data, nuclear stress test, and coronary artery calcium score variables were collected, as well as a blood sample. CD39 and CD73 levels were assessed as binary (detectable, undetectable) or continuous variables using ELISAs. Plasma CD39 was detectable in 24% of White and 8% of Black study participants (P=0.02). Of the clinical history variables examined, ectonucleotidase levels were most strongly associated with underlying liver disease and not other traditional coronary artery disease risk factors. Intriguingly, detection of circulating ectonucleotidase was inversely associated with stress myocardial blood flow (2.3±0.8 mL/min per g versus 2.7 mL/min per g±1.1 for detectable versus undetectable CD39 levels, P<0.001) and global myocardial flow reserve (Pearson correlation between myocardial flow reserve and log(CD73) -0.19, P<0.001). A subanalysis showed these differences held true independent of liver disease. Conclusions Vasodilatory adenosine is the expected product of local ectonucleotidase activity, yet these data support an inverse relationship between plasma ectonucleotidases, stress myocardial blood flow (CD39), and myocardial flow reserve (CD73). These findings support the conclusion that plasma levels of ectonucleotidases, which may be shed from the endothelial surface, contribute to reduced stress myocardial blood flow and myocardial flow reserve.
Collapse
Affiliation(s)
- Rachel G. Kroll
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Corey Powell
- Consulting for Statistics, Computing, and Analytics ResearchUniversity of MichiganAnn ArborMI
| | - Jun Chen
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Natasha T. Snider
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Cynthia St. Hilaire
- Division of Cardiology, Departments of Medicine and BioengineeringVascular Medicine Institute, University of PittsburghPittsburghPAUSA
| | - Akshay Reddy
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Judy Kim
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - David J. Pinsky
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMI
| | - Venkatesh L. Murthy
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Nadia R. Sutton
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTN
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN
| |
Collapse
|
4
|
NETosis in ischemic/reperfusion injuries: An organ-based review. Life Sci 2021; 290:120158. [PMID: 34822798 DOI: 10.1016/j.lfs.2021.120158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Neutrophil extracellular trap (NETosis), the web-like structures induced by neutrophil death, is an important inflammatory mechanism of the immune system leading to reactive oxygen species production/coagulopathy, endothelial dysfunction, atherosclerosis, and ischemia. NETosis exerts its role through different mechanisms such as triggering Toll-like receptors, inflammatory cytokines, platelet aggregation, neutrophil activation/infiltration, and vascular impairment. NETosis plays a key role in the prognosis of coronary artery disease, ischemic injury of kidney, lung, gastrointestinal tract and skeletal muscles. In this review, we explored the molecular mechanisms involved in NETosis, and ischemic/reperfusion injuries in body organs.
Collapse
|
5
|
Savio LEB, Robson SC, Longhi MS. Ectonucleotidase Modulation of Lymphocyte Function in Gut and Liver. Front Cell Dev Biol 2021; 8:621760. [PMID: 33553158 PMCID: PMC7859358 DOI: 10.3389/fcell.2020.621760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Imbalance between regulatory and effector T lymphocytes contributes to loss of immunotolerance and plays a permissive role in the initiation, perpetuation, and progression of chronic inflammatory diseases and autoimmune disorders. Regulatory/effector cell balance is governed by the CD39 ectonucleotidase, the prototype member of the NTPDase family that hydrolyzes ATP and ADP into AMP, subsequently converted into adenosine by CD73. Generation of adenosine impacts T-cell function as it contributes to the mechanism of suppression of Tregs and confers regulatory properties to pathogenic Th17-cells. CD39 cell distribution, mechanism of regulation and impact on inflammatory and regulatory signaling pathways are also discussed here. Innovative therapeutic strategies to boost CD39 levels and activity by either administering soluble ADPases or interfering with CD39 inhibitory signals are reviewed. Restoration of CD39 levels and function has enormous translational and clinical implications and should be regarded as an additional form of treatment to be deployed in the chronic inflammatory setting. The key role of CD39 in immunoregulation in the context of Crohn's disease, one of the most frequent manifestations of inflammatory bowel disease, and autoimmune hepatitis, an autoimmune disorder of the liver, is reviewed and discussed here.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Longhi MS, Feng L, Robson SC. Targeting ectonucleotidases to treat inflammation and halt cancer development in the gut. Biochem Pharmacol 2021; 187:114417. [PMID: 33460629 DOI: 10.1016/j.bcp.2021.114417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 01/28/2023]
Abstract
CD39 and CD73 control cell immunity by hydrolyzing proinflammatory ATP and ADP (CD39) into AMP, subsequently converted into anti-inflammatory adenosine (CD73). By regulating the balance between effector and regulatory cells, these ectonucleotidases promote immune homeostasis in acute and chronic inflammation; while also appearing to limit antitumor effector immunity in gut cancer. This manuscript focuses on the pivotal role of CD39 and CD73 ectonucleotidase function in shaping immune responses in the gut. We focus on those mechanisms deployed by these critical and pivotal ectoenzymes and the regulation in the setting of gastrointestinal tract infections, inflammatory bowel disease and tumors of the gastrointestinal tract. We will highlight translational and clinical implications of the latest and most innovative basic research discoveries of these important players of the purinergic signaling. Immunotherapeutic strategies that have been developed to either boost or control ectonucleotidase expression and activity in important disease settings are also reviewed and the in vivo effects discussed.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA.
| | - Lili Feng
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA.
| |
Collapse
|
7
|
Yegutkin GG. Adenosine metabolism in the vascular system. Biochem Pharmacol 2020; 187:114373. [PMID: 33340515 DOI: 10.1016/j.bcp.2020.114373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.
Collapse
|
8
|
Endogenous antisense RNA curbs CD39 expression in Crohn's disease. Nat Commun 2020; 11:5894. [PMID: 33208731 PMCID: PMC7676266 DOI: 10.1038/s41467-020-19692-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
CD39 is an ectonucleotidase that initiates conversion of extracellular nucleotides into immunosuppressive adenosine. CD39 is expressed by regulatory T (Treg)-cells, where it mediates immunosuppression, and by a subset of T-helper (Th) 17-cells, where it limits pathogenicity. CD39 is regulated via single-nucleotide-polymorphisms and upon activation of aryl-hydrocarbon-receptor and oxygen-mediated pathways. Here we report a mechanism of CD39 regulation that relies on the presence of an endogenous antisense RNA, transcribed from the 3′-end of the human CD39/ENTPD1 gene. CD39-specific antisense is increased in Treg and Th17-cells of Crohn’s disease patients over controls. It largely localizes in the cell nucleus and regulates CD39 by interacting with nucleolin and heterogeneous-nuclear-ribonucleoprotein-A1. Antisense silencing results in CD39 upregulation in vitro and amelioration of disease activity in a trinitro-benzene-sulfonic-acid model of colitis in humanized NOD/scid/gamma mice. Inhibition/blockade of antisense might represent a therapeutic strategy to restore CD39 along with immunohomeostasis in Crohn’s disease. CD39 is an ectonucleotidase associated with immunoregulatory function. Here authors show regulation of CD39 expression by an endogenous antisense RNA moiety transcribed from the 3‘ end of CD39/ENTPD1 which when itself is silenced results in amelioration of pathology in an animal model of colitis.
Collapse
|
9
|
Anyanwu AC, Kanthi Y, Fukase K, Liao H, Mimura T, Desch KC, Gruca M, Kaskar S, Sheikh-Aden H, Chi L, Zhao R, Yadav V, Wakefield TW, Hyman MC, Pinsky DJ. Tuning the Thromboinflammatory Response to Venous Flow Interruption by the Ectonucleotidase CD39. Arterioscler Thromb Vasc Biol 2020; 39:e118-e129. [PMID: 30816804 DOI: 10.1161/atvbaha.119.312407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective- Leukocyte flux contributes to thrombus formation in deep veins under pathological conditions, but mechanisms that inhibit venous thrombosis are incompletely understood. Ectonucleotide di(tri)phosphohydrolase 1 ( ENTPD1 or Cd39), an ectoenzyme that catabolizes extracellular adenine nucleotides, is embedded on the surface of endothelial cells and leukocytes. We hypothesized that under venous stasis conditions, CD39 regulates inflammation at the vein:blood interface in a murine model of deep vein thrombosis. Approach and Results- CD39-null mice developed significantly larger venous thrombi under venous stasis, with more leukocyte recruitment compared with wild-type mice. Gene expression profiling of wild-type and Cd39-null mice revealed 76 differentially expressed inflammatory genes that were significantly upregulated in Cd39-deleted mice after venous thrombosis, and validation experiments confirmed high expression of several key inflammatory mediators. P-selectin, known to have proximal involvement in venous inflammatory and thrombotic events, was upregulated in Cd39-null mice. Inferior vena caval ligation resulted in thrombosis and a corresponding increase in both P-selectin and VWF (von Willebrand Factor) levels which were strikingly higher in mice lacking the Cd39 gene. These mice also manifest an increase in circulating platelet-leukocyte heteroaggregates suggesting heterotypic crosstalk between coagulation and inflammatory systems, which is amplified in the absence of CD39. Conclusions- These data suggest that CD39 mitigates the venous thromboinflammatory response to flow interruption.
Collapse
Affiliation(s)
- Anuli C Anyanwu
- From the Department of Molecular and Integrative Physiology (A.C.A., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor.,Section of Cardiology, Ann Arbor Veterans Health System, Michigan (Y.K.)
| | - Keigo Fukase
- Department of Cardiovascular Surgery, Awaji Medical Center, Hyogo, Japan (K.F.)
| | - Hui Liao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Tekashi Mimura
- Department of Surgical Oncology, Hiroshima University, Japan (T.M.)
| | - Karl C Desch
- Department of Pediatrics (K.C.D.), University of Michigan Medical Center, Ann Arbor
| | - Martin Gruca
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Saabir Kaskar
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Hussein Sheikh-Aden
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Liguo Chi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Raymond Zhao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Vinita Yadav
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Thomas W Wakefield
- Section of Vascular Surgery, Department of Surgery, Conrad Jobst Vascular Research Laboratories Ann Arbor, MI (T.W.W.)
| | - Matthew C Hyman
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia (M.C.H.)
| | - David J Pinsky
- From the Department of Molecular and Integrative Physiology (A.C.A., D.J.P.), University of Michigan Medical Center, Ann Arbor.,Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
10
|
Bonaventura A, Montecucco F, Dallegri F, Carbone F, Lüscher TF, Camici GG, Liberale L. Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc Res 2019; 115:1266-1285. [PMID: 30918936 DOI: 10.1093/cvr/cvz084] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa – Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa – Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- Heart Division, Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- University Heart Center, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
- Department of Research and Education, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| |
Collapse
|
11
|
The protective effect of pentoxifylline versus silymarin on the pancreas through increasing adenosine by CD39 in a rat model of liver cirrhosis: Pharmacological, biochemical and histological study. Gene 2018; 651:9-22. [PMID: 29408309 DOI: 10.1016/j.gene.2018.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
|
12
|
Beute J, Lukkes M, Koekoek EP, Nastiti H, Ganesh K, de Bruijn MJ, Hockman S, van Nimwegen M, Braunstahl GJ, Boon L, Lambrecht BN, Manganiello VC, Hendriks RW, KleinJan A. A pathophysiological role of PDE3 in allergic airway inflammation. JCI Insight 2018; 3:94888. [PMID: 29367458 DOI: 10.1172/jci.insight.94888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023] Open
Abstract
Phosphodiesterase 3 (PDE3) and PDE4 regulate levels of cyclic AMP, which are critical in various cell types involved in allergic airway inflammation. Although PDE4 inhibition attenuates allergic airway inflammation, reported side effects preclude its application as an antiasthma drug in humans. Case reports showed that enoximone, which is a smooth muscle relaxant that inhibits PDE3, is beneficial and lifesaving in status asthmaticus and is well tolerated. However, clinical observations also showed antiinflammatory effects of PDE3 inhibition. In this study, we investigated the role of PDE3 in a house dust mite-driven (HDM-driven) allergic airway inflammation (AAI) model that is characterized by T helper 2 cell activation, eosinophilia, and reduced mucosal barrier function. Compared with wild-type (WT) littermates, mice with a targeted deletion of the PDE3A or PDE3B gene showed significantly reduced HDM-driven AAI. Therapeutic intervention in WT mice showed that all hallmarks of HDM-driven AAI were abrogated by the PDE3 inhibitors enoximone and milrinone. Importantly, we found that enoximone also reduced the upregulation of the CD11b integrin on mouse and human eosinophils in vitro, which is crucial for their recruitment during allergic inflammation. This study provides evidence for a hitherto unknown antiinflammatory role of PDE3 inhibition in allergic airway inflammation and offers a potentially novel treatment approach.
Collapse
Affiliation(s)
- Jan Beute
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Melanie Lukkes
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Ewout P Koekoek
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Hedwika Nastiti
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Keerthana Ganesh
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | | | - Steve Hockman
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland USA
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | | | - Louis Boon
- Epirus Biopharmaceuticals Netherlands Yalelaan, Utrecht, Netherlands
| | - Bart N Lambrecht
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands.,VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Vince C Manganiello
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland USA
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Alex KleinJan
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| |
Collapse
|
13
|
Baek AE, Sutton NR, Petrovic-Djergovic D, Liao H, Ray JJ, Park J, Kanthi Y, Pinsky DJ. Ischemic Cerebroprotection Conferred by Myeloid Lineage-Restricted or Global CD39 Transgene Expression. Circulation 2017; 135:2389-2402. [PMID: 28377485 DOI: 10.1161/circulationaha.116.023301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/22/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cerebral tissue damage after an ischemic event can be exacerbated by inflammation and thrombosis. Elevated extracellular ATP and ADP levels are associated with cellular injury, inflammation, and thrombosis. Ectonucleoside triphosphate diphosphohydrolase-1 (CD39), an enzyme expressed on the plasmalemma of leukocytes and endothelial cells, suppresses platelet activation and leukocyte infiltration by phosphohydrolyzing ATP/ADP. To investigate the effects of increased CD39 in an in vivo cerebral ischemia model, we developed a transgenic mouse expressing human CD39 (hCD39). METHODS A floxed-stop sequence was inserted between the promoter and the hCD39 transcriptional start site, generating a mouse in which the expression of hCD39 can be controlled tissue-specifically using Cre recombinase mice. We generated mice that express hCD39 globally or in myeloid-lineage cells only. Cerebral ischemia was induced by middle cerebral artery occlusion. Infarct volumes were quantified by MRI after 48 hours. RESULTS Both global and transgenic hCD39- and myeloid lineage CD39-overexpressing mice (transgenic, n=9; myeloid lineage, n=6) demonstrated significantly smaller cerebral infarct volumes compared with wild-type mice. Leukocytes from ischemic and contralateral hemispheres were analyzed by flow cytometry. Although contralateral hemispheres had equal numbers of macrophages and neutrophils, ischemic hemispheres from transgenic mice had less infiltration (n=4). Transgenic mice showed less neurological deficit compared with wild-type mice (n=6). CONCLUSIONS This is the first report of transgenic overexpression of CD39 in mice imparting a protective phenotype after stroke, with reduced leukocyte infiltration, smaller infarct volumes, and decreased neurological deficit. CD39 overexpression, either globally or in myeloid lineage cells, quenches postischemic leukosequestration and reduces stroke-induced neurological injury.
Collapse
Affiliation(s)
- Amy E Baek
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Nadia R Sutton
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Danica Petrovic-Djergovic
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Hui Liao
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Jessica J Ray
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Joan Park
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Yogendra Kanthi
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - David J Pinsky
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.).
| |
Collapse
|
14
|
Extract from spent hop (Humulus lupulus L.) reduces blood platelet aggregation and improves anticoagulant activity of human endothelial cells in vitro. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Hamidzadeh K, Mosser DM. Purinergic Signaling to Terminate TLR Responses in Macrophages. Front Immunol 2016; 7:74. [PMID: 26973651 PMCID: PMC4773587 DOI: 10.3389/fimmu.2016.00074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Macrophages undergo profound physiological alterations when they encounter pathogen-associated molecular patterns (PAMPs). These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active downregulation of innate responses induced by the very PAMPs that initiated them. Here, we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR-stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the downregulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ-treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response.
Collapse
Affiliation(s)
- Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, The Maryland Pathogen Research Institute, University of Maryland , College Park, MD , USA
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, The Maryland Pathogen Research Institute, University of Maryland , College Park, MD , USA
| |
Collapse
|
16
|
Miyashita T, Nakanuma S, Ahmed AK, Makino I, Hayashi H, Oyama K, Nakagawara H, Tajima H, Takamura H, Ninomiya I, Fushida S, Harmon JW, Ohta T. Ischemia reperfusion-facilitated sinusoidal endothelial cell injury in liver transplantation and the resulting impact of extravasated platelet aggregation. Eur Surg 2015; 48:92-98. [PMID: 27110233 PMCID: PMC4830883 DOI: 10.1007/s10353-015-0363-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022]
Abstract
Background The exact sequence of events leading to ultimate hepatocellular damage following ischemia/reperfusion (I/R) is incompletely understood. In this article, we review a mechanism of organ dysfunction after hepatic I/R or immunosuppressive treatment, in addition to the potential of liver sinusoidal endothelial cell (LSEC) protection and antiplatelet treatment for the suppression of hepatocellular damage. Methods A review of the literature, utilizing PubMed-NCBI, was used to provide information on the components necessary for the development of hepatocellular damage following I/R. Results It is well-established that LSECs damage following hepatic I/R or immunosuppressive treatment followed by extravasated platelet aggregation (EPA) is the root cause of organ dysfunction in liver transplantation. We have classified three phases, from LSECs damage to organ dysfunction, utilizing the predicted pathogenic mechanism of sinusoidal obstruction syndrome. The first phase is detachment of LSECs and sinusoidal wall destruction after LSECs injury by hepatic I/R or immunosuppressive treatment. The second phase is EPA, accomplished by sinusoidal wall destruction. The various growth factors, including thromboxane A2, serotonin, transforming growth factor-beta and plasminogen activator inhibitor-1, released by EPA in the Disse’s space of zone three, induce portal hypertension and the progression of hepatic fibrosis. The third phase is organ dysfunction following portal hypertension, hepatic fibrosis, and suppressed liver regeneration through various growth factors secreted by EPA. Conclusion We suggest that EPA in the space of Disse, initiated by LSECs damage due to hepatic I/R or immunosuppressive treatment, and activated platelets may primarily contribute to liver damage in liver transplantation. Endothelial protective therapy or antiplatelet treatment may be useful in the treatment of hepatic I/R following EPA.
Collapse
Affiliation(s)
- T Miyashita
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - S Nakanuma
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - A K Ahmed
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 21224 Baltimore, MD USA
| | - I Makino
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - H Hayashi
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - K Oyama
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - H Nakagawara
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - H Tajima
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - H Takamura
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - I Ninomiya
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - S Fushida
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| | - J W Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 21224 Baltimore, MD USA
| | - T Ohta
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takaramachi, 920-8641 Kanazawa, Ishikawa Japan
| |
Collapse
|
17
|
Kanthi Y, Hyman MC, Liao H, Baek AE, Visovatti SH, Sutton NR, Goonewardena SN, Neral MK, Jo H, Pinsky DJ. Flow-dependent expression of ectonucleotide tri(di)phosphohydrolase-1 and suppression of atherosclerosis. J Clin Invest 2015; 125:3027-36. [PMID: 26121751 DOI: 10.1172/jci79514] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/21/2015] [Indexed: 01/18/2023] Open
Abstract
The ability of cells to detect and respond to nucleotide signals in the local microenvironment is essential for vascular homeostasis. The enzyme ectonucleotide tri(di)phosphohydrolase-1 (ENTPD1, also known as CD39) on the surface of leukocytes and endothelial cells metabolizes locally released, intravascular ATP and ADP, thereby eliminating these prothrombotic and proinflammatory stimuli. Here, we evaluated the contribution of CD39 to atherogenesis in the apolipoprotein E-deficient (ApoE-deficient) mouse model of atherosclerosis. Compared with control ApoE-deficient animals, plaque burden was markedly increased along with circulating markers of platelet activation in Cd39+/-Apoe-/- mice fed a high-fat diet. Plaque analysis revealed stark regionalization of endothelial CD39 expression and function in Apoe-/- mice, with CD39 prominently expressed in atheroprotective, stable flow regions and diminished in atheroprone areas subject to disturbed flow. In mice, disturbed flow as the result of partial carotid artery ligation rapidly suppressed endothelial CD39 expression. Moreover, unidirectional laminar shear stress induced atheroprotective CD39 expression in human endothelial cells. CD39 induction was dependent upon the vascular transcription factor Krüppel-like factor 2 (KLF2) binding near the transcriptional start site of CD39. Together, these data establish CD39 as a regionalized regulator of atherogenesis that is driven by shear stress.
Collapse
|
18
|
Fuentes E, Palomo I. Extracellular ATP metabolism on vascular endothelial cells: A pathway with pro-thrombotic and anti-thrombotic molecules. Vascul Pharmacol 2015; 75:1-6. [PMID: 25989108 DOI: 10.1016/j.vph.2015.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/16/2015] [Accepted: 05/09/2015] [Indexed: 12/20/2022]
Abstract
Vascular endothelial contributes to the metabolism and interconversion of extracellular adenine nucleotides via ecto-ATPase/ADPase (CD39) and ecto-5'nucleotidase (CD73) activities. These enzymes collectively dephosphorylate ATP, ADP, and AMP with the production of additional adenosine. In the vascular system, adenine nucleotides (ATP and ADP) and nucleoside adenosine represent an important class of extracellular molecules involved in modulating the processes linked to vascular thrombosis exerting various effects in platelets. Yet, the mechanisms by which the extracellular ATP metabolism in the local environment trigger pro-thrombotic and anti-thrombotic states are yet to be fully elucidated. In this article, the relative contribution of extracellular ATP metabolism in platelet regulation is explored.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile.
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile.
| |
Collapse
|
19
|
Abstract
Extracellular nucleotides play a critical role in vascular thrombosis and inflammation. Alterations in purinergic extracellular nucleotide concentrations activate pathways that result in platelet degranulation and aggregation, and endothelial and leukocyte activation and recruitment. CD39, the dominant vascular nucleotidase, hydrolyzes ATP and ADP to provide the substrate for generation of the anti-inflammatory and antithrombotic mediator adenosine. The purinergic signaling system, with CD39 at its center, plays an important role in modulating vascular homeostasis and the response to vascular injury, as seen in clinically relevant diseases such as stroke, ischemia-reperfusion injury, and pulmonary hypertension. A growing body of knowledge of the purinergic signaling pathway implicates CD39 as a critical modulator of vascular thrombosis and inflammation. Therapeutic strategies targeting CD39 offer promising opportunities in the management of vascular thromboinflammatory diseases.
Collapse
|
20
|
Csóka B, Németh ZH, Törő G, Koscsó B, Kókai E, Robson SC, Enjyoji K, Rolandelli RH, Erdélyi K, Pacher P, Haskó G. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. FASEB J 2014; 29:25-36. [PMID: 25318479 DOI: 10.1096/fj.14-253567] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sepsis remains the leading cause of morbidity and mortality in critically ill patients. Excessive inflammation is a major cause of organ failure and mortality in sepsis. Ectonucleoside triphosphate diphosphohydrolase 1, ENTPDase1 (CD39) is a cell surface nucleotide-metabolizing enzyme, which degrades the extracellular purines ATP and ADP, thereby regulating purinergic receptor signaling. Although the role of purinergic receptor signaling in regulating inflammation and sepsis has been addressed previously, the role of CD39 in regulating the host's response to sepsis is unknown. We found that the CD39 mimic apyrase (250 U/kg) decreased and knockout or pharmacologic blockade with sodium polyoxotungstate (5 mg/kg; IC50 ≈ 10 μM) of CD39 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture. CD39 decreased inflammation, organ damage, immune cell apoptosis, and bacterial load. Use of bone marrow chimeric mice revealed that CD39 expression on myeloid cells decreases inflammation in septic mice. CD39 expression is upregulated during sepsis in mice, as well as in both murine and human macrophages stimulated with Escherichia coli. Moreover, E. coli increases CD39 promoter activity in macrophages. Altogether, these data indicate CD39 as an evolutionarily conserved inducible protective pathway during sepsis. We propose CD39 as a novel therapeutic target in the management of sepsis.
Collapse
Affiliation(s)
- Balázs Csóka
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | | | - Balázs Koscsó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | - Simon C Robson
- Department of Medicine, Gastroenterology and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Keiichi Enjyoji
- Department of Medicine, Gastroenterology and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; and
| | | | - Katalin Erdélyi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA;
| |
Collapse
|
21
|
Traini M, Quinn CM, Sandoval C, Johansson E, Schroder K, Kockx M, Meikle PJ, Jessup W, Kritharides L. Sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is a novel nucleotide phosphodiesterase regulated by cholesterol in human macrophages. J Biol Chem 2014; 289:32895-913. [PMID: 25288789 DOI: 10.1074/jbc.m114.612341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol-loaded foam cell macrophages are prominent in atherosclerotic lesions and play complex roles in both inflammatory signaling and lipid metabolism, which are underpinned by large scale reprogramming of gene expression. We performed a microarray study of primary human macrophages that showed that transcription of the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene is up-regulated after cholesterol loading. SMPDL3A protein expression in and secretion from primary macrophages are stimulated by cholesterol loading, liver X receptor ligands, and cyclic AMP, and N-glycosylated SMPDL3A protein is detectable in circulating blood. We demonstrate for the first time that SMPDL3A is a functional phosphodiesterase with an acidic pH optimum. We provide evidence that SMPDL3A is not an acid sphingomyelinase but unexpectedly is active against nucleotide diphosphate and triphosphate substrates at acidic and neutral pH. SMPDL3A is a major source of nucleotide phosphodiesterase activity secreted by liver X receptor-stimulated human macrophages. Extracellular nucleotides such as ATP may activate pro-inflammatory responses in immune cells. Increased expression and secretion of SMPDL3A by cholesterol-loaded macrophage foam cells in lesions may decrease local concentrations of pro-inflammatory nucleotides and potentially represent a novel anti-inflammatory axis linking lipid metabolism with purinergic signaling in atherosclerosis.
Collapse
Affiliation(s)
- Mathew Traini
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139,
| | - Carmel M Quinn
- the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052
| | - Cecilia Sandoval
- the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052
| | - Erik Johansson
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139
| | - Kate Schroder
- the Institute for Molecular Bioscience, University of Queensland, Queensland 4072
| | - Maaike Kockx
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139
| | - Peter J Meikle
- the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, and
| | - Wendy Jessup
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139
| | - Leonard Kritharides
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, the Department of Cardiology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| |
Collapse
|