1
|
Vasterling ME, Maitski RJ, Davis BA, Barnes JE, Kelkar RA, Klapper RJ, Patel H, Ahmadzadeh S, Shekoohi S, Kaye AD, Varrassi G. AMONDYS 45 (Casimersen), a Novel Antisense Phosphorodiamidate Morpholino Oligomer: Clinical Considerations for Treatment in Duchenne Muscular Dystrophy. Cureus 2023; 15:e51237. [PMID: 38283433 PMCID: PMC10821770 DOI: 10.7759/cureus.51237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
AMONDYS 45 (casimersen) is an antisense oligonucleotide therapy used to treat Duchenne muscular dystrophy (DMD), a rare genetic disorder characterized by a mutation in the DMD gene. Symptoms include progressive muscle weakness, respiratory and cardiac complications, and premature death. Casimersen targets a specific mutation in the DMD gene that results in the absence of dystrophin protein, a key structural component of muscle fibers. While there is currently no cure for DMD, exon-skipping therapy works by restoring the reading frame of the mutated gene, allowing the production of a partially functional dystrophin protein. Clinical trials of casimersen have shown promising results in increasing dystrophin production, as measured by polymerase chain reaction (PCR) droplets when compared to placebo. In a randomized double-blind trial, patients who received casimersen had significantly higher dystrophin levels when compared to those who received placebo. Casimersen therapy is administered through repeated intravenous infusions, although the optimal dosage and duration of treatment are still under investigation. Based on the completed and ongoing clinical trials, casimersen has been well tolerated, with most adverse events being mild and unrelated to casimersen. In 2021, AMONDYS 45 (casimersen) received approval from the US Food and Drug Administration (FDA) for the treatment of Duchene muscular dystrophy in patients with a mutation of the DMD gene that is amenable to exon 45 skipping. These collective findings indicate that casimersen has the potential to elicit functional changes in individuals with DMD, although further studies are necessary to comprehensively evaluate the specific functional improvements. Regardless, the FDA approval and ongoing clinic trials mark a significant milestone in the development of DMD treatments and offer hope for those affected by this debilitating disease.
Collapse
Affiliation(s)
- Megan E Vasterling
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Rebecca J Maitski
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Brice A Davis
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Julie E Barnes
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, Charleston, USA
| | - Rachel J Klapper
- Radiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Hirni Patel
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
2
|
Leung A, Sacristan-Reviriego A, Perdigão PRL, Sai H, Georgiou M, Kalitzeos A, Carr AJF, Coffey PJ, Michaelides M, Bainbridge J, Cheetham ME, van der Spuy J. Investigation of PTC124-mediated translational readthrough in a retinal organoid model of AIPL1-associated Leber congenital amaurosis. Stem Cell Reports 2022; 17:2187-2202. [PMID: 36084639 PMCID: PMC9561542 DOI: 10.1016/j.stemcr.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 10/26/2022] Open
Abstract
Leber congenital amaurosis type 4 (LCA4), caused by AIPL1 mutations, is characterized by severe sight impairment in infancy and rapidly progressing degeneration of photoreceptor cells. We generated retinal organoids using induced pluripotent stem cells (iPSCs) from renal epithelial cells obtained from four children with AIPL1 nonsense mutations. iPSC-derived photoreceptors exhibited the molecular hallmarks of LCA4, including undetectable AIPL1 and rod cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6) compared with control or CRISPR-corrected organoids. Increased levels of cGMP were detected. The translational readthrough-inducing drug (TRID) PTC124 was investigated as a potential therapeutic agent. LCA4 retinal organoids exhibited low levels of rescue of full-length AIPL1. However, this was insufficient to fully restore PDE6 in photoreceptors and reduce cGMP. LCA4 retinal organoids are a valuable platform for in vitro investigation of novel therapeutic agents.
Collapse
Affiliation(s)
- Amy Leung
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | | | - Hali Sai
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | | | | | - Michel Michaelides
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - James Bainbridge
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | | | | |
Collapse
|
3
|
Functional restoration of mouse Nf1 nonsense alleles in differentiated cultured neurons. J Hum Genet 2022; 67:661-668. [PMID: 35945271 DOI: 10.1038/s10038-022-01072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type 1 (NF1), one of the most common autosomal dominant genetic disorders, is caused by mutations in the NF1 gene. NF1 patients have a wide variety of manifestations with a subset at high risk for the development of tumors in the central nervous system (CNS). Nonsense mutations that result in the synthesis of truncated NF1 protein (neurofibromin) are strongly associated with CNS tumors. Therapeutic nonsense suppression with small molecule drugs is a potentially powerful approach to restore the expression of genes harboring nonsense mutations. Ataluren is one such drug that has been shown to restore full-length functional protein in several models of nonsense mutation diseases, as well as in patients with nonsense mutation Duchenne muscular dystrophy. To test ataluren's potential applicability to NF1 nonsense mutations associated with CNS tumors, we generated a homozygous Nf1R683X/R683X-3X-FLAG mouse embryonic stem (mES) cell line which recapitulates an NF1 patient nonsense mutation (c.2041 C > T; p.Arg681X). We differentiated Nf1R683X/R683X-3X-FLAG mES cells into cortical neurons in vitro, treated the cells with ataluren, and demonstrated that ataluren can promote readthrough of the nonsense mutation at codon 683 of Nf1 mRNA in neural cells. The resulting full-length protein is able to reduce the cellular level of hyperactive phosphorylated ERK (pERK), a RAS effector normally suppressed by the NF1 protein.
Collapse
|
4
|
Huang S, Bhattacharya A, Ghelfi MD, Li H, Fritsch C, Chenoweth DM, Goldman YE, Cooperman BS. Ataluren binds to multiple protein synthesis apparatus sites and competitively inhibits release factor-dependent termination. Nat Commun 2022; 13:2413. [PMID: 35523781 PMCID: PMC9076611 DOI: 10.1038/s41467-022-30080-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic diseases are often caused by nonsense mutations, but only one TRID (translation readthrough inducing drug), ataluren, has been approved for clinical use. Ataluren inhibits release factor complex (RFC) termination activity, while not affecting productive binding of near-cognate ternary complex (TC, aa-tRNA.eEF1A.GTP). Here we use photoaffinity labeling to identify two sites of ataluren binding within rRNA, proximal to the decoding center (DC) and the peptidyl transfer center (PTC) of the ribosome, which are directly responsible for ataluren inhibition of termination activity. A third site, within the RFC, has as yet unclear functional consequences. Using single molecule and ensemble fluorescence assays we also demonstrate that termination proceeds via rapid RFC-dependent hydrolysis of peptidyl-tRNA followed by slow release of peptide and tRNA from the ribosome. Ataluren is an apparent competitive inhibitor of productive RFC binding, acting at or before the hydrolysis step. We propose that designing more potent TRIDs which retain ataluren's low toxicity should target areas of the RFC binding site proximal to the DC and PTC which do not overlap the TC binding site.
Collapse
Affiliation(s)
- Shijie Huang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- GSK, 14200 Shady Grove Rd, Rockville, MD, 20850, USA
| | - Arpan Bhattacharya
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mikel D Ghelfi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clark Fritsch
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Bezzerri V, Lentini L, Api M, Busilacchi EM, Cavalieri V, Pomilio A, Diomede F, Pegoraro A, Cesaro S, Poloni A, Pace A, Trubiani O, Lippi G, Pibiri I, Cipolli M. Novel Translational Read-through-Inducing Drugs as a Therapeutic Option for Shwachman-Diamond Syndrome. Biomedicines 2022; 10:biomedicines10040886. [PMID: 35453634 PMCID: PMC9024944 DOI: 10.3390/biomedicines10040886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Shwachman-Diamond syndrome (SDS) is one of the most commonly inherited bone marrow failure syndromes (IBMFS). In SDS, bone marrow is hypocellular, with marked neutropenia. Moreover, SDS patients have a high risk of developing myelodysplastic syndrome (MDS), which in turn increases the risk of acute myeloid leukemia (AML) from an early age. Most SDS patients are heterozygous for the c.183-184TA>CT (K62X) SBDS nonsense mutation. Fortunately, a plethora of translational read-through inducing drugs (TRIDs) have been developed and tested for several rare inherited diseases due to nonsense mutations so far. The authors previously demonstrated that ataluren (PTC124) can restore full-length SBDS protein expression in bone marrow stem cells isolated from SDS patients carrying the nonsense mutation K62X. In this study, the authors evaluated the effect of a panel of ataluren analogues in restoring SBDS protein resynthesis and function both in hematological and non-hematological SDS cells. Besides confirming that ataluren can efficiently induce SBDS protein re-expression in SDS cells, the authors found that another analogue, namely NV848, can restore full-length SBDS protein synthesis as well, showing very low toxicity in zebrafish. Furthermore, NV848 can improve myeloid differentiation in bone marrow hematopoietic progenitors, enhancing neutrophil maturation and reducing the number of dysplastic granulocytes in vitro. Therefore, these findings broaden the possibilities of developing novel therapeutic options in terms of nonsense mutation suppression for SDS. Eventually, this study may act as a proof of concept for the development of similar approaches for other IBMFS caused by nonsense mutations.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (V.B.); (A.P.)
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
| | - Martina Api
- Cystic Fibrosis Center of Ancona, Azienda Ospedaliero Universitaria Ospedali Riuniti, 60126 Ancona, Italy;
| | - Elena Marinelli Busilacchi
- Hematology Clinic, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy; (E.M.B.); (A.P.)
| | - Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, 90128 Palermo, Italy
| | - Antonella Pomilio
- Department of Medical, Oral and Biotechnological Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Francesca Diomede
- Dipartimento di Tecnologie Innovative in Medicina e Odontoiatria, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Anna Pegoraro
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (V.B.); (A.P.)
| | - Simone Cesaro
- Unit of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Antonella Poloni
- Hematology Clinic, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy; (E.M.B.); (A.P.)
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
| | - Oriana Trubiani
- Dipartimento di Tecnologie Innovative in Medicina e Odontoiatria, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, 37126 Verona, Italy;
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
| | - Marco Cipolli
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (V.B.); (A.P.)
- Correspondence: ; Tel.: +39-045-812-2293
| |
Collapse
|
6
|
Ricci G, Bello L, Torri F, Schirinzi E, Pegoraro E, Siciliano G. Therapeutic opportunities and clinical outcome measures in Duchenne muscular dystrophy. Neurol Sci 2022; 43:625-633. [PMID: 35608735 PMCID: PMC9126754 DOI: 10.1007/s10072-022-06085-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a devastatingly severe genetic muscle disease characterized by childhood-onset muscle weakness, leading to loss of motor function and premature death due to respiratory and cardiac insufficiency. DISCUSSION In the following three and half decades, DMD kept its paradigmatic role in the field of muscle diseases, with first systematic description of disease progression with ad hoc outcome measures and the first attempts at correcting the disease-causing gene defect by several molecular targets. Clinical trials are critical for developing and evaluating new treatments for DMD. CONCLUSIONS In the last 20 years, research efforts converged in characterization of the disease mechanism and development of therapeutic strategies. Same effort needs to be dedicated to the development of outcome measures able to capture clinical benefit in clinical trials.
Collapse
Affiliation(s)
- Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Ataluren-Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals (Basel) 2021; 14:ph14080785. [PMID: 34451881 PMCID: PMC8398184 DOI: 10.3390/ph14080785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Around 12% of hereditary disease-causing mutations are in-frame nonsense mutations. The expression of genes containing nonsense mutations potentially leads to the production of truncated proteins with residual or virtually no function. However, the translation of transcripts containing premature stop codons resulting in full-length protein expression can be achieved using readthrough agents. Among them, only ataluren was approved in several countries to treat nonsense mutation Duchenne muscular dystrophy (DMD) patients. This review summarizes ataluren’s journey from its identification, via first in vitro activity experiments, to clinical trials in DMD, cystic fibrosis, and aniridia. Additionally, data on its pharmacokinetics and mechanism of action are presented. The range of diseases with underlying nonsense mutations is described for which ataluren therapy seems to be promising. What is more, experiments in which ataluren did not show its readthrough activity are also included, and reasons for their failures are discussed.
Collapse
|
8
|
FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Nat Commun 2021; 12:2951. [PMID: 34012031 PMCID: PMC8134429 DOI: 10.1038/s41467-021-23217-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
The muscular dystrophies encompass a broad range of pathologies with varied clinical outcomes. In the case of patients carrying defects in fukutin-related protein (FKRP), these diverse pathologies arise from mutations within the same gene. This is surprising as FKRP is a glycosyltransferase, whose only identified function is to transfer ribitol-5-phosphate to α-dystroglycan (α-DG). Although this modification is critical for extracellular matrix attachment, α-DG's glycosylation status relates poorly to disease severity, suggesting the existence of unidentified FKRP targets. Here we reveal that FKRP directs sialylation of fibronectin, a process essential for collagen recruitment to the muscle basement membrane. Thus, our results reveal that FKRP simultaneously regulates the two major muscle-ECM linkages essential for fibre survival, and establishes a new disease axis for the muscular dystrophies.
Collapse
|
9
|
Kong R, Ma J, Hwang S, Moon YC, Welch EM, Weetall M, Colacino JM, Almstead N, Babiak J, Goodwin E. In vitro metabolism, reaction phenotyping, enzyme kinetics, CYP inhibition and induction potential of ataluren. Pharmacol Res Perspect 2021; 8:e00576. [PMID: 32196986 PMCID: PMC7083565 DOI: 10.1002/prp2.576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023] Open
Abstract
Ataluren promotes ribosomal readthrough of premature termination codons in mRNA which result from nonsense mutations. In vitro studies were performed to characterize the metabolism and enzyme kinetics of ataluren and its interaction potential with CYP enzymes. Incubation of [14C]‐ataluren with human liver microsomes indicated that the major metabolic pathway for ataluren is via direct glucuronidation and that the drug is not metabolized via cytochrome P450 (CYP). Glucuronidation was also observed in the incubation in human intestinal and kidney microsomes, but not in human pulmonary microsomes. UGT1A9 was found to be the major uridine diphosphate glucuronosyltransferase (UGT) responsible for ataluren glucuronidation in the liver and kidney microsomes. Enzyme kinetic analysis of the formation of ataluren acyl glucuronide, performed in human liver, kidney, and intestinal microsomes and recombinant human UGT1A9, found that increasing bovine serum albumin (BSA) levels enhanced the glucuronidation Michaelis‐Menten constant (Km) and ataluren protein binding but had a minimal effect on maximum velocity (Vmax) of glucuronidation. Due to the decreased unbound Michaelis‐Menten constant (Km,u), the ataluren unbound intrinsic clearance (CLint,u) increased for all experimental systems and BSA concentrations. Human kidney microsomes were about 3.7‐fold more active than human liver microsomes, in terms of CLint,u/mg protein, indicating that the kidney is also a key organ for the metabolism and disposition of ataluren in humans. Ataluren showed no or little potential to inhibit or induce most of the CYP enzymes.
Collapse
Affiliation(s)
- Ronald Kong
- PTC Therapeutics, Inc., South Plainfield, NJ, USA
| | - Jiyuan Ma
- PTC Therapeutics, Inc., South Plainfield, NJ, USA
| | | | | | | | | | | | | | - John Babiak
- PTC Therapeutics, Inc., South Plainfield, NJ, USA
| | | |
Collapse
|
10
|
Farr GH, Morris M, Gomez A, Pham T, Kilroy E, Parker EU, Said S, Henry C, Maves L. A novel chemical-combination screen in zebrafish identifies epigenetic small molecule candidates for the treatment of Duchenne muscular dystrophy. Skelet Muscle 2020; 10:29. [PMID: 33059738 PMCID: PMC7559456 DOI: 10.1186/s13395-020-00251-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder and is one of the most common muscular dystrophies. There are currently few effective therapies to treat the disease, although many small-molecule approaches are being pursued. Certain histone deacetylase inhibitors (HDACi) have been shown to ameliorate DMD phenotypes in mouse and zebrafish animal models. The HDACi givinostat has shown promise for DMD in clinical trials. However, beyond a small group of HDACi, other classes of epigenetic small molecules have not been broadly and systematically studied for their benefits for DMD. Methods We used an established animal model for DMD, the zebrafish dmd mutant strain sapje. A commercially available library of epigenetic small molecules was used to treat embryonic-larval stages of dmd mutant zebrafish. We used a quantitative muscle birefringence assay in order to assess and compare the effects of small-molecule treatments on dmd mutant zebrafish skeletal muscle structure. Results We performed a novel chemical-combination screen of a library of epigenetic compounds using the zebrafish dmd model. We identified candidate pools of epigenetic compounds that improve skeletal muscle structure in dmd mutant zebrafish. We then identified a specific combination of two HDACi compounds, oxamflatin and salermide, that ameliorated dmd mutant zebrafish skeletal muscle degeneration. We validated the effects of oxamflatin and salermide on dmd mutant zebrafish in an independent laboratory. Furthermore, we showed that the combination of oxamflatin and salermide caused increased levels of histone H4 acetylation in zebrafish larvae. Conclusions Our results provide novel, effective methods for performing a combination of small-molecule screen in zebrafish. Our results also add to the growing evidence that epigenetic small molecules may be promising candidates for treating DMD.
Collapse
Affiliation(s)
- Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Melanie Morris
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Medical Student Research Training Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Arianna Gomez
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Molecular Medicine and Mechanisms of Disease Program, Department of Pathology, University of Washington, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Thao Pham
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Molecular Medicine and Mechanisms of Disease Program, Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elisabeth Kilroy
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Elizabeth U Parker
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Medical Student Research Training Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Shery Said
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Clarissa Henry
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Lasa-Fernandez H, Mosqueira-Martín L, Alzualde A, Lasa-Elgarresta J, Vallejo-Illarramendi A. A genotyping method combining primer competition PCR with HRM analysis to identify point mutations in Duchenne animal models. Sci Rep 2020; 10:17224. [PMID: 33057138 PMCID: PMC7560699 DOI: 10.1038/s41598-020-74173-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
Dystrophin-null sapje zebrafish is an excellent model for better understanding the pathological mechanisms underlying Duchenne muscular dystrophy, and it has recently arisen as a powerful tool for high-throughput screening of therapeutic candidates for this disease. While dystrophic phenotype in sapje larvae can be easily detected by birefringence, zebrafish genotyping is necessary for drug screening experiments, where the potential rescue of larvae phenotype is the primary outcome. Genotyping is also desirable during colony husbandry since heterozygous progenitors need to be selected. Currently, sapje zebrafish are genotyped through techniques involving sequencing or multi-step PCR, which are often costly, tedious, or require special equipment. Here we report a simple, precise, cost-effective, and versatile PCR genotyping method based on primer competition. Genotypes can be resolved by standard agarose gel electrophoresis and high-resolution melt assay, the latter being especially useful for genotyping a large number of samples. Our approach has shown high sensitivity, specificity, and reproducibility in detecting the A/T point mutation in sapje zebrafish and the C/T mutation in the mdx mouse model of Duchenne. Hence, this method can be applied to other single nucleotide substitutions and may be further optimized to detect small insertions and deletions. Given its robust performance with crude DNA extracts, our strategy may be particularly well-suited for detecting single nucleotide variants in poor-quality samples such as ancient DNA or DNA from formalin-fixed, paraffin-embedded material.
Collapse
Affiliation(s)
- Haizpea Lasa-Fernandez
- Group of Neurosciences, Dept. Pediatrics, University of the Basque Country UPV/EHU, Hospital Universitario Donostia, Paseo Dr. Begiristain 105, 20014, San Sebastián, Spain
- Group of Neuromuscular Diseases, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, 20014, San Sebastián, Spain
- CIBERNED, Instituto de Salud Carlos III, 28031, Madrid, Spain
| | - Laura Mosqueira-Martín
- Group of Neurosciences, Dept. Pediatrics, University of the Basque Country UPV/EHU, Hospital Universitario Donostia, Paseo Dr. Begiristain 105, 20014, San Sebastián, Spain
- Group of Neuromuscular Diseases, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, 20014, San Sebastián, Spain
- CIBERNED, Instituto de Salud Carlos III, 28031, Madrid, Spain
| | | | - Jaione Lasa-Elgarresta
- Group of Neurosciences, Dept. Pediatrics, University of the Basque Country UPV/EHU, Hospital Universitario Donostia, Paseo Dr. Begiristain 105, 20014, San Sebastián, Spain
- Group of Neuromuscular Diseases, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, 20014, San Sebastián, Spain
- CIBERNED, Instituto de Salud Carlos III, 28031, Madrid, Spain
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Dept. Pediatrics, University of the Basque Country UPV/EHU, Hospital Universitario Donostia, Paseo Dr. Begiristain 105, 20014, San Sebastián, Spain.
- Group of Neuromuscular Diseases, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, 20014, San Sebastián, Spain.
- CIBERNED, Instituto de Salud Carlos III, 28031, Madrid, Spain.
| |
Collapse
|
12
|
Berger J, Li M, Berger S, Meilak M, Rientjes J, Currie PD. Effect of Ataluren on dystrophin mutations. J Cell Mol Med 2020; 24:6680-6689. [PMID: 32343037 PMCID: PMC7299694 DOI: 10.1111/jcmm.15319] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
Duchenne muscular dystrophy is a severe muscle wasting disease caused by mutations in the dystrophin gene (dmd). Ataluren has been approved by the European Medicines Agency for treatment of Duchenne muscular dystrophy. Ataluren has been reported to promote ribosomal read‐through of premature stop codons, leading to restoration of full‐length dystrophin protein. However, the mechanism of Ataluren action has not been fully described. To evaluate the efficacy of Ataluren on all three premature stop codons featuring different termination strengths (UAA > UAG > UGA), novel dystrophin‐deficient zebrafish were generated. Pathological assessment of the muscle by birefringence quantification, a tool to directly measure muscle integrity, did not reveal a significant effect of Ataluren on any of the analysed dystrophin‐deficient mutants at 3 days after fertilization. Functional analysis of the musculature at 6 days after fertilization by direct measurement of the generated force revealed a significant improvement by Ataluren only for the UAA‐carrying mutant dmdta222a. Interestingly however, all other analysed dystrophin‐deficient mutants were not affected by Ataluren, including the dmdpc3 and dmdpc2 mutants that harbour weaker premature stop codons UAG and UGA, respectively. These in vivo results contradict reported in vitro data on Ataluren efficacy, suggesting that Ataluren might not promote read‐through of premature stop codons. In addition, Ataluren had no effect on dystrophin transcript levels, but mild adverse effects on wild‐type larvae were identified. Further assessment of N‐terminally truncated dystrophin opened the possibility of Ataluren promoting alternative translation codons within dystrophin, thereby potentially shifting the patient cohort applicable for Ataluren.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic, Australia.,Victoria Node, EMBL Australia, Clayton, Vic, Australia
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic, Australia.,Victoria Node, EMBL Australia, Clayton, Vic, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic, Australia.,Victoria Node, EMBL Australia, Clayton, Vic, Australia
| | - Michelle Meilak
- Monash Genome Modification Platform, Monash University, Clayton, Vic, Australia
| | - Jeanette Rientjes
- Monash Genome Modification Platform, Monash University, Clayton, Vic, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic, Australia.,Victoria Node, EMBL Australia, Clayton, Vic, Australia
| |
Collapse
|
13
|
Wood AJ, Cohen N, Joshi V, Li M, Costin A, Hersey L, McKaige EA, Manneken JD, Sonntag C, Miles LB, Siegel A, Currie PD. RGD inhibition of itgb1 ameliorates laminin-α2-deficient zebrafish fibre pathology. Hum Mol Genet 2020; 28:1403-1413. [PMID: 30566586 DOI: 10.1093/hmg/ddy426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 01/27/2023] Open
Abstract
Deficiency of muscle basement membrane (MBM) component laminin-α2 leads to muscular dystrophy congenital type 1A (MDC1A), a currently untreatable myopathy. Laminin--α2 has two main binding partners within the MBM, dystroglycan and integrin. Integrins coordinate both cell adhesion and signalling; however, there is little mechanistic insight into integrin's function at the MBM. In order to study integrin's role in basement membrane development and how this relates to the MBM's capacity to handle force, an itgβ1.b-/- zebrafish line was created. Histological examination revealed increased extracellular matrix (ECM) deposition at the MBM in the itgβ1.b-/- fish when compared with controls. Surprisingly, both laminin and collagen proteins were found to be increased in expression at the MBM of the itgβ1.b-/- larvae when compared with controls. This increase in ECM components resulted in a decrease in myotomal elasticity as determined by novel passive force analyses. To determine if it was possible to control ECM deposition at the MBM by manipulating integrin activity, RGD peptide, a potent inhibitor of integrin-β1, was injected into a zebrafish model of MDC1A. As postulated an increase in laminin and collagen was observed in the lama2-/- mutant MBM. Importantly, there was also an improvement in fibre stability at the MBM, judged by a reduction in fibre pathology. These results therefore show that blocking ITGβ1 signalling increases ECM deposition at the MBM, a process that could be potentially exploited for treatment of MDC1A.
Collapse
Affiliation(s)
- Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Naomi Cohen
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Veronica Joshi
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Adam Costin
- Ramaciotti Centre for Electron Microscopy, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Lucy Hersey
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Emily A McKaige
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Jessica D Manneken
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Lee B Miles
- Department of Physiology, Anatomy and Microbiology, Latrobe University, Melbourne (Bundoora), VIC, Australia
| | - Ashley Siegel
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia.,Victorian Node, EMBL Australia, Clayton, VIC, Australia
| |
Collapse
|
14
|
Widrick JJ, Kawahara G, Alexander MS, Beggs AH, Kunkel LM. Discovery of Novel Therapeutics for Muscular Dystrophies using Zebrafish Phenotypic Screens. J Neuromuscul Dis 2020; 6:271-287. [PMID: 31282429 PMCID: PMC6961982 DOI: 10.3233/jnd-190389] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent availability and development of mutant and transgenic zebrafish strains that model human muscular dystrophies has created new research opportunities for therapeutic development. Not only do these models mimic many pathological aspects of human dystrophies, but their small size, large clutch sizes, rapid ex utero development, body transparency, and genetic tractability enable research approaches that would be inconceivable with mammalian model systems. Here we discuss the use of zebrafish models of muscular dystrophy to rapidly screen hundreds to thousands of bioactive compounds in order to identify novel therapeutic candidates that modulate pathologic phenotypes. We review the justification and rationale behind this unbiased approach, including how zebrafish screens have identified FDA-approved drugs that are candidates for treating Duchenne and limb girdle muscular dystrophies. Not only can these drugs be re-purposed for treating dystrophies in a fraction of the time and cost of new drug development, but their identification has revealed novel, unexpected directions for future therapy development. Phenotype-driven zebrafish drug screens are an important compliment to the more established mammalian, target-based approaches for rapidly developing and validating therapeutics for muscular dystrophies.
Collapse
Affiliation(s)
- Jeffrey J Widrick
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama; University of Alabama at Birmingham Center for Exercise Medicine; University of Alabama at Birmingham Civitan International Research Center; University of Alabama at Birmingham Department of Genetics; Birmingham, Alabama, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Wasala NB, Chen SJ, Duan D. Duchenne muscular dystrophy animal models for high-throughput drug discovery and precision medicine. Expert Opin Drug Discov 2020; 15:443-456. [PMID: 32000537 DOI: 10.1080/17460441.2020.1718100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is an X-linked handicapping disease due to the loss of an essential muscle protein dystrophin. Dystrophin-null animals have been extensively used to study disease mechanisms and to develop experimental therapeutics. Despite decades of research, however, treatment options for DMD remain very limited.Areas covered: High-throughput high-content screening and precision medicine offer exciting new opportunities. Here, the authors review animal models that are suitable for these studies.Expert opinion: Nonmammalian models (worm, fruit fly, and zebrafish) are particularly attractive for cost-effective large-scale drug screening. Several promising lead compounds have been discovered using these models. Precision medicine for DMD aims at developing mutation-specific therapies such as exon-skipping and genome editing. To meet these needs, models with patient-like mutations have been established in different species. Models that harbor hotspot mutations are very attractive because the drugs developed in these models can bring mutation-specific therapies to a large population of patients. Humanized hDMD mice carry the entire human dystrophin gene in the mouse genome. Reagents developed in the hDMD mouse-based models are directly translatable to human patients.
Collapse
Affiliation(s)
- Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Shi-Jie Chen
- Department of Physics, The University of Missouri, Columbia, MO, USA.,Department of Biochemistry, The University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| |
Collapse
|
16
|
Krall M, Htun S, Slavotinek A. Use of PTC124 for nonsense suppression therapy targeting BMP4 nonsense variants in vitro and the bmp4st72 allele in zebrafish. PLoS One 2019; 14:e0212121. [PMID: 31017898 PMCID: PMC6481805 DOI: 10.1371/journal.pone.0212121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/07/2019] [Indexed: 12/04/2022] Open
Abstract
Nonsense suppression therapy (NST) utilizes compounds such as PTC124 (Ataluren) to induce translational read-through of stop variants by promoting the insertion of near cognate, aminoacyl tRNAs that yield functional proteins. We used NST with PTC124 to determine if we could successfully rescue nonsense variants in human Bone Morphogenetic Protein 4 (BMP4) in vitro and in a zebrafish bmp4 allele with a stop variant in vivo. We transfected 293T/17 cells with wildtype or mutant human BMP4 cDNA containing p.Arg198* and p.Glu213* and exposed cells to 0–20 μM PTC124. Treatment with 20 μM PTC124 produced a small, non-significant increase in BMP4 when targeting the p.Arg198* allele, but not the p.Glu213* allele, as measured with an In-cell ELISA assay. We then examined the ability of PTC124 to rescue the ventral tail fin defects associated with homozygosity for the p.Glu209* allele of bmp4 (bmp4st72/st72) in Danio rerio. We in-crossed bmp4st72/+ heterozygous fish and found a statistically significant increase in homozygous larvae without tail fin and ventroposterior defects, consistent with phenotypic rescue, after treatment of dechorionated larvae with 0.5 μM PTC124. We conclude that treatment with PTC124 can rescue bmp4 nonsense variants, but that the degree of rescue may depend on sequence specific factors and the amount of RNA transcript available for rescue. Our work also confirms that zebrafish show promise as a useful animal model for assessing the efficacy of PTC124 treatment on nonsense variants.
Collapse
Affiliation(s)
- Max Krall
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Stephanie Htun
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Reeves EP, Dunlea DM, McQuillan K, O'Dwyer CA, Carroll TP, Saldova R, Akepati PR, Wormald MR, McElvaney OJ, Shutchaidat V, Henry M, Meleady P, Keenan J, Liberti DC, Kotton DN, Rudd PM, Wilson AA, McElvaney NG. Circulating Truncated Alpha-1 Antitrypsin Glycoprotein in Patient Plasma Retains Anti-Inflammatory Capacity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2240-2253. [PMID: 30796179 PMCID: PMC6452030 DOI: 10.4049/jimmunol.1801045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Alpha-1 antitrypsin (AAT) is an acute phase protein that possesses immune-regulatory and anti-inflammatory functions independent of antiprotease activity. AAT deficiency (AATD) is associated with early-onset emphysema and chronic obstructive pulmonary disease. Of interest are the AATD nonsense mutations (termed null or Q0), the majority of which arise from premature termination codons in the mRNA coding region. We have recently demonstrated that plasma from an AATD patient homozygous for the Null Bolton allele (Q0bolton ) contains AAT protein of truncated size. Although the potential to alleviate the phenotypic consequences of AATD by increasing levels of truncated protein holds therapeutic promise, protein functionality is key. The goal of this study was to evaluate the structural features and anti-inflammatory capacity of Q0bolton-AAT. A low-abundance, truncated AAT protein was confirmed in plasma of a Q0bolton-AATD patient and was secreted by patient-derived induced pluripotent stem cell-hepatic cells. Functional assays confirmed the ability of purified Q0bolton-AAT protein to bind neutrophil elastase and to inhibit protease activity. Q0bolton-AAT bound IL-8 and leukotriene B4, comparable to healthy control M-AAT, and significantly decreased leukotriene B4-induced neutrophil adhesion (p = 0.04). Through a mechanism involving increased mRNA stability (p = 0.007), ataluren treatment of HEK-293 significantly increased Q0bolton-AAT mRNA expression (p = 0.03) and Q0bolton-AAT truncated protein secretion (p = 0.04). Results support the rationale for treatment with pharmacological agents that augment levels of functional Q0bolton-AAT protein, thus offering a potential therapeutic option for AATD patients with rare mutations of similar theratype.
Collapse
Affiliation(s)
- Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland;
| | - Danielle M Dunlea
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Karen McQuillan
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Ciara A O'Dwyer
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Tomás P Carroll
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Radka Saldova
- GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Dublin, Ireland
| | - Prithvi Reddy Akepati
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118
| | - Mark R Wormald
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| | - Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Vipatsorn Shutchaidat
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Derek C Liberti
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118
| | - Pauline M Rudd
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Andrew A Wilson
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
18
|
How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases. Genetics 2018; 208:833-851. [PMID: 29487144 PMCID: PMC5844338 DOI: 10.1534/genetics.117.300124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases.
Collapse
|
19
|
Zebrafish Models of Rare Hereditary Pediatric Diseases. Diseases 2018; 6:diseases6020043. [PMID: 29789451 PMCID: PMC6023479 DOI: 10.3390/diseases6020043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in sequencing technologies have made it significantly easier to find the genetic roots of rare hereditary pediatric diseases. These novel methods are not panaceas, however, and they often give ambiguous results, highlighting multiple possible causative mutations in affected patients. Furthermore, even when the mapping results are unambiguous, the affected gene might be of unknown function. In these cases, understanding how a particular genotype can result in a phenotype also needs carefully designed experimental work. Model organism genetics can offer a straightforward experimental setup for hypothesis testing. Containing orthologs for over 80% of the genes involved in human diseases, zebrafish (Danio rerio) has emerged as one of the top disease models over the past decade. A plethora of genetic tools makes it easy to create mutations in almost any gene of the zebrafish genome and these mutant strains can be used in high-throughput preclinical screens for active molecules. As this small vertebrate species offers several other advantages as well, its popularity in biomedical research is bound to increase, with “aquarium to bedside” drug development pipelines taking a more prevalent role in the near future.
Collapse
|
20
|
Goody M, Jurczyszak D, Kim C, Henry C. Influenza A Virus Infection Damages Zebrafish Skeletal Muscle and Exacerbates Disease in Zebrafish Modeling Duchenne Muscular Dystrophy. PLOS CURRENTS 2017; 9. [PMID: 29188128 PMCID: PMC5693338 DOI: 10.1371/currents.md.8a7e35c50fa2b48156799d3c39788175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Both genetic and infectious diseases can result in skeletal muscle degeneration, inflammation, pain, and/or weakness. Duchenne muscular dystrophy (DMD) is the most common congenital muscle disease. DMD causes progressive muscle wasting due to mutations in Dystrophin. Influenza A and B viruses are frequently associated with muscle complications, especially in children. Infections activate an immune response and immunosuppressant drugs reduce DMD symptoms. These data suggest that the immune system may contribute to muscle pathology. However, roles of the immune response in DMD and Influenza muscle complications are not well understood. Zebrafish with dmd mutations are a well-characterized model in which to study the molecular and cellular mechanisms of DMD pathology. We recently showed that zebrafish can be infected by human Influenza A virus (IAV). Thus, the zebrafish is a powerful system with which to ask questions about the etiology and mechanisms of muscle damage due to genetic and/or infectious diseases. METHODS We infected zebrafish with IAV and assayed muscle tissue structure, sarcolemma integrity, cell-extracellular matrix (ECM) attachment, and molecular and cellular markers of inflammation in response to IAV infection alone or in the context of DMD. RESULTS We find that IAV-infected zebrafish display mild muscle degeneration with sarcolemma damage and compromised ECM adhesion. An innate immune response is elicited in muscle in IAV-infected zebrafish: NFkB signaling is activated, pro-inflammatory cytokine expression is upregulated, and neutrophils localize to sites of muscle damage. IAV-infected dmd mutants display more severe muscle damage than would be expected from an additive effect of dmd mutation and IAV infection, suggesting that muscle damage caused by Dystrophin-deficiency and IAV infection is synergistic. DISCUSSION These data demonstrate the importance of preventing IAV infections in individuals with genetic muscle diseases. Elucidating the mechanisms of immune-mediated muscle damage will not only apply to DMD and IAV, but also to other conditions where the immune system, inflammation, and muscle tissue are known to be affected, such as autoimmune diseases, cancer, and aging.
Collapse
Affiliation(s)
| | - Denise Jurczyszak
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | | | - Clarissa Henry
- Graduate School for Biomedical Sciences and Engineering, School of Biology and Ecology, University of Maine. Orono, Main, USA
| |
Collapse
|
21
|
Xiyuan Z, Fink RHA, Mosqueira M. NO-sGC Pathway Modulates Ca 2+ Release and Muscle Contraction in Zebrafish Skeletal Muscle. Front Physiol 2017; 8:607. [PMID: 28878687 PMCID: PMC5572320 DOI: 10.3389/fphys.2017.00607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/07/2017] [Indexed: 11/26/2022] Open
Abstract
Vertebrate skeletal muscle contraction and relaxation is a complex process that depends on Ca2+ ions to promote the interaction of actin and myosin. This process can be modulated by nitric oxide (NO), a gas molecule synthesized endogenously by (nitric oxide synthase) NOS isoforms. At nanomolar concentrations NO activates soluble guanylate cyclase (sGC), which in turn activates protein kinase G via conversion of GTP into cyclic GMP. Alternatively, NO post-translationally modifies proteins via S-nitrosylation of the thiol group of cysteine. However, the mechanisms of action of NO on Ca2+ homeostasis during muscle contraction are not fully understood and we hypothesize that NO exerts its effects on Ca2+ homeostasis in skeletal muscles mainly through negative modulation of Ca2+ release and Ca2+ uptake via the NO-sGC-PKG pathway. To address this, we used 5–7 days-post fecundation-larvae of zebrafish, a well-established animal model for physiological and pathophysiological muscle activity. We evaluated the response of muscle contraction and Ca2+ transients in presence of SNAP, a NO-donor, or L-NAME, an unspecific NOS blocker in combination with specific blockers of key proteins of Ca2+ homeostasis. We also evaluate the expression of NOS in combination with dihydropteridine receptor, ryanodine receptor and sarco/endoplasmic reticulum Ca2+ ATPase. We concluded that endogenous NO reduced force production through negative modulation of Ca2+ transients via the NO-sGC pathway. This effect could be reversed using an unspecific NOS blocker or sGC blocker.
Collapse
Affiliation(s)
- Zhou Xiyuan
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, Heidelberg University HospitalHeidelberg, Germany.,Department of Traumatic Surgery, TongJi Hospital affiliated to TongJi Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Rainer H A Fink
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, Heidelberg University HospitalHeidelberg, Germany
| | - Matias Mosqueira
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, Heidelberg University HospitalHeidelberg, Germany
| |
Collapse
|
22
|
Development Aspects of Zebrafish Myotendinous Junction: a Model System for Understanding Muscle Basement Membrane Formation and Failure. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0140-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Richardson R, Smart M, Tracey-White D, Webster AR, Moosajee M. Mechanism and evidence of nonsense suppression therapy for genetic eye disorders. Exp Eye Res 2017; 155:24-37. [PMID: 28065590 DOI: 10.1016/j.exer.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/24/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
Abstract
Between 5 and 70% of genetic disease is caused by in-frame nonsense mutations, which introduce a premature termination codon (PTC) within the disease-causing gene. Consequently, during translation, non-functional or gain-of-function truncated proteins of pathological significance, are formed. Approximately 50% of all inherited retinal disorders have been associated with PTCs, highlighting the importance of novel pharmacological or gene correction therapies in ocular disease. Pharmacological nonsense suppression of PTCs could delineate a therapeutic strategy that treats the mutation in a gene- and disease-independent manner. This approach aims to suppress the fidelity of the ribosome during protein synthesis so that a near-cognate aminoacyl-tRNA, which shares two of the three nucleotides of the PTC, can be inserted into the peptide chain, allowing translation to continue, and a full-length functional protein to be produced. Here we discuss the mechanisms and evidence of nonsense suppression agents, including the small molecule drug ataluren (or PTC124) and next generation 'designer' aminoglycosides, for the treatment of genetic eye disease.
Collapse
Affiliation(s)
- Rose Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - Matthew Smart
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - Dhani Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - Andrew R Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
24
|
|
25
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
26
|
Widrick JJ, Alexander MS, Sanchez B, Gibbs DE, Kawahara G, Beggs AH, Kunkel LM. Muscle dysfunction in a zebrafish model of Duchenne muscular dystrophy. Physiol Genomics 2016; 48:850-860. [PMID: 27764767 DOI: 10.1152/physiolgenomics.00088.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 01/10/2023] Open
Abstract
Sapje zebrafish lack the protein dystrophin and are the smallest vertebrate model of Duchenne muscular dystrophy (DMD). Their small size makes them ideal for large-scale drug discovery screens. However, the extent that sapje mimic the muscle dysfunction of higher vertebrate models of DMD is unclear. We used an optical birefringence assay to differentiate affected dystrophic sapje larvae from their unaffected siblings and then studied trunk muscle contractility at 4-7 days postfertilization. Preparation cross-sectional area (CSA) was similar for affected and unaffected larvae, yet tetanic forces of affected preparations were only 30-60% of normal. ANCOVA indicated that the linear relationship observed between tetanic force and CSA for unaffected preparations was absent in the affected population. Consequently, the average force/CSA of affected larvae was depressed 30-70%. Disproportionate reductions in twitch vs. tetanic force, and a slowing of twitch tension development and relaxation, indicated that the myofibrillar disorganization evident in the birefringence assay could not explain the entire force loss. Single eccentric contractions, in which activated preparations were lengthened 5-10%, resulted in tetanic force deficits in both groups of larvae. However, deficits of affected preparations were three- to fivefold greater at all strains and ages, even after accounting for any recovery. Based on these functional assessments, we conclude that the sapje mutant zebrafish is a phenotypically severe model of DMD. The severe contractile deficits of sapje larvae represent novel physiological endpoints for therapeutic drug screening.
Collapse
Affiliation(s)
- Jeffrey J Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts; .,Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Matthew S Alexander
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Sanchez
- Department of Neurology, Division of Neuromuscular Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Devin E Gibbs
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Genri Kawahara
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts; and
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts; and.,Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
27
|
Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proc Natl Acad Sci U S A 2016; 113:12508-12513. [PMID: 27702906 DOI: 10.1073/pnas.1605336113] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A premature termination codon (PTC) in the ORF of an mRNA generally leads to production of a truncated polypeptide, accelerated degradation of the mRNA, and depression of overall mRNA expression. Accordingly, nonsense mutations cause some of the most severe forms of inherited disorders. The small-molecule drug ataluren promotes therapeutic nonsense suppression and has been thought to mediate the insertion of near-cognate tRNAs at PTCs. However, direct evidence for this activity has been lacking. Here, we expressed multiple nonsense mutation reporters in human cells and yeast and identified the amino acids inserted when a PTC occupies the ribosomal A site in control, ataluren-treated, and aminoglycoside-treated cells. We find that ataluren's likely target is the ribosome and that it produces full-length protein by promoting insertion of near-cognate tRNAs at the site of the nonsense codon without apparent effects on transcription, mRNA processing, mRNA stability, or protein stability. The resulting readthrough proteins retain function and contain amino acid replacements similar to those derived from endogenous readthrough, namely Gln, Lys, or Tyr at UAA or UAG PTCs and Trp, Arg, or Cys at UGA PTCs. These insertion biases arise primarily from mRNA:tRNA mispairing at codon positions 1 and 3 and reflect, in part, the preferred use of certain nonstandard base pairs, e.g., U-G. Ataluren's retention of similar specificity of near-cognate tRNA insertion as occurs endogenously has important implications for its general use in therapeutic nonsense suppression.
Collapse
|
28
|
Moosajee M, Tracey-White D, Smart M, Weetall M, Torriano S, Kalatzis V, da Cruz L, Coffey P, Webster AR, Welch E. Functional rescue of REP1 following treatment with PTC124 and novel derivative PTC-414 in human choroideremia fibroblasts and the nonsense-mediated zebrafish model. Hum Mol Genet 2016; 25:3416-3431. [DOI: 10.1093/hmg/ddw184] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 01/15/2023] Open
|
29
|
Namgoong JH, Bertoni C. Clinical potential of ataluren in the treatment of Duchenne muscular dystrophy. Degener Neurol Neuromuscul Dis 2016; 6:37-48. [PMID: 30050367 PMCID: PMC6053089 DOI: 10.2147/dnnd.s71808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an autosomal dominant, X-linked neuromuscular disorder caused by mutations in dystrophin, one of the largest genes known to date. Dystrophin gene mutations are generally transmitted from the mother to male offspring and can occur throughout the coding length of the gene. The majority of the methodologies aimed at treating the disorder have focused on restoring a shorter, although partially functional, dystrophin protein. The approach has the potential of converting a severe DMD phenotype into a milder form of the disease known as Becker muscular dystrophy. Others have focused on ameliorating the disease by targeting secondary pathologies such as inflammation or loss of regeneration. Of great potential is the development of strategies that are capable of restoring full-length dystrophin expression due to their ability to produce a normal, fully functional protein. Among these strategies, the use of read-through compounds (RTCs) that could be administered orally represents an ideal option. Gentamicin has been previously tested in clinical trials for DMD with limited or no success, and its use in the clinic has been dismissed due to issues of toxicity and lack of clear benefits to patients. More recently, new RTCs have been identified and tested in animal models for DMD. This review will focus on one of those RTCs known as ataluren that has now completed Phase III clinical studies for DMD and at providing an overview of the different stages that have led to its clinical development for the disease. The impact that this new drug may have on DMD and its future perspectives will also be described, with an emphasis on the importance of further assessing the clinical benefits of this molecule in patients as it becomes available on the market in different countries.
Collapse
Affiliation(s)
- John Hyun Namgoong
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA,
| | - Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA,
| |
Collapse
|
30
|
Abstract
Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.
Collapse
Affiliation(s)
- Joshua T Selsby
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Jason W Ross
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Dan Nonneman
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Katrin Hollinger
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| |
Collapse
|
31
|
Vågberg W, Larsson DH, Li M, Arner A, Hertz HM. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging. Sci Rep 2015; 5:16625. [PMID: 26564785 PMCID: PMC4643221 DOI: 10.1038/srep16625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Imaging, Three-Dimensional/methods
- Larva/genetics
- Larva/metabolism
- Microscopy, Confocal
- Microscopy, Phase-Contrast
- Muscles/diagnostic imaging
- Muscular Dystrophy, Animal/diagnostic imaging
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Duchenne/diagnostic imaging
- Muscular Dystrophy, Duchenne/genetics
- Myofibrils/diagnostic imaging
- Radiographic Image Enhancement/instrumentation
- Radiographic Image Enhancement/methods
- Reproducibility of Results
- Tomography, X-Ray Computed/instrumentation
- Tomography, X-Ray Computed/methods
- Zebrafish
Collapse
Affiliation(s)
- William Vågberg
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm, Sweden
| | - Daniel H. Larsson
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm, Sweden
| | - Mei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hans M. Hertz
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm, Sweden
| |
Collapse
|
32
|
Li M, Arner A. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy. PLoS One 2015; 10:e0139483. [PMID: 26536238 PMCID: PMC4633184 DOI: 10.1371/journal.pone.0139483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 09/13/2015] [Indexed: 11/19/2022] Open
Abstract
Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.
Collapse
Affiliation(s)
- Mei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
33
|
He F, Jacobson A. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annu Rev Genet 2015; 49:339-66. [PMID: 26436458 DOI: 10.1146/annurev-genet-112414-054639] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| |
Collapse
|
34
|
Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives. Eur J Med Chem 2015; 101:236-44. [PMID: 26142488 DOI: 10.1016/j.ejmech.2015.06.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/14/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022]
Abstract
Premature stop codons are the result of nonsense mutations occurring within the coding sequence of a gene. These mutations lead to the synthesis of a truncated protein and are responsible for several genetic diseases. A potential pharmacological approach to treat these diseases is to promote the translational readthrough of premature stop codons by small molecules aiming to restore the full-length protein. The compound PTC124 (Ataluren) was reported to promote the readthrough of the premature UGA stop codon, although its activity was questioned. The potential interaction of PTC124 with mutated mRNA was recently suggested by molecular dynamics (MD) studies highlighting the importance of H-bonding and stacking π-π interactions. To improve the readthrough activity we changed the fluorine number and position in the PTC124 fluoroaryl moiety. The readthrough ability of these PTC124 derivatives was tested in human cells harboring reporter plasmids with premature stop codons in H2BGFP and FLuc genes as well as in cystic fibrosis (CF) IB3.1 cells with a nonsense mutation. Maintaining low toxicity, three of these molecules showed higher efficacy than PTC124 in the readthrough of the UGA premature stop codon and in recovering the expression of the CFTR protein in IB3.1 cells from cystic fibrosis patient. Molecular dynamics simulations performed with mutated CFTR mRNA fragments and active or inactive derivatives are in agreement with the suggested interaction of PTC124 with mRNA.
Collapse
|
35
|
Plantié E, Migocka-Patrzałek M, Daczewska M, Jagla K. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish. Molecules 2015; 20:6237-53. [PMID: 25859781 PMCID: PMC6272363 DOI: 10.3390/molecules20046237] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. More than 30 types of MD have been described so far; those most thoroughly studied are Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1) and congenital MDs. Structurally, physiologically and biochemically, MDs affect different types of muscles and cause individual symptoms such that genetic and molecular pathways underlying their pathogenesis thus remain poorly understood. To improve our knowledge of how MD-caused muscle defects arise and to find efficacious therapeutic treatments, different animal models have been generated and applied. Among these, simple non-mammalian Drosophila and zebrafish models have proved most useful. This review discusses how zebrafish and Drosophila MD have helped to identify genetic determinants of MDs and design innovative therapeutic strategies with a special focus on DMD, DM1 and congenital MDs.
Collapse
Affiliation(s)
- Emilie Plantié
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France; E-Mail:
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland; E-Mails: (M.M.-P.); (M.D.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland; E-Mails: (M.M.-P.); (M.D.)
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France; E-Mail:
| |
Collapse
|
36
|
Schwarz N, Carr AJ, Lane A, Moeller F, Chen LL, Aguilà M, Nommiste B, Muthiah MN, Kanuga N, Wolfrum U, Nagel-Wolfrum K, da Cruz L, Coffey PJ, Cheetham ME, Hardcastle AJ. Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet 2015; 24:972-86. [PMID: 25292197 PMCID: PMC4986549 DOI: 10.1093/hmg/ddu509] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 01/08/2023] Open
Abstract
Mutations in the RP2 gene lead to a severe form of X-linked retinitis pigmentosa. RP2 patients frequently present with nonsense mutations and no treatments are currently available to restore RP2 function. In this study, we reprogrammed fibroblasts from an RP2 patient carrying the nonsense mutation c.519C>T (p.R120X) into induced pluripotent stem cells (iPSC), and differentiated these cells into retinal pigment epithelial cells (RPE) to study the mechanisms of disease and test potential therapies. RP2 protein was undetectable in the RP2 R120X patient cells, suggesting a disease mechanism caused by complete lack of RP2 protein. The RP2 patient fibroblasts and iPSC-derived RPE cells showed phenotypic defects in IFT20 localization, Golgi cohesion and Gβ1 trafficking. These phenotypes were corrected by over-expressing GFP-tagged RP2. Using the translational read-through inducing drugs (TRIDs) G418 and PTC124 (Ataluren), we were able to restore up to 20% of endogenous, full-length RP2 protein in R120X cells. This level of restored RP2 was sufficient to reverse the cellular phenotypic defects observed in both the R120X patient fibroblasts and iPSC-RPE cells. This is the first proof-of-concept study to demonstrate successful read-through and restoration of RP2 function for the R120X nonsense mutation. The ability of the restored RP2 protein level to reverse the observed cellular phenotypes in cells lacking RP2 indicates that translational read-through could be clinically beneficial for patients.
Collapse
Affiliation(s)
- Nele Schwarz
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Amanda-Jayne Carr
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Fabian Moeller
- Johannes Gutenberg-University Muellerweg 6, 55099 Mainz, Germany and
| | - Li Li Chen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mònica Aguilà
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Britta Nommiste
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Manickam N Muthiah
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK, Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK
| | - Naheed Kanuga
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Uwe Wolfrum
- Johannes Gutenberg-University Muellerweg 6, 55099 Mainz, Germany and
| | | | - Lyndon da Cruz
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK, Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK
| | - Peter J Coffey
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | |
Collapse
|
37
|
Celik A, Kervestin S, Jacobson A. NMD: At the crossroads between translation termination and ribosome recycling. Biochimie 2014; 114:2-9. [PMID: 25446649 DOI: 10.1016/j.biochi.2014.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of three regulatory mechanisms that monitor the cytoplasm for aberrant mRNAs. NMD is usually triggered by premature translation termination codons that arise from mutations, transcription errors, or inefficient splicing, but which also occur in transcripts with alternately spliced isoforms or upstream open reading frames, or in the context of long 3'-UTRs. This surveillance pathway requires detection of the nonsense codon by the eukaryotic release factors (eRF1 and eRF3) and the activities of the Upf proteins, but the exact mechanism by which a nonsense codon is recognized as premature, and the individual roles of the Upf proteins, are poorly understood. In this review, we highlight important differences between premature and normal termination. Based on our current understanding of normal termination and ribosome recycling, we propose a similar mechanism for premature termination events that includes a role for the Upf proteins. In this model, the Upf proteins not only target the mRNA and nascent peptide for degradation, but also assume the role of recycling factors and rescue a ribosome stalled at a premature nonsense codon. The ATPase and helicase activities of Upf1, with the help of Upf2 and Upf3, are thus thought to be the catalytic force in ribosome subunit dissociation and ribosome recycling at an otherwise poorly dissociable termination event. While this model is somewhat speculative, it provides a unified vision for current data and a direction for future research.
Collapse
Affiliation(s)
- Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA
| | - Stephanie Kervestin
- CNRS FRE3630 Associated with Université Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA.
| |
Collapse
|
38
|
Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP, Connolly AM, Day JW, Flanigan KM, Goemans N, Jones KJ, Mercuri E, Quinlivan R, Renfroe JB, Russman B, Ryan MM, Tulinius M, Voit T, Moore SA, Lee Sweeney H, Abresch RT, Coleman KL, Eagle M, Florence J, Gappmaier E, Glanzman AM, Henricson E, Barth J, Elfring GL, Reha A, Spiegel RJ, O'donnell MW, Peltz SW, Mcdonald CM, FOR THE PTC124-GD-007-DMD STUDY GROUP. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 2014; 50:477-87. [PMID: 25042182 PMCID: PMC4241581 DOI: 10.1002/mus.24332] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/10/2014] [Accepted: 07/01/2014] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Dystrophinopathy is a rare, severe muscle disorder, and nonsense mutations are found in 13% of cases. Ataluren was developed to enable ribosomal readthrough of premature stop codons in nonsense mutation (nm) genetic disorders. METHODS Randomized, double-blind, placebo-controlled study; males ≥ 5 years with nm-dystrophinopathy received study drug orally 3 times daily, ataluren 10, 10, 20 mg/kg (N=57); ataluren 20, 20, 40 mg/kg (N=60); or placebo (N=57) for 48 weeks. The primary endpoint was change in 6-Minute Walk Distance (6MWD) at Week 48. RESULTS Ataluren was generally well tolerated. The primary endpoint favored ataluren 10, 10, 20 mg/kg versus placebo; the week 48 6MWD Δ=31.3 meters, post hoc P=0.056. Secondary endpoints (timed function tests) showed meaningful differences between ataluren 10, 10, 20 mg/kg, and placebo. CONCLUSIONS As the first investigational new drug targeting the underlying cause of nm-dystrophinopathy, ataluren offers promise as a treatment for this orphan genetic disorder with high unmet medical need.
Collapse
Affiliation(s)
- Katharine Bushby
- Institute of Genetic Medicine, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Richard Finkel
- The Children's Hospital of PhiladelphiaPennsylvania, USA
| | - Brenda Wong
- Cincinnati Children's Hospital Medical CenterOhio, USA
| | | | | | - Giacomo P Comi
- Dino Ferrari Centre, Department of Neurological Sciences, University of MilanI.R.C.C.S. Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Anne M Connolly
- Washington University School of Medicine at St. LouisMissouri, USA
| | - John W Day
- University of MinnesotaMinneapolis, Minnesota, USA
| | - Kevin M Flanigan
- Nationwide Children's Hospital and the Ohio State UniversityColumbus, Ohio, USA
| | | | - Kristi J Jones
- Department of Clinical Genetics, Sydney Children's Hospital Network, and Disciplines of Genetics and Paediatrics and Child Health, Faculty of Medicine University of SydneyAustralia
| | - Eugenio Mercuri
- Pediatric Neurology Unit, Polilcinico Gemelli, Università Cattolica Sacro CuoreRome, Italy
| | | | | | - Barry Russman
- Oregon Health & Science University and Shriners Hospital for ChildrenOregon, USA
| | - Monique M Ryan
- Royal Children's Hospital, Murdoch Childrens Research Institute and University of MelbourneParkville, Victoria, Australia
| | - Mar Tulinius
- Department of Pediatrics, The University of GothenburgGothenburg, Sweden
| | - Thomas Voit
- Institut de Myologie, University Pierre et Marie Curie Paris 6UM 76, INSERM U 974, CNRS UMR 7215, Paris, France
| | | | | | - Richard T Abresch
- UC Davis Children's Hospital, Lawrence J. Ellison Ambulatory Care Center, Physical Medicine & Rehabilitation4860 Y St., Suite 1700, Sacramento, California, 95817, USA
| | - Kim L Coleman
- OrthoCare InnovationsMountlake Terrace, Washington, USA
| | - Michelle Eagle
- Institute of Genetic Medicine, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Julaine Florence
- Washington University School of Medicine at St. LouisMissouri, USA
| | | | | | - Erik Henricson
- UC Davis Children's Hospital, Lawrence J. Ellison Ambulatory Care Center, Physical Medicine & Rehabilitation4860 Y St., Suite 1700, Sacramento, California, 95817, USA
| | - Jay Barth
- PTC TherapeuticsSouth Plainfield, New Jersey, USA
| | | | - Allen Reha
- PTC TherapeuticsSouth Plainfield, New Jersey, USA
| | | | | | | | - Craig M Mcdonald
- UC Davis Children's Hospital, Lawrence J. Ellison Ambulatory Care Center, Physical Medicine & Rehabilitation4860 Y St., Suite 1700, Sacramento, California, 95817, USA
| | | |
Collapse
|
39
|
|
40
|
|
41
|
Maves L. Recent advances using zebrafish animal models for muscle disease drug discovery. Expert Opin Drug Discov 2014; 9:1033-45. [PMID: 24931439 DOI: 10.1517/17460441.2014.927435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Animal models have enabled great progress in the discovery and understanding of pharmacological approaches for treating muscle diseases like Duchenne muscular dystrophy. AREAS COVERED With this article, the author provides the reader with a description of the zebrafish animal model, which has been employed to identify and study pharmacological approaches to muscle disease. In particular, the author focuses on how both large-scale chemical screens and targeted drug treatment studies have established zebrafish as an important model for muscle disease drug discovery. EXPERT OPINION There are a number of opportunities arising for the use of zebrafish models for further developing pharmacological approaches to muscle diseases, including studying drug combination therapies and utilizing genome editing to engineer zebrafish muscle disease models. It is the author's particular belief that the availability of a wide range of zebrafish transgenic strains for labeling immune cell types, combined with live imaging and drug treatment of muscle disease models, should allow for new elegant studies demonstrating how pharmacological approaches might influence inflammation and the immune response in muscle disease.
Collapse
Affiliation(s)
- Lisa Maves
- University of Washington School of Medicine, Department of Pediatrics, Division of Cardiology , Seattle, WA , USA
| |
Collapse
|
42
|
Abstract
Cystic fibrosis (CF) is the most common inherited genetic condition amongst Caucasian ethnicities, affecting 1 in 2500 live births. There remains a significant unmet medical need for more and better therapies for this chronic, degenerative condition, in particular those that address the respiratory dysfunction and respiratory infections that characterise CF. CF is caused by mutations in the cystic transmembrane conductance regulator gene (CFTR). The key pathology driver of CF is dysregulated ion transport across the epithelial cell barriers that line the respiratory tract, gastrointestinal tract and other organ systems. This review focuses on the state-of-the-art advances and future directions in therapeutic strategies to combat and manage the symptoms of CF and/or restore functionality of the defective CFTR.
Collapse
|