1
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
2
|
Strehse JS, Hoffmann D, Protopapas N, Martin HJ, Maser E. Carbonyl reduction of 4-oxonon-2-enal (4-ONE) by Sniffer from D. magna and D.pulex. Chem Biol Interact 2022; 354:109833. [PMID: 35085582 DOI: 10.1016/j.cbi.2022.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
The α, β-unsaturated aldehydes 4-oxonon-2-enal (4ONE) and 4-hydroxynon-2-enal (4HNE) are products of unsaturated fatty acids and ROS, and can be formed in lipid-rich tissues such as neurons. As strong electrophiles, both compounds react with DNA and proteins, and are capable of inactivating enzymes. However, both the human carbonyl reductase and the carbonyl reductase Drosophila melanogaster Sniffer are known to reduce 4ONE, a major lipid peroxidation product, to a less or non-toxic form. In this study, products formed during carbonyl reduction of 4ONE and 4HNE by recombinant Sniffer proteins from Daphnia magna and Daphnia pulex were investigated. A high-performance liquid chromatography analysis showed that Sniffer from D. magna converted 35.6% of 4ONE to 11.9% HNO and 23.7% 4HNE, while D. pulex converted 34.5% of this substrate to 14.8% HNO and 19.7% 4HNE. Thus, 4HNE is the main product formed from the sniffer-mediated reduction of 4ONE. The kinetic parameters obtained from the reduction of 4ONE were Km = 13.9 ± 2.1 μM, kcat = 1.53 s-1, kcat/km = 0.11 s-1 μM-1 for D. magna Sniffer and Km = 29.2 ± 4.3 μM, kcat = 0.64 s-1, kcat/km = 0.02 s-1 μM-1 for D. pulex Sniffer. These results demonstrate that Sniffer from D. magna and D. pulex are important enzymes involved in the carbonyl reductive biotransformation of 4ONE, a cytotoxic lipid peroxidation product. Noteworthy, the catalytic properties of both Daphnia Sniffer enzymes reflect previous findings with Sniffer from Drosophila melanogaster.
Collapse
Affiliation(s)
- Jennifer S Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Daniel Hoffmann
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Nikolaos Protopapas
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Hans-Jörg Martin
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|
3
|
Yunus IS, Anfelt J, Sporre E, Miao R, Hudson EP, Jones PR. Synthetic metabolic pathways for conversion of CO2 into secreted short-to medium-chain hydrocarbons using cyanobacteria. Metab Eng 2022; 72:14-23. [DOI: 10.1016/j.ymben.2022.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
4
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Deletion of sll1541 in Synechocystis sp. Strain PCC 6803 Allows Formation of a Far-Red-Shifted holo-Proteorhodopsin In Vivo. Appl Environ Microbiol 2018; 84:AEM.02435-17. [PMID: 29475867 DOI: 10.1128/aem.02435-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/08/2018] [Indexed: 12/25/2022] Open
Abstract
In many pro- and eukaryotes, a retinal-based proton pump equips the cell to drive ATP synthesis with (sun)light. Such pumps, therefore, have been proposed as a plug-in for cyanobacteria to artificially increase the efficiency of oxygenic photosynthesis. However, little information on the metabolism of retinal, their chromophore, is available for these organisms. We have studied the in vivo roles of five genes (sll1541, slr1648, slr0091, slr1192, and slr0574) potentially involved in retinal metabolism in Synechocystis sp. strain PCC 6803. With a gene deletion approach, we have shown that Synechocystis apo-carotenoid-15,15-oxygenase (SynACO), encoded by gene sll1541, is an indispensable enzyme for retinal synthesis in Synechocystis, presumably via asymmetric cleavage of β-apo-carotenal. The second carotenoid oxygenase (SynDiox2), encoded by gene slr1648, competes with SynACO for substrate(s) but only measurably contributes to retinal biosynthesis in stationary phase via an as-yet-unknown mechanism. In vivo degradation of retinal may proceed through spontaneous chemical oxidation and via enzyme-catalyzed processes. Deletion of gene slr0574 (encoding CYP120A1), but not of slr0091 or of slr1192, causes an increase (relative to the level in wild-type Synechocystis) in the retinal content in both the linear and stationary growth phases. These results suggest that CYP120A1 does contribute to retinal degradation. Preliminary data obtained using 13C-labeled retinal suggest that conversion to retinol and retinoic acid and subsequent further oxidation also play a role. Deletion of sll1541 leads to deficiency in retinal synthesis and allows the in vivo reconstitution of far-red-absorbing holo-proteorhodopsin with exogenous retinal analogues, as demonstrated here for all-trans 3,4-dehydroretinal and 3-methylamino-16-nor-1,2,3,4-didehydroretinal.IMPORTANCE Retinal is formed by many cyanobacteria and has a critical role in most forms of life for processes such as photoreception, growth, and stress survival. However, the metabolic pathways in cyanobacteria for synthesis and degradation of retinal are poorly understood. In this paper we identify genes involved in its synthesis, characterize their role, and provide an initial characterization of the pathway of its degradation. This led to the identification of sll1541 (encoding SynACO) as the essential gene for retinal synthesis. Multiple pathways for retinal degradation presumably exist. These results have allowed us to construct a strain that expresses a light-dependent proton pump with an action spectrum extending beyond 700 nm. The availability of this strain will be important for further work aimed at increasing the overall efficiency of oxygenic photosynthesis.
Collapse
|
6
|
Shimakawa G, Kohara A, Miyake C. Medium-chain dehydrogenase/reductase and aldo-keto reductase scavenge reactive carbonyls in Synechocystis sp. PCC 6803. FEBS Lett 2018; 592:1010-1019. [PMID: 29430658 DOI: 10.1002/1873-3468.13003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/24/2023]
Abstract
Reactive carbonyls (RCs), which are inevitably produced during respiratory and photosynthetic metabolism, have the potential to cause oxidative damage to photosynthetic organisms. Previously, we proposed a scavenging model for RCs in the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). In the current study, we constructed mutants deficient in the enzymes medium-chain dehydrogenase/reductase (ΔMDR) and aldo-keto reductase (ΔAKR) to investigate their contributions to RC scavenging in vivo. We found that treatment with the lipid-derived RC acrolein causes growth inhibition and promotes greater protein carbonylation in ΔMDR, compared with the wild-type and ΔAKR. In both ΔMDR and ΔAKR, photosynthesis is severely inhibited in the presence of acrolein. These results suggest that these enzymes function as part of the scavenging systems for RCs in S. 6803 in vivo.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan
| | - Ayaka Kohara
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan.,Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
7
|
Identification and functional characterization of four novel aldo/keto reductases in Anabaena sp. PCC 7120 by integrating wet lab with in silico approaches. Funct Integr Genomics 2017; 17:413-425. [DOI: 10.1007/s10142-017-0547-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 01/30/2023]
|
8
|
Yao L, Cengic I, Anfelt J, Hudson EP. Multiple Gene Repression in Cyanobacteria Using CRISPRi. ACS Synth Biol 2016; 5:207-12. [PMID: 26689101 DOI: 10.1021/acssynbio.5b00264] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe the application of clustered regularly interspaced short palindromic repeats interference (CRISPRi) for gene repression in the model cyanobacterium Synechcocystis sp. PCC 6803. The nuclease-deficient Cas9 from the type-II CRISPR/Cas of Streptrococcus pyogenes was used to repress green fluorescent protein (GFP) to negligible levels. CRISPRi was also used to repress formation of carbon storage compounds polyhydroxybutryate (PHB) and glycogen during nitrogen starvation. As an example of the potential of CRISPRi for basic and applied cyanobacteria research, we simultaneously knocked down 4 putative aldehyde reductases and dehydrogenases at 50-95% repression. This work also demonstrates that tightly repressed promoters allow for inducible and reversible CRISPRi in cyanobacteria.
Collapse
Affiliation(s)
- Lun Yao
- KTH—Royal Institute of Technology, Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, Stockholm SE-171 21 Sweden
| | - Ivana Cengic
- KTH—Royal Institute of Technology, Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, Stockholm SE-171 21 Sweden
| | - Josefine Anfelt
- KTH—Royal Institute of Technology, Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, Stockholm SE-171 21 Sweden
| | - Elton P. Hudson
- KTH—Royal Institute of Technology, Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, Stockholm SE-171 21 Sweden
| |
Collapse
|