1
|
Li S, Chen A, Gui J, Zhou H, Zhu L, Mi Y. TLN1: an oncogene associated with tumorigenesis and progression. Discov Oncol 2024; 15:716. [PMID: 39589610 PMCID: PMC11599537 DOI: 10.1007/s12672-024-01593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Talin-1 (TLN1), encoded by the TLN1 gene, is a focal adhesion-related protein capable of binding various proteins in the cytoskeleton. It is also expressed at high levels in many cancers wherein it influences cellular adhesion and the activation of integrins. TLN1 is also capable of promoting tumor cell invasivity, proliferation, and metastatic progression, in addition to being a relevant biomarker and therapeutic target in certain cancers. The present review offers a comprehensive overview of current knowledge regarding TLN1 with respect to its structural properties, functions, and role in tumor development.
Collapse
Affiliation(s)
- Sixin Li
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Anjie Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Jiandong Gui
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Hangsheng Zhou
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China.
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Franza M, Varricchio R, Alloisio G, De Simone G, Di Bella S, Ascenzi P, di Masi A. Zebrafish ( Danio rerio) as a Model System to Investigate the Role of the Innate Immune Response in Human Infectious Diseases. Int J Mol Sci 2024; 25:12008. [PMID: 39596075 PMCID: PMC11593600 DOI: 10.3390/ijms252212008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The zebrafish (Danio rerio) has emerged as a valuable model for studying host-pathogen interactions due to its unique combination of characteristics. These include extensive sequence and functional conservation with the human genome, optical transparency in larvae that allows for high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, advanced forward and reverse genetic tools, and suitability for chemical screening studies. Despite anatomical differences with humans, the zebrafish model has proven instrumental in investigating immune responses and human infectious diseases. Notably, zebrafish larvae rely exclusively on innate immune responses during the early stages of development, as the adaptive immune system becomes fully functional only after 4-6 weeks post-fertilization. This window provides a unique opportunity to isolate and examine infection and inflammation mechanisms driven by the innate immune response without the confounding effects of adaptive immunity. In this review, we highlight the strengths and limitations of using zebrafish as a powerful vertebrate model to study innate immune responses in infectious diseases. We will particularly focus on host-pathogen interactions in human infections caused by various bacteria (Clostridioides difficile, Staphylococcus aureus, and Pseudomonas aeruginosa), viruses (herpes simplex virus 1, SARS-CoV-2), and fungi (Aspergillus fumigatus and Candida albicans).
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Romualdo Varricchio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giulia Alloisio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy;
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Accademia Nazionale dei Lincei, 00165 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Centro Linceo Interdisciplinare “Beniamino Segre”, Accademia Nazionale dei Lincei, 00165 Roma, Italy
| |
Collapse
|
3
|
Rangarajan ES, Bois JL, Hansen SB, Izard T. High-resolution snapshots of the talin auto-inhibitory states suggest roles in cell adhesion and signaling. Nat Commun 2024; 15:9270. [PMID: 39468080 PMCID: PMC11519669 DOI: 10.1038/s41467-024-52581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Talin regulates crucial cellular functions, including cell adhesion and motility, and affects human diseases. Triggered by mechanical forces, talin plays crucial roles in facilitating the formation of focal adhesions and recruiting essential focal adhesion regulatory elements such as vinculin. The structural flexibility allows talin to fine-tune its signaling responses. This study presents our 2.7 Å cryoEM structures of talin, which surprisingly uncovers several auto-inhibitory states. Contrary to previous suggestions, our structures reveal that (1) the first and last three domains are not involved in maintaining talin in its closed state and are mobile, (2) the talin F-actin and membrane binding domain are loosely attached and thus available for binding, and (3) the main force-sensing domain is oriented with its vinculin binding sites ready for release. These structural snapshots offer insights and advancements in understanding the dynamic talin activation mechanism, which is crucial for mediating cell adhesion.
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA
| | - Julian L Bois
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA
| | - Scott B Hansen
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA
- The Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA
| | - Tina Izard
- Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, USA.
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA.
- The Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Essebier P, Keyser M, Yordanov T, Hill B, Yu A, Noordstra I, Yap AS, Stehbens SJ, Lagendijk AK, Schimmel L, Gordon EJ. c-Src-induced vascular malformations require localised matrix degradation at focal adhesions. J Cell Sci 2024; 137:jcs262101. [PMID: 38881365 PMCID: PMC11267457 DOI: 10.1242/jcs.262101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
Endothelial cells lining the blood vessel wall communicate intricately with the surrounding extracellular matrix, translating mechanical cues into biochemical signals. Moreover, vessels require the capability to enzymatically degrade the matrix surrounding them, to facilitate vascular expansion. c-Src plays a key role in blood vessel growth, with its loss in the endothelium reducing vessel sprouting and focal adhesion signalling. Here, we show that constitutive activation of c-Src in endothelial cells results in rapid vascular expansion, operating independently of growth factor stimulation or fluid shear stress forces. This is driven by an increase in focal adhesion signalling and size, with enhancement of localised secretion of matrix metalloproteinases responsible for extracellular matrix remodelling. Inhibition of matrix metalloproteinase activity results in a robust rescue of the vascular expansion elicited by heightened c-Src activity. This supports the premise that moderating focal adhesion-related events and matrix degradation can counteract abnormal vascular expansion, with implications for pathologies driven by unusual vascular morphologies.
Collapse
Affiliation(s)
- Patricia Essebier
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Mikaela Keyser
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Teodor Yordanov
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Brittany Hill
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Alexander Yu
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Alpha S. Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Samantha J. Stehbens
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Anne K. Lagendijk
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Lilian Schimmel
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Emma J. Gordon
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| |
Collapse
|
5
|
Zhang R, Sun J, Xie Y, Zhu W, Tao M, Chen Y, Xie W, Bade R, Jiang S, Liu X, Shao G, Pan W, Zhou C, Jia X. Mutant kri1l causes abnormal retinal development via cell cycle arrest and apoptosis induction. Cell Death Discov 2024; 10:251. [PMID: 38789412 PMCID: PMC11126728 DOI: 10.1038/s41420-024-02022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Damage to the ribosome or an imbalance in protein biosynthesis can lead to some human diseases, such as diabetic retinopathy (DR) and other eye diseases. Here, we reported that the kri1l gene was responsible for retinal development. The kri1l gene encodes an essential component of the rRNA small subunit processome. The retinal structure was disrupted in kri1l mutants, which resulted in small eyes. The boundaries of each layer of cells in the retina were blurred, and each layer of cells was narrowed and decreased. The photoreceptor cells and Müller glia cells almost disappeared in kri1l mutants. The lack of photoreceptor cells caused a fear of light response. The development of the retina started without abnormalities, and the abnormalities began two days after fertilization. In the kri1l mutant, retinal cell differentiation was defective, resulting in the disappearance of cone cells and Müller cells. The proliferation of retinal cells was increased, while apoptosis was also enhanced in kri1l mutants. γ-H2AX upregulation indicated the accumulation of DNA damage, which resulted in cell cycle arrest and apoptosis. The kri1l mutation reduced the expression of some opsin genes and key retinal genes, which are also essential for retinal development.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Fourth Hospital of Baotou, Inner Mongolia, Baotou, China
| | - Jiajun Sun
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
| | - Yabin Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhu
- School of Pharmacy, Baotou Medical College, Inner Mongolia, Baotou, China
| | - Meitong Tao
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
| | - Yu Chen
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
| | - Wei Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rengui Bade
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyuan Jiang
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Baotou Medical College, Inner Mongolia, Baotou, China
| | - Xiaolei Liu
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Baotou Medical College, Inner Mongolia, Baotou, China
| | - Guo Shao
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center for Translational Medicine and Department of Laboratory Medicine, The Third People's Hospital of Longgang District, Shenzhen, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chengjiang Zhou
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
| | - Xiaoe Jia
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Teixeira SK, Pontes R, Zuleta LFG, Wang J, Xu D, Hildebrand S, Russell J, Zhan X, Choi M, Tang M, Li X, Ludwig S, Beutler B, Krieger JE. Genetic determinants of blood pressure and heart rate identified through ENU-induced mutagenesis with automated meiotic mapping. SCIENCE ADVANCES 2024; 10:eadj9797. [PMID: 38427739 PMCID: PMC10906923 DOI: 10.1126/sciadv.adj9797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.
Collapse
Affiliation(s)
- Samantha K. Teixeira
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Pontes
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Fernando G. Zuleta
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose E. Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Xu Z, Lu J, Gao S, Rui YN. THSD1 Suppresses Autophagy-Mediated Focal Adhesion Turnover by Modulating the FAK-Beclin 1 Pathway. Int J Mol Sci 2024; 25:2139. [PMID: 38396816 PMCID: PMC10889294 DOI: 10.3390/ijms25042139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Focal adhesions (FAs) play a crucial role in cell spreading and adhesion, and their autophagic degradation is an emerging area of interest. This study investigates the role of Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) in regulating autophagy and FA stability in brain endothelial cells, shedding light on its potential implications for cerebrovascular diseases. Our research reveals a physical interaction between THSD1 and FAs. Depletion of THSD1 significantly reduces FA numbers, impairing cell spreading and adhesion. The loss of THSD1 also induces autophagy independently of changes in mTOR and AMPK activation, implying that THSD1 primarily governs FA dynamics rather than serving as a global regulator of nutrient and energy status. Mechanistically, THSD1 negatively regulates Beclin 1, a central autophagy regulator, at FAs through interactions with focal adhesion kinase (FAK). THSD1 inactivation diminishes FAK activity and relieves its inhibitory phosphorylation on Beclin 1. This, in turn, promotes the complex formation between Beclin 1 and ATG14, a critical event for the activation of the autophagy cascade. In summary, our findings identify THSD1 as a novel regulator of autophagy that degrades FAs in brain endothelial cells. This underscores the distinctive nature of THSD1-mediated, cargo-directed autophagy and its potential relevance to vascular diseases due to the loss of endothelial FAs. Investigating the underlying mechanisms of THSD1-mediated pathways holds promise for discovering novel therapeutic targets in vascular diseases.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiayi Lu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Song Gao
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yan-Ning Rui
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
8
|
Wang Y, Huang H, Weng H, Jia C, Liao B, Long Y, Yu F, Nie Y. Talin mechanotransduction in disease. Int J Biochem Cell Biol 2024; 166:106490. [PMID: 37914021 DOI: 10.1016/j.biocel.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Talin protein (Talin 1/2) is a mechanosensitive cytoskeleton protein. The unique structure of the Talin plays a vital role in transmitting mechanical forces. Talin proteins connect the extracellular matrix to the cytoskeleton by linking to integrins and actin, thereby mediating the conversion of mechanical signals into biochemical signals and influencing disease progression as potential diagnostic indicators, therapeutic targets, and prognostic indicators of various diseases. Most studies in recent years have confirmed that mechanical forces also have a crucial role in the development of disease, and Talin has been found to play a role in several diseases. Still, more studies need to be done on how Talin is involved in mechanical signaling in disease. This review focuses on the mechanical signaling of Talin in disease, aiming to summarize the mechanisms by which Talin plays a role in disease and to provide references for further studies.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Haozhong Huang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Huimin Weng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Chunsen Jia
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yongmei Nie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China.
| |
Collapse
|
9
|
Chau TCY, Keyser MS, Da Silva JA, Morris EK, Yordanov TE, Duscyz KP, Paterson S, Yap AS, Hogan BM, Lagendijk AK. Dynamically regulated focal adhesions coordinate endothelial cell remodelling in developing vasculature. Development 2022; 149:285926. [PMID: 36314606 DOI: 10.1242/dev.200454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/20/2022] [Indexed: 12/13/2022]
Abstract
The assembly of a mature vascular network involves coordinated endothelial cell (EC) shape changes, including the process of EC elongation. How EC elongation is dynamically regulated in vivo is not fully understood. Here, we have generated a zebrafish mutant that is deficient for the integrin adaptor protein Talin 1 (Tln1). Using a new focal adhesion (FA) marker line expressing endothelial Vinculinb-eGFP, we demonstrate that EC FAs function dynamically and are lost in our tln1 mutants, allowing us to uncouple the primary roles of FAs in EC morphogenesis from the secondary effects that occur due to systemic vessel failure or loss of blood flow. Tln1 loss led to compromised F-actin rearrangements, perturbed EC elongation and disrupted cell-cell junction linearisation in vessel remodelling. Finally, chemical induction of actin polymerisation restored actin dynamics and EC elongation during vascular morphogenesis. Together, we identify that FAs are essential for EC elongation and junction linearisation in flow-pressured vessels and that they influence actin polymerisation in cellular morphogenesis. These observations can explain the severely compromised vessel beds and vascular leakage observed in mutant models that lack integrin signalling. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Tevin C Y Chau
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mikaela S Keyser
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason A Da Silva
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Elysse K Morris
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Teodor E Yordanov
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kinga P Duscyz
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Scott Paterson
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre and The PeterMac Callum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre and The PeterMac Callum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia.,Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anne Karine Lagendijk
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Rear traction forces drive adherent tissue migration in vivo. Nat Cell Biol 2022; 24:194-204. [PMID: 35165417 PMCID: PMC8868490 DOI: 10.1038/s41556-022-00844-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
|
11
|
Yu B, Yao S, Liu L, Li H, Zhu J, Li M, Han S, Yu Z. The role of polypeptide PDTLN1 in suppression of PI3K/AKT signaling causes cardiogenetic disorders in vitro and in vivo. Life Sci 2022; 289:120244. [PMID: 34922940 DOI: 10.1016/j.lfs.2021.120244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Abstract
AIMS A new polypeptide, PDTLN1, derived from the human Talin-1 protein, which is highly expressed in both myocardial tissue and maternal peripheral blood of aborted fetuses with congenital heart disease (CHD). However, its role in cardiac developmental disorders has not been disclosed till now. In the present study, we aim to assess the functions of PDTLN1 in heart development of zebrafish and cellular viability, proliferation, and apoptosis of P19 cells. MAIN METHODS Cellular viability was assessed by Cell Counting Kit-8, the EdU Kit was used to evaluate cellular proliferation, and apoptosic rate of P19 was examined using FITC Annexin-V staining followed by flow cytometry. The zebrafish embryos were divided into three groups: PEP group and NC group were microinjected with polypeptides, WT group without any intervention. The protein expression of PI3K/AKT were evaluated by western blotting. KEY FINDINGS PDTLN1 could suppress the proliferation, and facilitate apoptosis. PDTLN1 caused abnormal heart development of zebrafish embryos and the PDTLN1 (50 μM)-injected group showed an aberrant expression pattern of vmhc, amhc and cmlc2. Compared to the CTL group and SC79 group of P19 cells, the PDTLN1 group had a lower phosphorylated PI3K/AKT proteins level, decreased cellular viability and lower proliferation activity. SIGNIFICANCE PDTLN1 caused cardiac developmental defects in zebrafish, inhibited cellular viability, proliferation, and promoted apoptosis of P19 cells via suppressing the PI3K/AKT signaling pathway. Our findings provide a fresh perspective on the functional mechanism of human-derived peptides and may promote novel diagnostic biomarkers detection and therapeutic targets in CHD.
Collapse
Affiliation(s)
- Boshi Yu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, China; Nanjing Maternity and Child Health Care Hospital, Tian Fei Xiang, Nanjing, Jiangsu, China
| | - Shuwen Yao
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, China; Nanjing Maternity and Child Health Care Hospital, Tian Fei Xiang, Nanjing, Jiangsu, China
| | - Linjie Liu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, China; Nanjing Maternity and Child Health Care Hospital, Tian Fei Xiang, Nanjing, Jiangsu, China
| | - Huimin Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, China; Nanjing Maternity and Child Health Care Hospital, Tian Fei Xiang, Nanjing, Jiangsu, China
| | - Jingai Zhu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, China; Nanjing Maternity and Child Health Care Hospital, Tian Fei Xiang, Nanjing, Jiangsu, China
| | - Mengmeng Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, China; Nanjing Maternity and Child Health Care Hospital, Tian Fei Xiang, Nanjing, Jiangsu, China
| | - Shuping Han
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, China; Nanjing Maternity and Child Health Care Hospital, Tian Fei Xiang, Nanjing, Jiangsu, China.
| | - Zhangbin Yu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, China; Nanjing Maternity and Child Health Care Hospital, Tian Fei Xiang, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Lu J, Linares B, Xu Z, Rui YN. Mechanisms of FA-Phagy, a New Form of Selective Autophagy/Organellophagy. Front Cell Dev Biol 2021; 9:799123. [PMID: 34950664 PMCID: PMC8689057 DOI: 10.3389/fcell.2021.799123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Focal adhesions (FAs) are adhesive organelles that attach cells to the extracellular matrix and can mediate various biological functions in response to different environmental cues. Reduced FAs are often associated with enhanced cell migration and cancer metastasis. In addition, because FAs are essential for preserving vascular integrity, the loss of FAs leads to hemorrhages and is frequently observed in many vascular diseases such as intracranial aneurysms. For these reasons, FAs are an attractive therapeutic target for treating cancer or vascular diseases, two leading causes of death world-wide. FAs are controlled by both their formation and turnover. In comparison to the large body of literature detailing FA formation, the mechanisms of FA turnover are poorly understood. Recently, autophagy has emerged as a major mechanism to degrade FAs and stabilizing FAs by inhibiting autophagy has a beneficial effect on breast cancer metastasis, suggesting autophagy-mediated FA turnover is a promising drug target. Intriguingly, autophagy-mediated FA turnover is a selective process and the cargo receptors for recognizing FAs in this process are context-dependent, which ensures the degradation of specific cargo. This paper mainly reviews the cargo recognition mechanisms of FA-phagy (selective autophagy-mediated FA turnover) and its disease relevance. We seek to outline some new points of understanding that will facilitate further study of FA-phagy and precise therapeutic strategies for related diseases associated with aberrant FA functions.
Collapse
Affiliation(s)
- Jiayi Lu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Bernard Linares
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zhen Xu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yan-Ning Rui
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Pollock NM, Leighton P, Neil G, Allison WT. Transcriptomic analysis of zebrafish prion protein mutants supports conserved cross-species function of the cellular prion protein. Prion 2021; 15:70-81. [PMID: 34139950 PMCID: PMC8216189 DOI: 10.1080/19336896.2021.1924557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 10/31/2022] Open
Abstract
Cellular Prion Protein (PrPC) is a well-studied protein as the substrate for various progressive untreatable neurodegenerative diseases. Normal functions of PrPC are poorly understood, though recent proteomic and transcriptomic approaches have begun to reveal common themes. We use our compound prp1 and prp2 knockout mutant zebrafish at three days post fertilization to take a transcriptomic approach to investigating potentially conserved PrPC functions during development. Gene ontology analysis shows the biological processes with the largest changes in gene expression include redox processing, transport and cell adhesion. Within these categories several different gene families were prevalent including the solute carrier proteins, cytochrome p450 enzymes and protocadherins. Continuing from previous studies identifying cell adhesion as an important function of PrPC we found that in addition to the protocadherins there was a significant reduction in transcript abundance of both ncam1a and st8sia2. These two genes are involved in the early development of vertebrates. The alterations in cell adhesion transcripts were consistent with past findings in zebrafish and mouse prion protein mutants; however E-cadherin processing after prion protein knockdown failed to reveal any differences compared with wild type in either our double prp1/prp2 mutant fish or after prp1 morpholino knockdown. Our data supports a cross species conserved role for PrPC in the development and maintenance of the central nervous system, particularly by regulating various and important cell adhesion processes.
Collapse
Affiliation(s)
- Niall Mungo Pollock
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada
| | - Patricia Leighton
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada
| | - Gavin Neil
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Olson HM, Nechiporuk AV. Lamellipodia-like protrusions and focal adhesions contribute to collective cell migration in zebrafish. Dev Biol 2020; 469:125-134. [PMID: 33096063 DOI: 10.1016/j.ydbio.2020.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/09/2023]
Abstract
Collective cell migration is a process where cohorts of cells exhibit coordinated migratory behavior. During individual and collective cellular migration, cells must extend protrusions to interact with the extracellular environment, sense chemotactic cues, and act as points of attachment. The mechanisms and regulators of protrusive behavior have been widely studied in individually migrating cells; however, how this behavior is regulated throughout collectives is not well understood. To address this, we used the zebrafish posterior lateral line primordium (pLLP) as a model. The pLLP is a cluster of ~150 cells that migrates along the zebrafish trunk, depositing groups of cells that will become sensory organs. To define protrusive behavior, we performed mosaic analysis to sparsely label pLLP cells with a transgene marking filamentous actin. This approach revealed an abundance of brush-like protrusions throughout the pLLP that orient in the direction of migration. Formation of these protrusions depends on the Arp2/3 complex, a regulator of dendritic actin. This argues that these brush-like protrusions are an in vivo example of lamellipodia. Mosaic analysis demonstrated that these lamellipodia-like protrusions are located in a close proximity to the overlying skin. Immunostaining revealed an abundance of focal adhesion complexes surrounding the pLLP. Disruption of these complexes specifically in pLLP cells led to impaired pLLP migration. Finally, we show that Erk signaling, a known regulator of focal adhesions, is required for proper formation of lamellipodia-like protrusions and pLLP migration. Altogether, our results suggest a model where the coordinated dynamics of lamellipodia-like protrusions, making contact with either the overlying skin or the extracellular matrix through focal adhesions, promotes migration of pLLP cells.
Collapse
Affiliation(s)
- Hannah M Olson
- Department Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR, USA; Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA
| | - Alex V Nechiporuk
- Department Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
15
|
Abstract
The morphogenesis of the mammalian secondary plate is a series of highly dynamic developmental process, including the palate shelves vertical outgrowth, elevation to the horizontal plane and complete fusion in the midline. Extracellular matrix (ECM) proteins not only form the basic infrastructure for palatal mesenchymal cells to adhere via integrins but also interact with cells to regulate their functions such as proliferation and differentiation. ECM remodeling is essential for palatal outgrowth, expansion, elevation, and fusion. Multiple signaling pathways important for palatogenesis such as FGF, TGF β, BMP, and SHH remodels ECM dynamics. Dysregulation of ECM such as HA synthesis or ECM breakdown enzymes MMPs or ADAMTS causes cleft palate in mouse models. A better understanding of ECM remodeling will contribute to revealing the pathogenesis of cleft palate.
Collapse
Affiliation(s)
- Xia Wang
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Chunman Li
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Zeyao Zhu
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Li Yuan
- Department of Stomatology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University , Shenzhen, China
| | - Wood Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong, China
| | - Ou Sha
- Health Science Center, Shenzhen University , Shenzhen, China
| |
Collapse
|
16
|
Rho SS, Kobayashi I, Oguri-Nakamura E, Ando K, Fujiwara M, Kamimura N, Hirata H, Iida A, Iwai Y, Mochizuki N, Fukuhara S. Rap1b Promotes Notch-Signal-Mediated Hematopoietic Stem Cell Development by Enhancing Integrin-Mediated Cell Adhesion. Dev Cell 2019; 49:681-696.e6. [DOI: 10.1016/j.devcel.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/16/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023]
|
17
|
Intracranial Aneurysms: Pathology, Genetics, and Molecular Mechanisms. Neuromolecular Med 2019; 21:325-343. [PMID: 31055715 DOI: 10.1007/s12017-019-08537-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Intracranial aneurysms (IA) are local dilatations in cerebral arteries that predominantly affect the circle of Willis. Occurring in approximately 2-5% of adults, these weakened areas are susceptible to rupture, leading to subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke. Due to its early age of onset and poor prognosis, SAH accounts for > 25% of years lost for all stroke victims under the age of 65. In this review, we describe the cerebrovascular pathology associated with intracranial aneurysms. To understand IA genetics, we summarize syndromes with elevated incidence, genome-wide association studies (GWAS), whole exome studies on IA-affected families, and recent research that established definitive roles for Thsd1 (Thrombospondin Type 1 Domain Containing Protein 1) and Sox17 (SRY-box 17) in IA using genetically engineered mouse models. Lastly, we discuss the underlying molecular mechanisms of IA, including defects in vascular endothelial and smooth muscle cells caused by dysfunction in mechanotransduction, Thsd1/FAK (Focal Adhesion Kinase) signaling, and the Transforming Growth Factor β (TGF-β) pathway. As illustrated by THSD1 research, cell adhesion may play a significant role in IA.
Collapse
|
18
|
Wang Z, Zhu Z, Lin Z, Luo Y, Liang Z, Zhang C, Chen J, Peng P. miR-429 suppresses cell proliferation, migration and invasion in nasopharyngeal carcinoma by downregulation of TLN1. Cancer Cell Int 2019; 19:115. [PMID: 31068760 PMCID: PMC6492405 DOI: 10.1186/s12935-019-0831-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background miR-429 and TLN1 have been shown to affect the biological behaviours of many carcinomas. However, their effects in nasopharyngeal carcinoma (NPC) are not yet clear. Here, we investigated their regulatory relationships and effects on NPC cells. Methods TargetScan was used to predict the regulatory relationships of miR-429 and TLN1 in NPC cells. Then, Western blotting and quantitative real-time PCR (qPCR) were performed to examine TLN1 levels, and qPCR was used to determine miR-429 levels in NPC cell lines with different metastatic characteristics (5-8F, CNE-2, CNE-1, 6-10B and NP69), to investigate whether TLN1 and miR-429 are correlated with the metastatic characteristics of these cells. Next, we upregulated or downregulated miR-429 in 5-8F and 6-10B cells, which have different tumourigenicity and transferability, and examined TLN1 expression by western blotting and qPCR after transfection. QPCR was also performed to confirm successful transfection of miR-429 mimic into 5-8F and 6-10B cells. Dual luciferase reporter gene assay was performed to investigate whether miR-429 regulates TLN1 by binding to its 3′UTR. After transfection, Cell Counting Kit-8 (CCK8) and IncuCyte were used to examine the proliferation of these cells, and wound-healing assay, Transwell migration assay, and invasion assays were performed to investigate the changes in migration and invasion after transfection. Results Western blotting and qPCR analyses showed that the protein level of TLN1 was negatively correlated with miR-429 in NPC cell lines (P < 0.05), while the mRNA level showed no relation with miR429 expression (P > 0.05). In addition, cells with high transferability showed high TLN1 expression at the protein level, while miR429 expression showed the opposite trend (P < 0.05), but there were no differences at the mRNA level between the different cell lines. Overexpression of miR429 in 5-8F and 6-10B cells was accompanied by downregulation of TLN1 at the protein level (P < 0.05), while there were no significant differences at the mRNA level (P > 0.05). In addition, transferability, proliferation, and invasion were downregulated by miR429 overexpression (P < 0.05). However, dual-luciferase reporter gene assay indicated that TLN1 was not a direct target of miR-429. Conclusion This study showed that miR-429 functions as a tumour suppressor in NPC by downregulation of TLN1, although the relationship is not direct.
Collapse
Affiliation(s)
- Zhihui Wang
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Zhiquan Zhu
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Zhong Lin
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Youli Luo
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Zibin Liang
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Caibin Zhang
- 2Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Jianxu Chen
- 3Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Peijian Peng
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| |
Collapse
|
19
|
Hu R, Huang W, Liu J, Jin M, Wu Y, Li J, Wang J, Yu Z, Wang H, Cao Y. Mutagenesis of putative ciliary genes with the CRISPR/Cas9 system in zebrafish identifies genes required for retinal development. FASEB J 2019; 33:5248-5256. [PMID: 30624971 DOI: 10.1096/fj.201802140r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cilia are conserved microtubule-based organelles that function as mechanical and chemical sensors in various cell types. By bioinformatic, genomic, and proteomic studies, more than 2000 proteins have been identified as cilium-associated proteins or putative ciliary proteins; these proteins are referred to as the ciliary proteome or the ciliome. However, little is known about the function of these numerous putative ciliary proteins in cilia. To identify the possible new functional proteins or pathways in cilia, we carried out a small-scale genetic screen targeting 54 putative ciliary genes by using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. We successfully constructed 54 zebrafish mutants, and 8 of them displayed microphthalmias. Three of these 8 genes encode proteins for protein transport, suggesting the important roles of protein transport in retinal development. In situ hybridization revealed that all these genes are expressed in zebrafish eyes. Furthermore, polo-like kinase 1 was required for ciliogenesis in neural tube. We uncovered the potential function of the ciliary genes for the retinal development of zebrafish.-Hu, R., Huang, W., Liu, J., Jin, M., Wu, Y., Li, J., Wang, J., Yu, Z., Wang, H., Cao, Y. Mutagenesis of putative ciliary genes with the CRISPR/Cas9 system in zebrafish identifies genes required for retinal development.
Collapse
Affiliation(s)
- Ruikun Hu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weilai Huang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiangfang Liu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Miaomiao Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yue Wu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingyu Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingyi Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zehao Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Cao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Turley TN, Theis JL, Sundsbak RS, Evans JM, O'Byrne MM, Gulati R, Tweet MS, Hayes SN, Olson TM. Rare Missense Variants in TLN1 Are Associated With Familial and Sporadic Spontaneous Coronary Artery Dissection. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002437. [PMID: 30888838 DOI: 10.1161/circgen.118.002437] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Spontaneous coronary artery dissection (SCAD) is an uncommon idiopathic disorder predominantly affecting young, otherwise healthy women. Rare familial cases reveal a genetic predisposition to disease. The aim of this study was to identify a novel susceptibility gene for SCAD. METHODS Whole-exome sequencing was performed in a family comprised of 3 affected individuals and filtered to identify rare, predicted deleterious, segregating variants. Immunohistochemical staining was used to evaluate protein expression of the identified candidate gene. The prevalence and spectrum of rare (<0.1%) variants within binding domains was determined by next-generation sequencing or denaturing high-performance liquid chromatography in a sporadic SCAD cohort of 675 unrelated individuals. RESULTS We identified a rare heterozygous missense variant within a highly conserved β-integrin-binding domain of TLN1 segregating with familial SCAD. TLN1 encodes talin 1-a large cytoplasmic protein of the integrin adhesion complex that links the actin cytoskeleton and extracellular matrix. Consistent with high mRNA expression in arterial tissues, robust immunohistochemical staining of talin 1 was demonstrated in coronary arteries. Nine additional rare heterozygous missense variants in TLN1 were identified in 10 sporadic cases. Incomplete penetrance, suggesting genetic or environmental modifiers of this episodic disorder, was evident in the familial case and 5 individuals with sporadic SCAD from whom parental DNA was available. CONCLUSIONS Our findings reveal TLN1 as a disease-associated gene in familial and sporadic SCAD and, together with abnormal vascular phenotypes reported in animal models of talin 1 disruption, implicate impaired structural integrity of the coronary artery cytoskeleton in SCAD susceptibility.
Collapse
Affiliation(s)
- Tamiel N Turley
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics (T.N.T.), Mayo Clinic, Rochester, MN.,Cardiovascular Genetics Research Laboratory (T.N.T., J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN
| | - Jeanne L Theis
- Cardiovascular Genetics Research Laboratory (T.N.T., J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN
| | - Rhianna S Sundsbak
- Cardiovascular Genetics Research Laboratory (T.N.T., J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (J.M.E., M.M.O.), Mayo Clinic, Rochester, MN
| | - Megan M O'Byrne
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (J.M.E., M.M.O.), Mayo Clinic, Rochester, MN
| | - Rajiv Gulati
- Department of Cardiovascular Medicine (R.G., M.S.T., S.N.H., T.M.O.), Mayo Clinic, Rochester, MN
| | - Marysia S Tweet
- Department of Cardiovascular Medicine (R.G., M.S.T., S.N.H., T.M.O.), Mayo Clinic, Rochester, MN
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine (R.G., M.S.T., S.N.H., T.M.O.), Mayo Clinic, Rochester, MN
| | - Timothy M Olson
- Cardiovascular Genetics Research Laboratory (T.N.T., J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine (R.G., M.S.T., S.N.H., T.M.O.), Mayo Clinic, Rochester, MN.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (T.M.O.), Mayo Clinic, Rochester, MN
| |
Collapse
|
21
|
Gunawan F, Gentile A, Fukuda R, Tsedeke AT, Jiménez-Amilburu V, Ramadass R, Iida A, Sehara-Fujisawa A, Stainier DYR. Focal adhesions are essential to drive zebrafish heart valve morphogenesis. J Cell Biol 2019; 218:1039-1054. [PMID: 30635353 PMCID: PMC6400548 DOI: 10.1083/jcb.201807175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Gunawan et al. analyze at single-cell resolution collective endocardial cell migration into the extracellular matrix and the cellular rearrangements forming leaflets during zebrafish heart valve formation. They show that focal adhesion activity driven by Integrin α5β1 and Talin1 are essential to drive cardiac valve morphogenesis in zebrafish. Elucidating the morphogenetic events that shape vertebrate heart valves, complex structures that prevent retrograde blood flow, is critical to understanding valvular development and aberrations. Here, we used the zebrafish atrioventricular (AV) valve to investigate these events in real time and at single-cell resolution. We report the initial events of collective migration of AV endocardial cells (ECs) into the extracellular matrix (ECM), and their subsequent rearrangements to form the leaflets. We functionally characterize integrin-based focal adhesions (FAs), critical mediators of cell–ECM interactions, during valve morphogenesis. Using transgenes to block FA signaling specifically in AV ECs as well as loss-of-function approaches, we show that FA signaling mediated by Integrin α5β1 and Talin1 promotes AV EC migration and overall shaping of the valve leaflets. Altogether, our investigation reveals the critical processes driving cardiac valve morphogenesis in vivo and establishes the zebrafish AV valve as a vertebrate model to study FA-regulated tissue morphogenesis.
Collapse
Affiliation(s)
- Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ryuichi Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ayele Taddese Tsedeke
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vanesa Jiménez-Amilburu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Atsuo Iida
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
22
|
Li J, Ling Y, Huang W, Sun L, Li Y, Wang C, Zhang Y, Wang X, Dahlgren RA, Wang H. Regulatory mechanisms of miR-96 and miR-184 abnormal expressions on otic vesicle development of zebrafish following exposure to β-diketone antibiotics. CHEMOSPHERE 2019; 214:228-238. [PMID: 30265930 DOI: 10.1016/j.chemosphere.2018.09.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Chronic ototoxicity of β-diketone antibiotics (DKAs) to zebrafish (Danio rerio) was explored in detail by following abnormal expressions of two hearing-related miRNAs. Dose-dependent down-regulation of miR-96 and miR-184 was observed in otoliths during embryonic-larval development. Continuous DKA exposure to 120-hpf larva decreased sensitivity to acoustic stimulation. Development of otolith was delayed in treatment groups, showing unclear boundaries and vacuolization at 72-hpf, and utricular enlargement as well as decreased saccular volume in 96-hpf or latter larval otoliths. If one miRNA was knocked-down and another over-expressed, only a slight influence on morphological development of the otic vesicle occurred, but knocked-down or over-expressed miRNA both significantly affected zebrafish normal development. Injection of miR-96, miR-184 or both micRNA mimics to yolk sac resulted in marked improvement of otic vesicle phenotype. However, hair cell staining showed that only the injected miR-96 mimic restored hair cell numbers after DKA exposure, demonstrating that miR-96 played an important role in otic vesicle development and formation of hearing, while miR-184 was only involved in otic vesicle construction during embryonic development. These observations advance our understanding of hearing loss owing to acute antibiotic exposure and provide theoretical guidance for early intervention and gene therapy for drug-induced diseases.
Collapse
Affiliation(s)
- Jieyi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yanyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuhuan Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California-Davis, CA, 95616, USA
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
23
|
Iida A, Wang Z, Hirata H, Sehara-Fujisawa A. Integrin β1 activity is required for cardiovascular formation in zebrafish. Genes Cells 2018; 23:938-951. [PMID: 30151851 DOI: 10.1111/gtc.12641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Integrins are transmembrane molecules that facilitate cell-to-cell and cell-to-extracellular matrix (ECM) interactions. Integrin molecules are heterodimers that consist of α- and β-subunits. The integrin β1 gene is widely expressed in vivo and is the major β molecule in many tissues; however, tissue-specific roles of integrin β1 are still elusive. In this study, we investigated integrin β1 function in endothelial cells of zebrafish. An integrin β1b mutant zebrafish exhibited morphological abnormalities in blood vessel formation, cephalic hemorrhage and a decreased responsiveness to tactile stimulation during development. To determine the role of integrin β1b in vascular formation, we developed a Gal4/UAS-mediated conditional inactivation of integrin β1 by expressing the cytoplasmic region of integrin β1 that acts as a dominant-negative (DN) isoform. Expression of integrin β1 DN in endothelial cells induced blood vessel abnormalities as in integrin β1b mutants. These results show that endothelial cells require integrin activity for the formation and/or maintenance of blood vessels in zebrafish. Furthermore, our time-lapse recording visualized the breakpoint of cephalic vessels and the hemorrhage onset. Taken together, our tissue-specific inactivation of integrin β1 in zebrafish is powerful tools for functional analysis of integrin β1 in developing tissues.
Collapse
Affiliation(s)
- Atsuo Iida
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Zi Wang
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, Graduate School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Genetic Requirement of talin1 for Proliferation of Cranial Neural Crest Cells during Palate Development. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1633. [PMID: 29707441 PMCID: PMC5908504 DOI: 10.1097/gox.0000000000001633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 01/20/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Craniofacial malformations are among the most common congenital anomalies. Cranial neural crest cells (CNCCs) form craniofacial structures involving multiple cellular processes, perturbations of which contribute to craniofacial malformations. Adhesion of cells to the extracellular matrix mediates bidirectional interactions of the cells with their extracellular environment that plays an important role in craniofacial morphogenesis. Talin (tln) is crucial in cell-matrix adhesion between cells, but its role in craniofacial morphogenesis is poorly understood. Methods: Talin gene expression was determined by whole mount in situ hybridization. Craniofacial cartilage and muscles were analyzed by Alcian blue in Tg(mylz2:mCherry) and by transmission electron microscopy. Pulse-chase photoconversion, 5-ethynyl-2’-deoxyuridine proliferation, migration, and apoptosis assays were performed for functional analysis. Results: Expression of tln1 was observed in the craniofacial cartilage structures, including the palate. The Meckel’s cartilage was hypoplastic, the palate was shortened, and the craniofacial muscles were malformed in tln1 mutants. Pulse-chase and EdU assays during palate morphogenesis revealed defects in CNCC proliferation in mutants. No defects were observed in CNCC migration and apoptosis. Conclusions: The work shows that tln1 is critical for craniofacial morphogenesis in zebrafish. Loss of tln1 leads to a shortened palate and Meckel’s cartilage along with disorganized skeletal muscles. Investigations into the cellular processes show that tln1 is required for CNCC proliferation during palate morphogenesis. The work will lead to a better understanding of the involvement of cytoskeletal proteins in craniofacial morphogenesis.
Collapse
|
25
|
Zhuang B, Hu Y, Fan X, Li M, Zhu J, Liu H, Cao L, Liang D, Zhang J, Yu Z, Han S. Peptidomic Analysis of Maternal Serum to Identify Biomarker Candidates for Prenatal Diagnosis of Tetralogy of Fallot. J Cell Biochem 2017; 119:468-477. [DOI: 10.1002/jcb.26204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Bin Zhuang
- Department of PediatricsObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
- Fourth Clinical Medicine CollegeNanjing Medical UniversityNanjing210029China
| | - Yin Hu
- Department of PediatricsObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
- Fourth Clinical Medicine CollegeNanjing Medical UniversityNanjing210029China
| | - Xuemei Fan
- Department of ObstetricsObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
| | - Mengmeng Li
- Department of PediatricsObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
| | - Jingai Zhu
- Department of PediatricsObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
| | - Heng Liu
- Department of PediatricsObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
- Fourth Clinical Medicine CollegeNanjing Medical UniversityNanjing210029China
| | - Li Cao
- Department of UltrasoundObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
| | - Dong Liang
- Department of Prenatal DiagnosisObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
| | - Jingjing Zhang
- Department of Prenatal DiagnosisObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
| | - Zhangbin Yu
- Department of PediatricsObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
| | - Shuping Han
- Department of PediatricsObstetrics and Gynecology Hospital Affiliated to Nanjing Medical UniversityNanjing210004China
| |
Collapse
|
26
|
Jacob AE, Amack JD, Turner CE. Paxillin genes and actomyosin contractility regulate myotome morphogenesis in zebrafish. Dev Biol 2017; 425:70-84. [PMID: 28315297 DOI: 10.1016/j.ydbio.2017.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 02/07/2023]
Abstract
Paxillin (Pxn) is a key adapter protein and signaling regulator at sites of cell-extracellular matrix (ECM) adhesion. Here, we investigated the role of Pxn during vertebrate development using the zebrafish embryo as a model system. We have characterized two Pxn genes, pxna and pxnb, in zebrafish that are maternally supplied and expressed in multiple tissues. Gene editing and antisense gene knockdown approaches were used to uncover Pxn functions during zebrafish development. While mutation of either pxna or pxnb alone did not cause gross embryonic phenotypes, double mutants lacking maternally supplied pxna or pxnb displayed defects in cardiovascular, axial, and skeletal muscle development. Transient knockdown of Pxn proteins resulted in similar defects. Irregular myotome shape and ECM composition were observed, suggesting an "inside-out" signaling role for Paxillin genes in the development of myotendinous junctions. Inhibiting non-muscle Myosin-II during somitogenesis altered the subcellular localization of Pxn protein and phenocopied pxn gene loss-of-function. This indicates that Paxillin genes are effectors of actomyosin contractility-driven morphogenesis of trunk musculature in zebrafish. Together, these results reveal new functions for Pxn during muscle development and provide novel genetic models to elucidate Pxn functions.
Collapse
Affiliation(s)
- Andrew E Jacob
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States.
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States.
| |
Collapse
|
27
|
Xiao C, Gao L, Hou Y, Xu C, Chang N, Wang F, Hu K, He A, Luo Y, Wang J, Peng J, Tang F, Zhu X, Xiong JW. Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nat Commun 2016; 7:13787. [PMID: 27929112 PMCID: PMC5476829 DOI: 10.1038/ncomms13787] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
The zebrafish possesses a remarkable capacity of adult heart regeneration, but the underlying mechanisms are not well understood. Here we report that chromatin remodelling factor Brg1 is essential for adult heart regeneration. Brg1 mRNA and protein are induced during heart regeneration. Transgenic over-expression of dominant-negative Xenopus Brg1 inhibits the formation of BrdU+/Mef2C+ and Tg(gata4:EGFP) cardiomyocytes, leading to severe cardiac fibrosis and compromised myocardial regeneration. RNA-seq and RNAscope analyses reveal that inhibition of Brg1 increases the expression of cyclin-dependent kinase inhibitors such as cdkn1a and cdkn1c in the myocardium after ventricular resection; and accordingly, myocardial-specific expression of dn-xBrg1 blunts myocardial proliferation and regeneration. Mechanistically, injury-induced Brg1, via its interaction with Dnmt3ab, suppresses the expression of cdkn1c by increasing the methylation level of CpG sites at the cdkn1c promoter. Taken together, our results suggest that Brg1 promotes heart regeneration by repressing cyclin-dependent kinase inhibitors partly through Dnmt3ab-dependent DNA methylation.
Collapse
Affiliation(s)
- Chenglu Xiao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| | - Lu Gao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| | - Yu Hou
- Biodynamic Optical Imaging Center, Peking University, Beijing 100871, China.,College of Life Sciences, Peking University, Beijing 100871, China
| | - Congfei Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Nannan Chang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| | - Fang Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Keping Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China.,Peking Union Medical College, Beijing 100730, China
| | - Aibin He
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jun Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, Peking University, Beijing 100871, China.,College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| |
Collapse
|