1
|
Luo TT, Wu YJ, Yin Q, Chen WG, Zuo J. The Involvement of Glucose and Lipid Metabolism Alteration in Rheumatoid Arthritis and Its Clinical Implication. J Inflamm Res 2023; 16:1837-1852. [PMID: 37131409 PMCID: PMC10149064 DOI: 10.2147/jir.s398291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Obviously, immune cells like T cells and macrophages play a major role in rheumatoid arthritis (RA). On one hand, the breakdown of immune homeostasis directly induces systemic inflammation; on the other hand, these cells initiate and perpetuate synovitis and tissue damages through the interaction with fibroblast-like synoviocytes (FLS). In recent years, the pathological link between metabolic disorders and immune imbalance has received increasing attention. High energy demand of immune cells leads to the accumulation of metabolic byproducts and inflammatory mediators. They act on various metabolism-sensitive signal pathways as well as relevant transcription factors, such as HIF-1α, and STATs. These molecular events will impact RA-related effectors like circulating immune cells and joint-resident cells in return, allowing the continuous progression of systemic inflammation, arthritic manifestations, and life-threatening complications. In other words, metabolic complications are secondary pathological factors for the progression of RA. Therefore, the status of energy metabolism may be an important indicator to evaluate RA severity, and in-depth explorations of the mechanisms underlying the mystery of how RA-related metabolic disorders develop will provide useful clues to further clarify the etiology of RA, and inspire the discovery of new anti-rheumatic targets. This article reviews the latest research progress on the interactions between immune and metabolism systems in the context of RA. Great importance is attached to the changes in certain pathways controlling both immune and metabolism functions during RA progression.
Collapse
Affiliation(s)
- Ting-Ting Luo
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Jian Zuo
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Correspondence: Jian Zuo, Email
| |
Collapse
|
2
|
Busquets O, Espinosa-Jiménez T, Ettcheto M, Olloquequi J, Bulló M, Carro E, Cantero JL, Casadesús G, Folch J, Verdaguer E, Auladell C, Camins A. JNK1 and JNK3: divergent functions in hippocampal metabolic-cognitive function. Mol Med 2022; 28:48. [PMID: 35508978 PMCID: PMC9066854 DOI: 10.1186/s10020-022-00471-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background and aim The appearance of alterations in normal metabolic activity has been increasingly considered a risk factor for the development of sporadic and late-onset neurodegenerative diseases. In this report, we induced chronic metabolic stress by feeding of a high-fat diet (HFD) in order to study its consequences in cognition. We also studied the effects of a loss of function of isoforms 1 and 3 of the c-Jun N-terminal Kinases (JNK), stress and cell death response elements. Methods Animals were fed either with conventional chow or with HFD, from their weaning until their sacrifice at 9 months. Before sacrifice, body weight, intraperitoneal glucose and insulin tolerance test (IP-GTT and IP‑ITT) were performed to evaluate peripheral biometrics. Additionally, cognitive behavioral tests and analysis of spine density were performed to assess cognitive function. Molecular studies were carried out to confirm the effects of metabolic stressors in the hippocampus relative to cognitive loss. Results Our studies demonstrated that HFD in Jnk3−/− lead to synergetic responses. Loss of function of JNK3 led to increased body weight, especially when exposed to an HFD and they had significantly decreased response to insulin. These mice also showed increased stress in the endoplasmic reticulum and diminished cognitive capacity. However, loss of function of JNK1 promoted normal or heightened energetic metabolism and preserved cognitive function even when chronically metabolically stressed. Conclusions Downregulation of JNK3 does not seem to be a suitable target for the modulation of energetic-cognitive dysregulations while loss of function of JNK1 seems to promote a good metabolic-cognitive profile, just like resistance to the negative effects of chronic feeding with HFD. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00471-y.
Collapse
Affiliation(s)
- Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, University Rovira i Virgili, 43201, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain.,Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City, 10461, USA
| | - Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, 08028, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, University Rovira i Virgili, 43201, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Mònica Bulló
- Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, University Rovira i Virgili, 43201, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Sant Joan de Reus, 43204, Reus, Spain.,CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - José Luis Cantero
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013, Seville, Spain
| | - Gemma Casadesús
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, University Rovira i Virgili, 43201, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ester Verdaguer
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, University of Barcelona, 08028, Barcelona, Spain
| | - Carme Auladell
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, University of Barcelona, 08028, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, 08028, Barcelona, Spain. .,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain. .,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain.
| |
Collapse
|
3
|
Insulin Signal Transduction Perturbations in Insulin Resistance. Int J Mol Sci 2021; 22:ijms22168590. [PMID: 34445300 PMCID: PMC8395322 DOI: 10.3390/ijms22168590] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus is a widespread medical condition, characterized by high blood glucose and inadequate insulin action, which leads to insulin resistance. Insulin resistance in insulin-responsive tissues precedes the onset of pancreatic β-cell dysfunction. Multiple molecular and pathophysiological mechanisms are involved in insulin resistance. Insulin resistance is a consequence of a complex combination of metabolic disorders, lipotoxicity, glucotoxicity, and inflammation. There is ample evidence linking different mechanistic approaches as the cause of insulin resistance, but no central mechanism is yet described as an underlying reason behind this condition. This review combines and interlinks the defects in the insulin signal transduction pathway of the insulin resistance state with special emphasis on the AGE-RAGE-NF-κB axis. Here, we describe important factors that play a crucial role in the pathogenesis of insulin resistance to provide directionality for the events. The interplay of inflammation and oxidative stress that leads to β-cell decline through the IAPP-RAGE induced β-cell toxicity is also addressed. Overall, by generating a comprehensive overview of the plethora of mechanisms involved in insulin resistance, we focus on the establishment of unifying mechanisms to provide new insights for the future interventions of type 2 diabetes mellitus.
Collapse
|
4
|
Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol 2021; 901:174079. [PMID: 33812885 DOI: 10.1016/j.ejphar.2021.174079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome is a multifactorial disease associated with increased risk of cardiovascular disorders, type 2 diabetes mellitus, fatty liver disease, etc. Various stress stimuli such as reactive oxygen species, endoplasmic reticulum stress, mitochondrial dysfunction, increased cytokines, or free fatty acids are known to aggravate progressive development of hyperglycemia and hyperlipidemia. Although the exact mechanism contributing to altered metabolism is unclear. Evidence suggests stress kinase role to be a crucial one in metabolic syndrome. Stress kinase, c-jun N-terminal kinase activation (JNK) is involved in various metabolic manifestations including obesity, insulin resistance, fatty liver disease as well as cardiometabolic disorders. It emerged as a foremost mediator in regulating metabolism in the liver, skeletal muscle, adipose tissue as well as pancreatic β cells. It has three isoforms each having a unique and tissue-specific role in altered metabolism. Current findings based on genetic manipulation or chemical inhibition studies identified JNK isoforms to play a central role in the regulation of whole-body metabolism, suggesting it to be a novel therapeutic target. Hence, it is imperative to elucidate its role in metabolic syndrome onset and progression. The purpose of this review is to elucidate in vitro and in vivo implications of JNK signaling along with the therapeutic strategy to inhibit specific isoform. Since metabolic syndrome is an array of diseases and complex pathway, carefully examining each tissue will be important for specific treatment strategies.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Mazzoli A, Sardi C, Breasson L, Theilig F, Becattini B, Solinas G. JNK1 ablation improves pancreatic β-cell mass and function in db/db diabetic mice without affecting insulin sensitivity and adipose tissue inflammation. FASEB Bioadv 2021; 3:94-107. [PMID: 33615154 PMCID: PMC7876705 DOI: 10.1096/fba.2020-00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
The cJun N‐terminal Kinases (JNK) emerged as a major link between obesity and insulin resistance, but their role in the loss of pancreatic β‐cell mass and function driving the progression from insulin resistance to type‐2 diabetes and in the complications of diabetes was not investigated to the same extent. Furthermore, it was shown that pan‐JNK inhibition exacerbates kidney damage in the db/db model of obesity‐driven diabetes. Here we investigate the role of JNK1 in the db/db model of obesity‐driven type‐2 diabetes. Mice with systemic ablation of JNK1 (JNK1−/−) were backcrossed for more than 10 generations in db/+ C57BL/KS mice to generate db/db‐JNK1−/− mice and db/db control mice. To define the role of JNK1 in the loss of β‐cell mass and function occurring during obesity‐driven diabetes we performed comprehensive metabolic phenotyping, evaluated steatosis and metabolic inflammation, performed morphometric and cellular composition analysis of pancreatic islets, and evaluated kidney function in db/db‐JNK1−/− mice and db/db controls. db/db‐JNK1−/− mice and db/db control mice developed insulin resistance, fatty liver, and metabolic inflammation to a similar extent. However, db/db‐JNK1−/− mice displayed better glucose tolerance and improved insulin levels during glucose tolerance test, higher pancreatic insulin content, and larger pancreatic islets with more β‐cells than db/db mice. Finally, albuminuria, kidney histopathology, kidney inflammation and oxidative stress in db/db‐JNK1−/− mice and in db/db mice were similar. Our data indicate that selective JNK1 ablation improves glucose tolerance in db/db mice by reducing the loss of functional β‐cells occurring in the db/db mouse model of obesity‐driven diabetes, without significantly affecting metabolic inflammation, steatosis, and insulin sensitivity. Furthermore, we have found that, differently from what previously reported for pan‐JNK inhibitors, selective JNK1 ablation does not exacerbate kidney dysfunction in db/db mice. We conclude that selective JNK1 inactivation may have a superior therapeutic index than pan‐JNK inhibition in obesity‐driven diabetes.
Collapse
Affiliation(s)
- Arianna Mazzoli
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Claudia Sardi
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Ludovic Breasson
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Franziska Theilig
- Institute of Anatomy Christian Albrechts-University Kiel Kiel Germany
| | - Barbara Becattini
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| |
Collapse
|
6
|
Petrick HL, Foley KP, Zlitni S, Brunetta HS, Paglialunga S, Miotto PM, Politis-Barber V, O’Dwyer C, Philbrick DJ, Fullerton MD, Schertzer JD, Holloway GP. Adipose Tissue Inflammation Is Directly Linked to Obesity-Induced Insulin Resistance, while Gut Dysbiosis and Mitochondrial Dysfunction Are Not Required. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa013. [PMID: 34278304 PMCID: PMC8276887 DOI: 10.1093/function/zqaa013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023]
Abstract
Obesity is associated with adipose tissue hypertrophy, systemic inflammation, mitochondrial dysfunction, and intestinal dysbiosis. Rodent models of high-fat diet (HFD)-feeding or genetic deletion of multifunctional proteins involved in immunity and metabolism are often used to probe the etiology of obesity; however, these models make it difficult to divorce the effects of obesity, diet composition, or immunity on endocrine regulation of blood glucose. We, therefore, investigated the importance of adipose inflammation, mitochondrial dysfunction, and gut dysbiosis for obesity-induced insulin resistance using a spontaneously obese mouse model. We examined metabolic changes in skeletal muscle, adipose tissue, liver, the intestinal microbiome, and whole-body glucose control in spontaneously hyperphagic C57Bl/6J mice compared to lean littermates. A separate subset of lean and obese mice was subject to 8 weeks of obesogenic HFD feeding, or to pair feeding of a standard rodent diet. Hyperphagia, obesity, adipose inflammation, and insulin resistance were present in obese mice despite consuming a standard rodent diet, and these effects were blunted with caloric restriction. However, hyperphagic obese mice had normal mitochondrial respiratory function in all tissues tested and no discernable intestinal dysbiosis relative to lean littermates. In contrast, feeding mice an obesogenic HFD altered the composition of the gut microbiome, impaired skeletal muscle mitochondrial bioenergetics, and promoted poor glucose control. These data show that adipose inflammation and redox stress occurred in all models of obesity, but gut dysbiosis and mitochondrial respiratory dysfunction are not always required for obesity-induced insulin resistance. Rather, changes in the intestinal microbiome and mitochondrial bioenergetics may reflect physiological consequences of HFD feeding.
Collapse
Affiliation(s)
- Heather L Petrick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kevin P Foley
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Soumaya Zlitni
- Departments of Genetics and Medicine, Stanford University, Stanford, 94305, CA, USA
| | - Henver S Brunetta
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada,Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Sabina Paglialunga
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Valerie Politis-Barber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Conor O’Dwyer
- Department of Biochemistry, Microbiology and Immunology, Centre for Inflammation, Infection and Immunity, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Diana J Philbrick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Centre for Inflammation, Infection and Immunity, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada,Address correspondence to G.P.H. (e-mail: )
| |
Collapse
|
7
|
Politis-Barber V, Brunetta HS, Paglialunga S, Petrick HL, Holloway GP. Long-term, high-fat feeding exacerbates short-term increases in adipose mitochondrial reactive oxygen species, without impairing mitochondrial respiration. Am J Physiol Endocrinol Metab 2020; 319:E376-E387. [PMID: 32543945 PMCID: PMC7473917 DOI: 10.1152/ajpendo.00028.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
White adipose tissue (WAT) dysfunction in obesity is implicated in the onset of whole body insulin resistance. Alterations in mitochondrial bioenergetics, namely impaired mitochondrial respiration and increased mitochondrial reactive oxygen species (mtROS) production, have been suggested to contribute to this metabolic dysregulation. However, techniques investigating mitochondrial function are classically normalized to tissue weight, which may be confounding when considering obesity-related adipocyte hypertrophy. Furthermore, the effect of long-term high-fat diet (HFD) on mtROS in WAT has yet to be elucidated. Therefore, we sought to determine the HFD-mediated temporal changes in mitochondrial respiration and mtROS emission in WAT. C57BL/6N mice received low-fat diet or HFD for 1 or 8 wk and changes in inguinal WAT (iWAT) and epididymal WAT (eWAT) were assessed. While tissue weight-normalized mitochondrial respiration was reduced in iWAT following 8-wk HFD-feeding, this effect was mitigated when adipocyte cell size and/or number were considered. These data suggest HFD does not impair mitochondrial respiratory capacity per adipocyte within WAT. In support of this assertion, within eWAT compensatory increases in lipid-supported and maximal succinate-supported respiration occurred at 8 wk despite cell hypertrophy and increases in WAT inflammation. Although these data suggest impairments in mitochondrial respiration do not contribute to HFD-mediated WAT phenotype, lipid-supported mtROS emission increased following 1-wk HFD in eWAT, while both lipid and carbohydrate-supported mtROS were increased at 8 wk in both depots. Combined, these data establish that while HFD does not impair adipocyte mitochondrial respiratory capacity, increased mtROS is an enduring physiological occurrence within WAT in HFD-induced obesity.
Collapse
Affiliation(s)
| | - Henver S. Brunetta
- 1Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- 2Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Sabina Paglialunga
- 1Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Heather L. Petrick
- 1Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P. Holloway
- 1Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Busquets O, Ettcheto M, Eritja À, Espinosa-Jiménez T, Verdaguer E, Olloquequi J, Beas-Zarate C, Castro-Torres RD, Casadesús G, Auladell C, Bulló M, Folch J, Camins A. c-Jun N-terminal Kinase 1 ablation protects against metabolic-induced hippocampal cognitive impairments. J Mol Med (Berl) 2019; 97:1723-1733. [DOI: 10.1007/s00109-019-01856-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023]
|
9
|
Dong Z, Tan Z, Chen Z. Association of BMI and lipid profiles with axillary osmidrosis: a retrospective case-control study. J DERMATOL TREAT 2019; 32:654-657. [PMID: 31746284 DOI: 10.1080/09546634.2019.1688232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Axillary osmidrosis (AO) is a common disease. There are no safely effective therapies for AO. OBJECTIVE The objective of our study was to establish whether increased BMI and lipid profiles affects the prevalence of AO. METHODS Our research was a retrospective case-control study. According to our criteria, 203 patients with AO were included in our study and 94 subjects with no bromhidrosis were matched as the control group. Age, ethnicity, living area, level of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), and body mass index (BMI) were obtained from the clinical data. Logistic regression analysis and multivariate Cox regression analysis were used to investigate the association of BMI and lipid profiles with AO. RESULTS BMI, TC, and TG LDL were significantly higher in patients with AO compared with control subjects (p<.05). A high BMI (≥24 kg/m2) or overweight, compared with a low BMI (<24 kg/m2) or normal, was associated with an increased risk of AO (OR: 6.1; 95% CI: 2.7, 13.4; p<.0001). Adjustment of the lipid profiles' group has a higher risk of disease than unadjusted (OR: 56.4 compared with 6.1, respectively), while adjusting lipid profiles shows a lower risk than unadjusted (OR: 1.3 compared with 6.1, respectively). CONCLUSIONS The results of our study revealed that increased BMI is significantly associated with the prevalence of AO.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Plastic Surgery, Affiliated Hospital of Medical Collage Qingdao University, Qingdao, China
| | - Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhenyu Chen
- Department of Plastic Surgery, Affiliated Hospital of Medical Collage Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Melo da Cunha JDS, Alfredo TM, dos Santos JM, Alves Junior VV, Rabelo LA, Lima ES, Boleti APDA, Carollo CA, dos Santos EL, de Picoli Souza K. Antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea. PLoS One 2018; 13:e0197071. [PMID: 29870561 PMCID: PMC5988306 DOI: 10.1371/journal.pone.0197071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes has emerged as one of the largest global epidemics; it is estimated that by 2035, there will be 592 million diabetic people in the world. Brazilian biodiversity and the knowledge of traditional peoples have contributed to the treatment of several diseases, including diabetes. Apis mellifera bee tea is used by indigenous Brazilians to treat diabetes, and this traditional knowledge needs to be recorded and studied.The objective of this study was to record the use and to evaluate the antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea, which is used by the Guarani and Kaiowá indigenous people for the treatment of diabetes. Semi-structured interviews were performed with Guarani and Kaiowá ethnic indigenous people from the State of Mato Grosso do Sul, Brazil, seeking to identify the animal species used for medicinal purposes. For the experimental procedures, tea prepared with macerated Apis mellifera bees was used. In vitro assays were performed to evaluate antioxidant activity; direct free radical scavenging, protection against oxidative hemolysis, lipid peroxidation were evaluated in human erythrocytes and potential in inhibiting the formation of advanced glycation end products (AGEs). In vivo, normoglycemic Swiss male mice treated with Apis mellifera tea (AmT) were subjected to the oral glucose tolerance test and compared with control and metformin-treated groups. Diet-induced diabetic mice were treated for 21 days with AmT and evaluated for glycemia and malondialdehyde levels in the blood, liver, nervous system, and eyes. During interviews, the indigenous people described the use of Apis mellifera bee tea for the treatment of diabetes. In in vitro assays, AmT showed direct antioxidant activity and reduced oxidative hemolysis and malondialdehyde generation in human erythrocytes. The AmT inhibited the formation of AGEs by albumin-fructose pathways and methylglyoxal products. In vivo, after oral glucose overload, normoglycemic mice treated with AmT had reduced hyperglycemia at all times evaluated up to 180 min. AmT also reduced hyperglycemia and malondialdehyde levels in the blood, liver, nervous system, and eyes of diabetic mice to similar levels as those in metformin-treated mice and normoglycemic controls. In summary, Apis mellifera bee tea showed antioxidant, antihyperglycemic, and antidiabetic activity, which provides support for the therapeutic application of Guarani and Kaiowá indigenous knowledge.
Collapse
Affiliation(s)
- Janielle da Silva Melo da Cunha
- Binational Campus Oiapoque, Federal University of Amapá—UNIFAP, Amapá, Brazil
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Tamaeh Monteiro Alfredo
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Jéssica Maurino dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Valter Vieira Alves Junior
- School of Environmental and Biological Science, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Luiza Antas Rabelo
- Laboratory of Cardiovascular Reactivity–LRC, Nucleus of Metabolic Syndrome, Biological Sciences and Health Institute—ICBS, Federal University of Alagoas–UFAL, Alagoas, Brazil
| | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Brazil
| | - Ana Paula de Araújo Boleti
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products am Mass Spectrometry, Federal University of Mato Grosso do Sul–UFMS, Mato Grosso do Sul, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
- School of Environmental and Biological Science, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
- School of Environmental and Biological Science, Federal University of Grande Dourados–UFGD, Dourados, Brazil
- * E-mail:
| |
Collapse
|
11
|
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 2016; 6:174-184. [PMID: 28180059 PMCID: PMC5279903 DOI: 10.1016/j.molmet.2016.12.001] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cJun-N-terminal-kinase (JNK) plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival, depending on the specific context. JNK is also one of the most investigated signal transducers in obesity and insulin resistance, and studies have identified new molecular mechanisms linking obesity and insulin resistance. Emerging evidence indicates that whereas JNK1 and JNK2 isoforms promote the development of obesity and insulin resistance, JNK3 activity protects from excessive adiposity. Furthermore, current evidence indicates that JNK activity within specific cell types may, in specific stages of disease progression, promote cell tolerance to the stress associated with obesity and type-2 diabetes. SCOPE OF REVIEW This review provides an overview of the current literature on the role of JNK in the progression from obesity to insulin resistance, NAFLD, type-2 diabetes, and diabetes complications. MAJOR CONCLUSION Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Barbara Becattini
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|