1
|
Mei G, Wang J, Wang J, Ye L, Yi M, Chen G, Zhang Y, Tang Q, Chen L. The specificities, influencing factors, and medical implications of bone circadian rhythms. FASEB J 2024; 38:e23758. [PMID: 38923594 DOI: 10.1096/fj.202302582rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.
Collapse
Affiliation(s)
- Gang Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lanxiang Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
2
|
Song W, Ye L, Tang Q, Lu X, Huang X, Xie M, Yu S, Yuan Z, Chen L. Rev-erbα attenuates refractory periapical periodontitis via M1 polarization: An in vitro and in vivo study. Int Endod J 2024; 57:451-463. [PMID: 38279698 DOI: 10.1111/iej.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
AIM Rev-erbα has been reported to regulate the healing of inflammatory lesions through its effect on the immune system in a variety of inflammatory disease. Moreover, the balance of macrophages polarization plays a crucial role in immune response and inflammatory progression. However, in refractory periapical periodontitis (RAP), the role of Rev-erbα in inflammatory response and bone resorption by regulating macrophage polarization remains unclarified. The aims of the present study were to investigate the expression of Rev-erbα in experimental RAP and to explore the relationship between Rev-erbα and macrophage polarization through the application of its pharmacological agonist SR9009 into the in vivo and in vitro experiments. METHODOLOGY Enterococcus faecalis-induced RAP models were established in SD rats. Histological staining and micro-computed tomography scanning were used to evaluate osteoclastogenesis and alveolar bone resorption. The expression of Rev-erbα and macrophage polarization were detected in the periapical tissues from rats by immunofluorescence, flow cytometry, and western blots. Furthermore, immunohistochemical staining and enzyme-linked immunosorbent assay were performed to explore the relationship between Rev-erbα and inflammatory cytokines related to macrophage polarization. RESULT Compared to healthy periapical tissue, the expression of Rev-erbα was significantly down-regulated in macrophages from inflammatory periapical area, especially in Enterococcus faecalis-induced periapical lesions, with obvious type-1 macrophage (M1)-like dominance and the production of pro-inflammatory cytokines. In addition, Rev-erbα activation by SR9009 could induce type-2 macrophage (M2)-like polarization in periapical tissue and THP1 cell line, followed by increased secretion of anti-inflammatory cytokines IL-10 and TGF-β. Furthermore, intracanal application of SR9009 reduced the lesion size and promoted the repair of RAP by decreasing the number of osteoclasts and enhancing the formation of mineralized tissue in periapical inflammatory lesions. CONCLUSIONS Rev-erbα played an essential role in the pathogenesis of RAP through its effect on macrophage polarization. Targeting Rev-erbα might be a promising and prospective therapy method for the prevention and management of RAP.
Collapse
Affiliation(s)
- W Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - L Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Q Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - X Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - X Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - M Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - S Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Z Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - L Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
3
|
Lei Z, Wang Q, Jiang Q, Liu H, Xu L, Kang H, Li F, Huang Y, Lei T. The miR-19a/Cylindromatosis Axis Regulates Pituitary Adenoma Bone Invasion by Promoting Osteoclast Differentiation. Cancers (Basel) 2024; 16:302. [PMID: 38254792 PMCID: PMC10813535 DOI: 10.3390/cancers16020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The presence of bone invasion in aggressive pituitary adenoma (PA) was found in our previous study, suggesting that PA cells may be involved in the process of osteoclastogenesis. miR-19a (as a key member of the miR-17-92 cluster) has been reported to activate the nuclear factor-кB (NF-кB) pathway and promote inflammation, which could be involved in the process of the bone invasion of pituitary adenoma. METHODS In this work, FISH was applied to detect miR-19a distribution in tissues from patients with PA. A model of bone invasion in PA was established, GH3 cells were transfected with miR-19a mimic, and the grade of osteoclastosis was detected by HE staining. qPCR was performed to determine the expression of miR-19a throughout the course of RANKL-induced osteoclastogenesis. After transfected with a miR-19a mimic, BMMs were treated with RANKL for the indicated time, and the osteoclast marker genes were detected by qPCR and Western Blot. Pit formation and F-actin ring assay were used to evaluate the function of osteoclast. The TargetScan database and GSEA were used to find the potential downstream of miR-19a, which was verified by Co-IP, Western Blot, and EMSA. RESULTS Here, we found that miR-19a expression levels were significantly correlated with the bone invasion of PA, both in clinical samples and animal models. The osteoclast formation prior to bone resorption was dramatically enhanced by miR-19, which was mediated by decreased cylindromatosis (CYLD) expression, increasing the K63 ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6). Consequently, miR-19a promotes osteoclastogenesis by the activation of the downstream NF-кB and mitogen-activated protein kinase (MAPK) pathways. CONCLUSIONS To summarize, the results of this study indicate that PA-derived miR-19a promotes osteoclastogenesis by inhibiting CYLD expression and enhancing the activation of the NF-кB and MAPK pathways.
Collapse
Affiliation(s)
- Zhuowei Lei
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Quanji Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Qian Jiang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Huiyong Liu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Linpeng Xu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Yimin Huang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| |
Collapse
|
4
|
Qin Y, Chen ZH, Wu JJ, Zhang ZY, Yuan ZD, Guo DY, Chen MN, Li X, Yuan FL. Circadian clock genes as promising therapeutic targets for bone loss. Biomed Pharmacother 2023; 157:114019. [PMID: 36423544 DOI: 10.1016/j.biopha.2022.114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
The circadian clock regulates many key physiological processes such as the sleep-wake cycle, hormone release, cardiovascular health, glucose metabolism and body temperature. Recent evidence has suggested a critical role of the circadian system in controlling bone metabolism. Here we review the connection between bone metabolism and the biological clock, and the roles of these mechanisms in bone loss. We also analyze the regulatory effects of clock-related genes on signaling pathways and transcription factors in osteoblasts and osteoclasts. Additionally, osteocytes and endothelial cells (ECs) regulated by the circadian clock are also discussed in our review. Furthermore, we also summarize the regulation of circadian clock genes by some novel modulators, which provides us with a new insight into a potential strategy to prevent and treat bone diseases such as osteoporosis by targeting circadian genes.
Collapse
Affiliation(s)
- Yi Qin
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhong-Hua Chen
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China.
| |
Collapse
|
5
|
Qian Z, Liu Z, Feng Z, Cai Z, Qiu Y, Zhu Z. Blocking circadian clock factor Rev-erbα inhibits growth plate chondrogenesis via up-regulating MAPK-ERK1/2 pathway. Cell Cycle 2023; 22:73-84. [PMID: 35938533 PMCID: PMC9769450 DOI: 10.1080/15384101.2022.2109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicated circadian clock gene Rev-erbα was involved in cartilage metabolism, however the contribution of Rev-erbα to growth plate chondrogenesis remains unknown. Here, we found that Rev-erbα exhibited the spatiotemporal expression model in growth plate. Moreover, Rev-erbα antagonist SR8278 inhibited longitudinal elongation of metatarsal bone ex vivo. And morphological analysis exhibited SR8278 led to the reduced height of growth plate and hypertrophic zone. Furthermore, blocking Rev-erbα suppressed the proliferation and hypertrophic differentiation of chondrocytes in growth plate. Similarly, knock-down Rev-erbα inhibited the proliferation and differentiation of primary chondrocytes in vitro. The mechanistic study indicated that knock-down Rev-erbα up-regulated MAPK-ERK1/2 pathway in chondrocytes. However, restraint of MAPK-ERK1/2 pathway alleviated partially SR8278-inhibited longitudinal elongation of metatarsal bone and growth plate development. Therefore, our results provide evidence of the vital role of Rev-erbα on growth plate chondrogenesis.
Collapse
Affiliation(s)
- Zhuang Qian
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenning Cai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China,Yong Qiu Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China,CONTACT Zezhang Zhu
| |
Collapse
|
6
|
Feng G, Zhao J, Peng J, Luo B, Zhang J, Chen L, Xu Z. Circadian clock—A promising scientific target in oral science. Front Physiol 2022; 13:1031519. [PMCID: PMC9708896 DOI: 10.3389/fphys.2022.1031519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The oral and maxillofacial organs play vital roles in chewing, maintaining facial beauty, and speaking. Almost all physiological processes display circadian rhythms that are driven by the circadian clock, allowing organisms to adapt to the changing environment. In recent years, increasing evidence has shown that the circadian clock system participates in oral and maxillofacial physiological and pathological processes, such as jaw and tooth development, salivary gland function, craniofacial malformations, oral carcinoma and other diseases. However, the roles of the circadian clock in oral science have not yet been comprehensively reviewed. Therefore, This paper provides a systematic and integrated perspective on the function of the circadian clock in the fields of oral science, reviews recent advances in terms of the circadian clock in oral and maxillofacial development and disease, dialectically analyzes the importance of the circadian clock system and circadian rhythm to the activities of oral and maxillofacial tissues, and focuses on analyzing the mechanism of the circadian clock in the maintenance of oral health, affecting the common diseases of the oral and maxillofacial region and the process of oral-related systemic diseases, sums up the chronotherapy and preventive measures for oral-related diseases based on changes in tissue activity circadian rhythms, meanwhile, comes up with a new viewpoint to promote oral health and human health.
Collapse
Affiliation(s)
- Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| |
Collapse
|
7
|
Pu S, Wang Q, Liu Q, Zhao H, Zhou Z, Wu Q. Nr1d1 Mediated Cell Senescence in Mouse Heart-Derived Sca-1+CD31− Cells. Int J Mol Sci 2022; 23:ijms232012455. [PMID: 36293311 PMCID: PMC9603916 DOI: 10.3390/ijms232012455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Aim: Sca-1+CD31− cells are resident cardiac progenitor cells, found in many mammalian tissues including the heart, and able to differentiate into cardiomyocytes in vitro and in vivo. Our previous work indicated that heart-derived Sca-1+CD31− cells increased the Nr1d1 mRNA level of Nr1d1 with aging. However, how Nr1d1 affects the senescence of Sca-1+CD31− cells. Methods: Overexpression and knockdown of Nr1d1 in Sca-1+CD31− cells and mouse cardiac myocyte (MCM) cell lines were performed by lentiviral transduction. The effects of Nr1d1 abundance on cell differentiation, proliferation, apoptosis, cell cycle, and transcriptomics were evaluated. Moreover, binding of Nr1d1 to the promoter region of Nr4a3 and Serpina3 was examined by a luciferase reporter assay. Results and Conclusions: Upregulation Nr1d1 in young Sca-1+CD31− cells inhibited cell proliferation and promoted apoptosis. However, depletion of Nr1d1 in aged Sca-1+CD31− cells promoted cell proliferation and inhibited apoptosis. Furthermore, Nr1d1 was negatively associated with cell proliferation, promoting apoptosis and senescence-associated beta-galactosidase production in MCMs. Our findings show that Nr1d1 stimulates Serpina3 expression through its interaction with Nr4a3. Nr1d1 may therefore act as a potent anti-aging receptor that can be a therapeutic target for aging-related diseases.
Collapse
Affiliation(s)
- Shiming Pu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qian Wang
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qin Liu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hongxia Zhao
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Correspondence: (Z.Z.); (Q.W.)
| | - Qiong Wu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Correspondence: (Z.Z.); (Q.W.)
| |
Collapse
|
8
|
Okagu IU, Ezeorba TPC, Aguchem RN, Ohanenye IC, Aham EC, Okafor SN, Bollati C, Lammi C. A Review on the Molecular Mechanisms of Action of Natural Products in Preventing Bone Diseases. Int J Mol Sci 2022; 23:ijms23158468. [PMID: 35955603 PMCID: PMC9368769 DOI: 10.3390/ijms23158468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Timothy P. C. Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Rita N. Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Emmanuel C. Aham
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|
9
|
Li T, Zhang S, Yang Y, Zhang L, Yuan Y, Zou J. Co-regulation of circadian clock genes and microRNAs in bone metabolism. J Zhejiang Univ Sci B 2022; 23:529-546. [PMID: 35794684 DOI: 10.1631/jzus.b2100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tingting Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.,School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shihua Zhang
- College of Graduate Education, Jinan Sport University, Jinan 250102, China
| | - Yuxuan Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
10
|
Tian Y, Ming J. Melatonin inhibits osteoclastogenesis via RANKL/OPG suppression mediated by Rev-Erbα in osteoblasts. J Cell Mol Med 2022; 26:4032-4047. [PMID: 35726597 PMCID: PMC9279587 DOI: 10.1111/jcmm.17440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetic osteoporosis is secondary osteoporosis and a serious complication of diabetes with a high incidence rate and poor prognosis. The specific mechanism of diabetic osteoporosis is unclear, and prevention and treatment options are limited. Recently, melatonin has been found to prevent and treat diabetic osteoporosis. Herein, we investigated the mechanism whereby melatonin inhibits osteoclastogenesis and identified a new target for osteoporosis treatment. We established an in vitro osteoblast–osteoclast co‐culture system as a diabetic osteoporosis model. Osteoclastogenesis was determined using tartrate‐resistant acid phosphatase staining and cathepsin K expression. Real‐time PCR was used to ascertain expression of microRNA mir‐882, targeting Rev‐Erbα. Western blotting was performed to detect the expression of Rev‐Erbα, receptor activator of NF‐kB ligand (RANKL), and osteoprotegerin (OPG), and ELISA was utilized to analyse the secreted form of RANKL. High glucose promoted osteoclastogenesis and elevated the RANKL/OPG ratio in osteoblasts, while melatonin reversed these effects. High glucose inhibited Rev‐Erbα expression, while melatonin promoted its expression. Conversely, high glucose promoted mir‐882 expression, while melatonin inhibited it. We infer that melatonin inhibits RANKL expression in osteoblasts via the mir‐882/Rev‐Erbα axis, thus inhibiting osteoclastogenesis. Our findings provide insights into diabetic osteoporosis and identify a new therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yihao Tian
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jian Ming
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
11
|
Griffett K, Hayes ME, Boeckman MP, Burris TP. The role of REV-ERB in NASH. Acta Pharmacol Sin 2022; 43:1133-1140. [PMID: 35217816 PMCID: PMC9061770 DOI: 10.1038/s41401-022-00883-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
REV-ERBs are atypical nuclear receptors as they function as ligand-regulated transcriptional repressors. The natural ligand for the REV-ERBs (REV-ERBα and REV-ERBβ) is heme, and heme-binding results in recruitment of transcriptional corepressor proteins such as N-CoR that mediates repression of REV-ERB target genes. These two receptors regulate a large range of physiological processes including several important in the pathophysiology of non-alcoholic steatohepatitis (NASH). These include carbohydrate and lipid metabolism as well as inflammatory pathways. A number of synthetic REV-ERB agonists have been developed as chemical tools and they show efficacy in animal models of NASH. Here, we will review the functions of REV-ERB with regard to their relevance to NASH as well as the potential to target REV-ERB for treatment of this disease.
Collapse
Affiliation(s)
- Kristine Griffett
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Matthew E Hayes
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | - Michael P Boeckman
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Kang H, Guo Q, Dong Y, Peng R, Song K, Wang J, Liu H, Zhu M, Zhao H, Guan H, Li F. Inhibition of MAT2A suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss. FASEB J 2022; 36:e22167. [PMID: 35064691 DOI: 10.1096/fj.202101205rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/11/2022]
Abstract
Methionine adenosyltransferase II alpha (MAT2A) is the key enzyme to transform methionine and adenosine-triphosphate (ATP) to S-adenosylmethionine (SAM), a general methyl-group donor in vitro. MAT2A has been reported to participate in the NF-κB pathway and maintain the methylated modification, which also affects osteoclastogenesis. In this study, we found the expression of MAT2A was increased upon RANKL stimulation. Pharmacological inhibition of MAT2A by its selective inhibitor AG-270 or genetic silencing by MAT2A-shRNA suppressed osteoclast formation and function in vitro. In vivo treatment with the inhibitor AG-270 also prevented OVX-induced bone loss. Further study revealed that the inhibition of MAT2A affected osteoclast differentiation mainly by suppressing crucial transcription factors and reactive oxygen species induced by RANKL. A quasi-targeted metabolomics assay performed by LC-MS/MS indicated that SAM was reduced by MAT2A knockdown, and the administration of SAM partly rescued the effects of MAT2A inhibition on osteoclastogenesis. These findings revealed that MAT2A is crucial for osteoclastogenesis and might be a potential target for the treatment of osteoporosis attributed to osteoclast dysfunction.
Collapse
Affiliation(s)
- Honglei Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanfeng Guan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Fu L, Wang M, Zhu G, Zhao Z, Sun H, Cao Z, Xia H. REV-ERBs negatively regulate mineralization of the cementoblasts. Biochem Biophys Res Commun 2022; 587:9-15. [PMID: 34861472 DOI: 10.1016/j.bbrc.2021.11.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The role of circadian clock in cementogenesis is unclear. This study examines the role of REV-ERBs, one of circadian clock proteins, in proliferation, migration and mineralization of cementoblasts to fill the gap in knowledge. METHODS Expression pattern of REV-ERBα in cementoblasts was investigated in vivo and in vitro. CCK-8 assay, scratch wound healing assay, alkaline phosphatase (ALP) and alizarin red S (ARS) staining were performed to evaluate the effects of REV-ERBs activation by SR9009 on proliferation, migration and mineralization of OCCM-30, an immortalized cementoblast cell line. Furthermore, mineralization related markers including osterix (OSX), ALP, bone sialoprotein (BSP) and osteocalcin (OCN) were evaluated. RESULTS Strong expression of REV-ERBα was found in cellular cementum around tooth apex. Rev-erbα mRNA oscillated periodically in OCCM-30 and declined after mineralization induction. REV-ERBs activation by SR9009 inhibited proliferation but promoted migration of OCCM-30 in vitro. Results of ALP and ARS staining suggested that REV-ERBs activation negatively regulated mineralization of OCCM-30. Mechanically, REV-ERBs activation attenuated the expression of OSX and its downstream targets including ALP, BSP and OCN. CONCLUSIONS REV-ERBs are involved in cementogenesis and negatively regulate mineralization of cementoblasts via inhibiting OSX expression. Our study provides a potential target regarding periodontal and cementum regeneration.
Collapse
Affiliation(s)
- Liangliang Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Min Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guixin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zifan Zhao
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Huifang Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Ebersole JL, Gonzalez OA. Mucosal circadian rhythm pathway genes altered by aging and periodontitis. PLoS One 2022; 17:e0275199. [PMID: 36472983 PMCID: PMC9725147 DOI: 10.1371/journal.pone.0275199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
As circadian processes can impact the immune system and are affected by infections and inflammation, this study examined the expression of circadian rhythm genes in periodontitis. METHODS Macaca mulatta were used with naturally-occurring and ligature-induced periodontitis. Gingival tissue samples were obtained from healthy, diseased, and resolved sites in four groups: young (≤3 years), adolescent (3-7 years), adult (12-26) and aged (18-23 years). Microarrays targeted circadian rhythm (n = 42), inflammation/tissue destruction (n = 11), bone biology (n = 8) and hypoxia pathway (n = 7) genes. RESULTS The expression of many circadian rhythm genes, across functional components of the pathway, was decreased in healthy tissues from younger and aged animals, as well as showing significant decreases with periodontitis. Negative correlations of the circadian rhythm gene levels with inflammatory mediators and tissue destructive/remodeling genes were particularly accentuated in disease. A dominance of positive correlations with hypoxia genes was observed, except HIF1A, that was uniformly negatively correlated in health, disease and resolution. CONCLUSIONS The chronic inflammation of periodontitis exhibits an alteration of the circadian rhythm pathway, predominantly via decreased gene expression. Thus, variation in disease expression and the underlying molecular mechanisms of disease may be altered due to changes in regulation of the circadian rhythm pathway functions.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Nevada, Nevada Las Vegas
- * E-mail:
| | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Morioka N, Kodama K, Tsuruta M, Hashizume H, Kochi T, Nakamura Y, Zhang FF, Hisaoka-Nakashima K. Stimulation of nuclear receptor REV-ERBs suppresses inflammatory responses in spinal microglia. Neurochem Int 2021; 151:105216. [PMID: 34710533 DOI: 10.1016/j.neuint.2021.105216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023]
Abstract
As spinal microglia have a critical role in the development of chronic pain, regulation of their activity is essential for pain relief. Previous study has shown that stimulation of the REV-ERB nuclear receptors in the spinal dorsal horn produces antinociception in animal models of both inflammatory and neuropathic pain. However, the involvement of spinal microglia in the antinociceptive action of REV-ERBs remains to be elucidated. In the current study, we found that intrathecal treatment with the REV-ERB agonist SR9009 significantly blocked the increase in ionized calcium-binding adaptor molecule immunoreactivity in the spinal dorsal horn of mice following intrathecal administration of lipopolysaccharide and peripheral sciatic nerve ligation. Furthermore, both Rev-erbα and Rev-erbβ mRNAs were expressed in cultured rat spinal microglia. Treatment of cultured rat spinal microglia with SR9009 significantly blocked the lipopolysaccharide-induced increase in interleukin (IL)-1β and IL-6 mRNA expression. In conclusion, the current findings suggest that REV-ERBs negatively regulate spinal microglial activity and might contribute to the REV-ERB-mediated antinociceptive effect in the spinal dorsal horn.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Keitaro Kodama
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Maho Tsuruta
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroki Hashizume
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takahiro Kochi
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Institute of Pharmacology, Taishan Medical University, 619 Changcheng Road, Taian, Shandong, 271016, China
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
16
|
Guo Q, Kang H, Wang J, Dong Y, Peng R, Zhao H, Wu W, Guan H, Li F. Inhibition of ACLY Leads to Suppression of Osteoclast Differentiation and Function Via Regulation of Histone Acetylation. J Bone Miner Res 2021; 36:2065-2080. [PMID: 34155695 DOI: 10.1002/jbmr.4399] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022]
Abstract
ATP-citrate lyase (ACLY), generating most of the nucleocytosolic acetyl coenzyme A (acetyl-CoA) for histone acetylation, links cell metabolism to epigenetic regulation. Recent investigations demonstrated that ACLY activated by metabolic reprogramming played an essential role in both M1 and M2 macrophage activation via histone acetylation. Previous studies also revealed that histone methylation and acetylation were critical for transcriptional regulation of osteoclast-specific genes. Considering that osteoclast differentiation also undergoes metabolic reprogramming and the activity of ACLY is always Akt-dependent, we inferred that receptor activator of NF-κB (RANK) activation might enhance the activity of ACLY through downstream pathways and ACLY might play a role in osteoclast formation. In the current study, we found that ACLY was gradually activated during RANK ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). Both ACLY knock-down and small molecular ACLY inhibitor BMS-303141 significantly decreased nucleocytosolic acetyl-CoA in BMMs and osteoclasts and suppressed osteoclast formation in vitro. BMS-303141 also suppressed osteoclast formation in vivo and prevents ovariectomy (OVX)-induced bone loss. Further investigations showed that RANKL triggered ACLY translocation into nucleus, consistent with increasing histone H3 acetylation, which was correlated to ACLY. The H3 lysine residues influenced by ACLY were in accordance with GCN5 targets. Using GCN5 knock-down and overexpression, we showed that ACLY and GCN5 functioned in the same pathway for histone H3 acetylation. Analysis of pathways downstream of RANK activation revealed that ACLY was Akt-dependent and predominately affected Akt pathway. With the help of RNA-sequencing, we discovered Rac1 as a downstream regulator of ACLY, which was involved in shACLY-mediated suppression of osteoclast differentiation, cytoskeleton organization, and signal transduction and was transcriptionally regulated by ACLY via histone H3 acetylation. To summarize, our results proved that inhibition of ATP-citrate lyase led to suppression of osteoclast differentiation and function via regulation of histone acetylation. Rac1 could be a downstream regulator of ACLY. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Qian Guo
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wang
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Zhao
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanfeng Guan
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Diao X, Wang L, Zhou Y, Bi Y, Zhou K, Song L. The mechanism of Epimedin B in treating osteoporosis as revealed by RNA sequencing-based analysis. Basic Clin Pharmacol Toxicol 2021; 129:450-461. [PMID: 34491615 DOI: 10.1111/bcpt.13657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
With the ageing of populations, the management of osteoporosis is a priority of society in general. Epimedin B, a major ingredient of Herba Epimedii, which has the advantages of high content and hypotoxicity has been proved to be effective in preventing osteoporosis in vitro. However, the efficacy and mechanism of Epimedin B on osteoporosis in vivo have not been well elucidated yet. This study aimed to investigate the effects and the potential mechanisms of 8-week repeated oral administration of Epimedin B (10 and 20 mg/kg/day) on a mouse osteoporosis model. Effects of Epimedin B were evaluated by examinations of serum bone turnover markers, bone mineral density, bone microstructure parameters and histopathological section. Epimedin B significantly rose N-terminal propeptide of type I procollagen (P1NP) and dropped C-telopeptide of type I collagen (CTX1). Connectivity density (Conn.D) increased significantly while structure model index (DA) decreased significantly after treated by Epimedin B. Meanwhile, Epimedin B administration significantly increased the number of trabecular bones while significantly decreased the gap between them. Overall, Epimedin B showed beneficial effects on osteoporosis. Furthermore, RNA sequencing-based analysis revealed 5 significantly down-regulated transcripts and 107 significantly up-regulated transcripts between the Epimedin B administration group and the model group. These transcripts were mapped to 15 pathways by KEGG enrichment analysis, of which PI3K-Akt signalling pathway, MAPK signalling pathway and PPAR signalling pathway were most connected to osteoporosis. To conclude, Epimedin B is effective in treating osteoporosis in mice via regulating PI3K-Akt, MAPK and PPAR signalling pathway.
Collapse
Affiliation(s)
- Xinyue Diao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liwen Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yating Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanan Bi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Abildgaard J, Ploug T, Pedersen AT, Eiken P, Pedersen BK, Holst JJ, Hartmann B, Lindegaard B. Preserved postprandial suppression of bone turnover markers, despite increased fasting levels, in postmenopausal women. Bone 2021; 143:115612. [PMID: 32853851 DOI: 10.1016/j.bone.2020.115612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Menopause leads to an increased bone turnover associated with a high risk of fractures. Bone turnover is inhibited by meal intake, to some extent mediated by gut hormones, and interventions based on these endocrine changes may have potential in future prevention of osteoporosis. OBJECTIVE To investigate whether postmenopausal women exhibit postprandial suppression of bone turnover markers to the same extent as premenopausal women, despite higher fasting levels. Furthermore, to assess whether menopausal differences in bone turnover markers are related to postmenopausal changes in plasma gut hormone levels. METHODS A cross-sectional study of 21 premenopausal, 9 perimenopausal, and 24 postmenopausal women between 45 and 60 years of age. Serum/plasma levels of bone turnover markers and gut hormones were investigated during a 120 min oral glucose tolerance test. Bone turnover markers included N-terminal propeptide of type-I procollagen (PINP, bone formation marker) and carboxyterminal collagen I crosslinks (CTX-I, bone resorption marker). Gut hormone secretion was evaluated from responses of glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP). RESULTS Fasting levels of s-CTX-I were increased in peri- and postmenopausal women compared to premenopausal women (p = 0.001). Despite higher fasting levels, the relative postprandial s-CTX-I suppression was comparable across menopausal status (p = 0.14). Fasting levels of s-PINP were also increased in postmenopausal women compared to premenopausal women (p < 0.001) with comparable and modest s-PINP suppression over menopause (p = 0.13). Postprandial plasma GLP-1 (p = 0.006) and GLP-2 (p = 0.01) were significantly increased in postmenopausal women compared to premenopausal women while GIP responses were slightly increased in the perimenopausal group (p = 0.02) but comparable between pre- and postmenopausal women. None of the postprandial gut hormone increases predicted postprandial bone turnover suppression in these women. CONCLUSIONS Glucose-induced suppression of bone turnover markers is preserved in postmenopausal women, despite significantly higher fasting values, indicating that CTX-I lowering treatments based on these postprandial mechanisms might be a feasible strategy to prevent postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Julie Abildgaard
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Thorkil Ploug
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pia Eiken
- Department of Nephrology and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Birgitte Lindegaard
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital, Hillerød, Denmark.
| |
Collapse
|
19
|
Tian Y, Gong Z, Zhao R, Zhu Y. Melatonin inhibits RANKL‑induced osteoclastogenesis through the miR‑882/Rev‑erbα axis in Raw264.7 cells. Int J Mol Med 2020; 47:633-642. [PMID: 33416111 PMCID: PMC7797465 DOI: 10.3892/ijmm.2020.4820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Melatonin, secreted in a typical diurnal rhythm pattern, has been reported to prevent osteoporosis; however, its role in osteoclastogenesis remains unclear. In the present study, the ability of melatonin to inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and the associated mechanism were investigated. Raw264.7 cells were cultured with RANKL (100 ng/ml) and macrophage colony-stimulating factor (M-CSF; 30 ng/ml) for 7 days, and tartrate-resistant acid phosphatase (TRAP) staining was used to detect osteoclastogenesis following treatment with melatonin. In addition, the effect of melatonin on cathepsin K and microRNA (miR)-882 expression was investigated via western blotting and reverse transcription-quantitative PCR. Melatonin significantly inhibited RANKL-induced osteoclastogenesis in Raw264.7 cells. From bioinformatics analysis, it was inferred that nuclear receptor subfamily 1 group D member 1 (NR1D1/Rev-erbα) may be a target of miR-882. In vitro, melatonin upregulated Rev-erbα expression and downregulated miR-882 expression in the osteoclastogenesis model. Rev-erbα overexpression boosted the anti-osteoclastogenesis effects of melatonin, whereas miR-882 partially diminished these effects. The present results indicated that the miR-882/Rev-erbα axis may serve a vital role in inhibiting osteoclastogenesis following RANKL and M-CSF treatment, indicating that Rev-erbα agonism or miR-882 inhibition may represent mechanisms through which melatonin prevents osteoporosis.
Collapse
Affiliation(s)
- Yihao Tian
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zunlei Gong
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rui Zhao
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
20
|
Sharma S, Mahajan A, Mittal A, Gohil R, Sachdeva S, Khan S, Dhillon M. Epigenetic and transcriptional regulation of osteoclastogenesis in the pathogenesis of skeletal diseases: A systematic review. Bone 2020; 138:115507. [PMID: 32610074 DOI: 10.1016/j.bone.2020.115507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To identify epigenetic and transcriptional factors controlling osteoclastogenesis (OCG), that have been shown to play a role in the pathogenesis of skeletal diseases. METHODS A systematic review was conducted in accordance with the PRISMA guidelines. The PubMed and EMBASE databases were searched up to 30th April 2020; references of included articles and pertinent review articles were also screened to identify eligible studies. Studies were included if they described epigenetic and/or transcriptional regulation of OCG in a specific skeletal disorder, and quantified alterations in OCG by any well-described experimental method. Risk of bias was assessed by a previously described modification of the CAMARADES tool. RESULTS The combined searches yielded 2265 records. Out of these, 24 studies investigating 12 different skeletal disorders were included in the review. Osteoporosis, followed by osteopetrosis, was the most commonly evaluated disorder. A total of 22 different epigenetic and transcriptional regulators of OCG were identified; key epigenetic regulators included DNA methylation, histone methylation, histone acetylation, miRNAs and lncRNAs. In majority of the disorders, dysregulated OCG was noted to occur at the stage of formation of committed osteoclast from preosteoclast. Dysregulation the stage of formation of the preosteoclast from late monocyte was noted in rheumatoid arthritis and fracture, whereas dysregulation at stage of formation of late monocyte from early monocyte was noted in osteopetrosis and spondyloarthritis. Quality assessment revealed a high risk of bias in domains pertaining to randomization, allocation concealment, blinding of outcome assessors and determination of sample size. CONCLUSIONS A variety of epigenetic and transcriptional factors can result in dysregulated osteoclastogenesis in different skeletal disorders. Dysregulation can occur at any stage; however, the formation of committed osteoclasts from preosteoclasts is the most common target. Although the published literature on this subject seems promising, the overall strength of evidence is limited by the small number of studies evaluating individual skeletal disorders, and also by deficiencies in key aspects of study design.
Collapse
Affiliation(s)
- Siddhartha Sharma
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Mahajan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupam Mittal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India..
| | - Riddhi Gohil
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunny Sachdeva
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shahnawaz Khan
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Dhillon
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Uriz-Huarte A, Date A, Ang H, Ali S, Brady HJM, Fuchter MJ. The transcriptional repressor REV-ERB as a novel target for disease. Bioorg Med Chem Lett 2020; 30:127395. [PMID: 32738989 DOI: 10.1016/j.bmcl.2020.127395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022]
Abstract
REV-ERB is a member of the nuclear receptor superfamily of transcription factors involved in the regulation of many physiological processes, from circadian rhythm, to immune function and metabolism. Accordingly, REV-ERB has been considered as a promising, but difficult drug target for the treatment of numerous diseases. Here, we concisely review current understanding of the function of REV-ERB, modulation by endogenous factors and synthetic ligands, and the involvement of REV-ERB in select human diseases. Particular focus is placed on the medicinal chemistry of synthetic REV-ERB ligands, which demonstrates the need for higher quality ligands to aid in robust validation of this exciting target.
Collapse
Affiliation(s)
- Amaia Uriz-Huarte
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Amrita Date
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Heather Ang
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Hugh J M Brady
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
22
|
Zhang L, Peng H, Zhang W, Li Y, Liu L, Leng T. Yeast Cell wall Particle mediated Nanotube-RNA delivery system loaded with miR365 Antagomir for Post-traumatic Osteoarthritis Therapy via Oral Route. Am J Cancer Res 2020; 10:8479-8493. [PMID: 32754258 PMCID: PMC7392020 DOI: 10.7150/thno.46761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is an acute injury-induced joint inflammation followed by a gradual degradation of articular cartilage. However, there is no FDA-approved Disease-Modifying Osteoarthritis Drug currently. Although gene therapy with microRNA can improve PTOA progression, there is no effective gene delivery vehicle for orally deliver therapeutics due to the harsh environment of the gastrointestinal tract. In this study, we investigated the effect of yeast cell wall particle (YCWP) mediated nanotube-RNA delivery system on PTOA therapy via oral route. Methods: Nontoxic and degradable AAT and miRNA365 antagomir was self-assembled into miR365 antagomir/AAT (NPs). Then NPs-YCWP oral drug delivery system was constructed by using NPs and non-pathogenic YCWP which can be specifically recognized by macrophages. Moreover, surgical destabilization of the medial meniscus induced PTOA mice model was established to evaluate the therapeutic effect of NPs-YCWP via oral route. Results: Compared with control group, NPs showed higher gene inhibition efficiency both in chondrogenic cell line and primary chondrocytes in vitro. Treatment of macrophages with fluorescently labeled NPs-YCWP, the results showed that NPs-YCWP was successfully engulfed by macrophages and participated in the regulation of gene expression in vitro. Under the protection of YCWP, miR365 antagomir/AAT passes through the gastrointestinal tract without degradation after oral administration. After NPs-YCWP therapy, the results of histological staining, gene and protein expression showed that miR365 antagomir/NPs-YCWP improved the symptom of PTOA. Conclusion: Here, we constructed a biodegradable drug delivery system based on non-pathogenic YCWP and nanotubes, which can be used for PTOA therapy via the oral route. It suggests a new gene therapy strategy with YCWP mediated oral nano drug delivery system may serve as a platform for joint degeneration treatment.
Collapse
|
23
|
Madel MB, Ibáñez L, Ciucci T, Halper J, Rouleau M, Boutin A, Hue C, Duroux-Richard I, Apparailly F, Garchon HJ, Wakkach A, Blin-Wakkach C. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of Cx3cr1. eLife 2020; 9:54493. [PMID: 32400390 PMCID: PMC7220377 DOI: 10.7554/elife.54493] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Bone destruction relies on interactions between bone and immune cells. Bone-resorbing osteoclasts (OCLs) were recently identified as innate immune cells activating T cells toward tolerance or inflammation. Thus, pathological bone destruction not only relies on increased osteoclast differentiation, but also on the presence of inflammatory OCLs (i-OCLs), part of which express Cx3cr1. Here, we investigated the contribution of mouse Cx3cr1+ and Cx3cr1neg i-OCLs to bone loss. We showed that Cx3cr1+ and Cx3cr1neg i-OCLs differ considerably in transcriptional and functional aspects. Cx3cr1neg i-OCLs have a high ability to resorb bone and activate inflammatory CD4+ T cells. Although Cx3cr1+ i-OCLs are associated with inflammation, they resorb less and have in vitro an immune-suppressive effect on Cx3cr1neg i-OCLs, mediated by PD-L1. Our results provide new insights into i-OCL heterogeneity. They also reveal that different i-OCL subsets may interact to regulate inflammation. This contributes to a better understanding and prevention of inflammatory bone destruction.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- Laboratoire de PhysioMédecine Moléculaire, CNRS, Nice, France.,Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, Valencia, Spain
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Julia Halper
- Laboratoire de PhysioMédecine Moléculaire, CNRS, Nice, France.,Université Côte d'Azur, Nice, France
| | - Matthieu Rouleau
- Laboratoire de PhysioMédecine Moléculaire, CNRS, Nice, France.,Université Côte d'Azur, Nice, France
| | - Antoine Boutin
- Laboratoire de PhysioMédecine Moléculaire, CNRS, Nice, France.,Université Côte d'Azur, Nice, France
| | - Christophe Hue
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Montigny-Le-Bretonneux, France
| | | | | | - Henri-Jean Garchon
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Montigny-Le-Bretonneux, France.,Genetics division, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Abdelilah Wakkach
- Laboratoire de PhysioMédecine Moléculaire, CNRS, Nice, France.,Université Côte d'Azur, Nice, France
| | - Claudine Blin-Wakkach
- Laboratoire de PhysioMédecine Moléculaire, CNRS, Nice, France.,Université Côte d'Azur, Nice, France
| |
Collapse
|
24
|
Wang S, Li F, Lin Y, Wu B. Targeting REV-ERBα for therapeutic purposes: promises and challenges. Theranostics 2020; 10:4168-4182. [PMID: 32226546 PMCID: PMC7086371 DOI: 10.7150/thno.43834] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
REV-ERBα (NR1D1) is a circadian clock component that functions as a transcriptional repressor. Due to its role in direct modulation of metabolic genes, REV-ERBα is regarded as an integrator of cell metabolism with circadian clock. Accordingly, REV-ERBα is first proposed as a drug target for treating sleep disorders and metabolic syndromes (e.g., dyslipidaemia, hyperglycaemia and obesity). Recent years of studies uncover a rather broad role of REV-ERBα in pathological conditions including local inflammatory diseases, heart failure and cancers. Moreover, REV-ERBα is involved in regulation of circadian drug metabolism that has implications in chronopharmacology. In the meantime, recent years have witnessed discovery of an array of new REV-ERBα ligands most of which have pharmacological activities in vivo. In this article, we review the regulatory role of REV-ERBα in various types of diseases and discuss the underlying mechanisms. We also describe the newly discovered ligands and the old ones together with their targeting potential. Despite well-established pharmacological effects of REV-ERBα ligands in animals (preclinical studies), no progress has been made regarding their translation to clinical trials. This implies certain challenges associated with drug development of REV-ERBα ligands. In particular, we discuss the potential challenges related to drug safety (or adverse effects) and bioavailability. For new drug development, it is advocated that REV-ERBα should be targeted to treat local diseases and a targeting drug should be locally distributed, avoiding the adverse effects on other tissues.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, 510632, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
25
|
Liu H, Zhu Y, Gao Y, Qi D, Zhao L, Zhao L, Liu C, Tao T, Zhou C, Sun X, Guo F, Xiao J. NR1D1 modulates synovial inflammation and bone destruction in rheumatoid arthritis. Cell Death Dis 2020; 11:129. [PMID: 32071294 PMCID: PMC7028921 DOI: 10.1038/s41419-020-2314-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia, pannus formation, and cartilage and bone destruction. Nuclear receptor subfamily 1 group D member 1 (NR1D1) functions as a transcriptional repressor and plays a vital role in inflammatory reactions. However, whether NR1D1 is involved in synovial inflammation and joint destruction during the pathogenesis of RA is unknown. In this study, we found that NR1D1 expression was increased in synovial tissues from patients with RA and decreased in RA Fibroblast-like synoviocytes (FLSs) stimulated with IL-1β in vitro. We showed that NR1D1 activation decreased the expression of proinflammatory cytokines and matrix metalloproteinases (MMPs), while NR1D1 silencing exerted the opposite effect. Furthermore, NR1D1 activation reduced reactive oxygen species (ROS) generation and increased the production of nuclear transcription factor E2-related factor 2 (Nrf2)-associated enzymes. Mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways were blocked by the NR1D1 agonist SR9009 but activated by NR1D1 silencing. NR1D1 activation also inhibited M1 macrophage polarization and suppressed osteoclastogenesis and osteoclast-related genes expression. Treatment with NR1D1 agonist SR9009 in collagen-induced arthritis (CIA) mouse significantly suppressed the hyperplasia of synovial, infiltration of inflammatory cell and destruction of cartilage and bone. Our findings demonstrate an important role for NR1D1 in RA and suggest its therapeutic potential.
Collapse
Affiliation(s)
- Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanli Zhu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yutong Gao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dahu Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Libo Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tenghui Tao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuankun Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Kim K, Kim JH, Kim I, Seong S, Kim N. Rev-erbα Negatively Regulates Osteoclast and Osteoblast Differentiation through p38 MAPK Signaling Pathway. Mol Cells 2020; 43:34-47. [PMID: 31896234 PMCID: PMC6999712 DOI: 10.14348/molcells.2019.0232] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 11/27/2022] Open
Abstract
The circadian clock regulates various physiological processes, including bone metabolism. The nuclear receptors Reverbs, comprising Rev-erbα and Rev-erbβ, play a key role as transcriptional regulators of the circadian clock. In this study, we demonstrate that Rev-erbs negatively regulate differentiation of osteoclasts and osteoblasts. The knockdown of Rev-erbα in osteoclast precursor cells enhanced receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation, as well as expression of nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor (OSCAR), and tartrate-resistant acid phosphatase (TRAP). The overexpression of Rev-erbα leads to attenuation of the NFATc1 expression via inhibition of recruitment of c-Fos to the NFATc1 promoter. The overexpression of Rev-erbα in osteoblast precursors attenuated the expression of osteoblast marker genes including Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OC). Rev-erbα interfered with the recruitment of Runx2 to the promoter region of the target genes. Conversely, knockdown of Reverbα in the osteoblast precursors enhanced the osteoblast differentiation and function. In addition, Rev-erbα negatively regulated osteoclast and osteoblast differentiation by suppressing the p38 MAPK pathway. Furthermore, intraperitoneal administration of GSK4112, a Rev-erb agonist, protects RANKL-induced bone loss via inhibition of osteoclast differentiation in vivo . Taken together, our results demonstrate a molecular mechanism of Rev-erbs in the bone remodeling, and provide a molecular basis for a potential therapeutic target for treatment of bone disease characterized by excessive bone resorption.
Collapse
MESH Headings
- Animals
- Bone Remodeling
- Bone Resorption/genetics
- Bone Resorption/metabolism
- Cell Differentiation
- Cells, Cultured
- Circadian Clocks
- Disease Models, Animal
- Gain of Function Mutation/genetics
- Humans
- Male
- Mice
- Mice, Inbred ICR
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Osteoblasts/physiology
- Osteoclasts/physiology
- Osteogenesis/genetics
- RNA, Small Interfering/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469,
Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469,
Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469,
Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469,
Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469,
Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469,
Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469,
Korea
| |
Collapse
|
27
|
The Putatively Specific Synthetic REV-ERB Agonist SR9009 Inhibits IgE- and IL-33-Mediated Mast Cell Activation Independently of the Circadian Clock. Int J Mol Sci 2019; 20:ijms20246320. [PMID: 31847374 PMCID: PMC6941044 DOI: 10.3390/ijms20246320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The cell-autonomous circadian clock regulates IgE- and IL-33-mediated mast cell activation, both of which are key events in the development of allergic diseases. Accordingly, clock modifiers could be used to treat allergic diseases, as well as many other circadian-related diseases, such as sleep and metabolic disorders. The nuclear receptors REV-ERB-α and -β (REV-ERBs) are crucial components of the circadian clockwork. Efforts to pharmacologically target REV-ERBs using putatively specific synthetic agonists, particularly SR9009, have yielded beneficial effects on sleep and metabolism. Here, we sought to determine whether REV-ERBs are functional in the circadian clockwork in mast cells and, if so, whether SR9009 affects IgE- and IL-33-mediated mast cell activation. Bone marrow-derived mast cells (BMMCs) obtained from wild-type mice expressed REV-ERBs, and SR9009 or other synthetic REV-ERBs agonists affected the mast cell clockwork. SR9009 inhibited IgE- and IL-33-mediated mast cell activation in wild-type BMMCs in association with inhibition of Gab2/PI3K and NF-κB activation. Unexpectedly, these suppressive effects of SR9009 were observed in BMMCs following mutation of the core circadian gene Clock. These findings suggest that SR9009 inhibits IgE- and IL-33-mediated mast cell activation independently of the functional circadian clock activity. Thus, SR9009 or other synthetic REV-ERB agonists may have potential for anti-allergic agents.
Collapse
|
28
|
Role of CX3CL1/CX3CR1 Signaling Axis Activity in Osteoporosis. Mediators Inflamm 2019; 2019:7570452. [PMID: 31780870 PMCID: PMC6875359 DOI: 10.1155/2019/7570452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is a civilization disease which is still challenging for contemporary medicine in terms of treatment and prophylaxis. It results from excessive activation of the osteoclastic cell line and immune cells like macrophages and lymphocytes. Cell-to-cell inflammatory information transfer occurs via factors including cytokines which form a complex network of cell humoral correlation, called cytokine network. Recently conducted studies revealed the participation of CX3CL1 chemokine in the pathogenesis of osteoporosis. CX3CL1 and its receptor CX3CR1 present unique properties among over 50 described chemokines. Apart from its chemotactic activity, CX3CL1 is the only chemokine which may function as an adhesion molecule which facilitates easier penetration of immune system cells through the vascular endothelium to the area of inflammation. The present study, based on world literature review, sums and describes convincing evidences of a significant role of the CX3CL1/CX3CR1 axis in processes leading to bone mineral density (BMD) reduction. The CX3CL1/CX3CR1 axis plays a principal role in osteoclast maturation and binding them with immune cells to the surface of the bone tissue. It promotes the development of inflammation and production of many inflammatory cytokines near the bone surface (i.e., TNF-α, IL-1β, and IL-6). High concentrations of CX3CL1 in serum are directly proportional to increased concentrations of bone turnover and inflammatory factors in human blood serum (TRACP-5b, NTx, IL-1β, and IL-6). Regarding the fact that acting against the CX3CL1/CX3CR1 axis is a potential target of immune treatment in osteoporosis, the number of available papers tackling the topic is certainly insufficient. Therefore, it seems justified to continue research which would precisely determine its role in the metabolism of the bone tissue as one of the most promising targets in osteoporosis therapy.
Collapse
|
29
|
Morioka N, Kodama K, Tomori M, Yoshikawa K, Saeki M, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Stimulation of nuclear receptor REV-ERBs suppresses production of pronociceptive molecules in cultured spinal astrocytes and ameliorates mechanical hypersensitivity of inflammatory and neuropathic pain of mice. Brain Behav Immun 2019; 78:116-130. [PMID: 30682503 DOI: 10.1016/j.bbi.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 11/15/2022] Open
Abstract
The orphan nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammatory-related gene transcription in astroglioma cells, but their role in nociceptive transduction has yet to be elaborated. Spinal dorsal horn astrocytes contribute to the maintenance of chronic pain. Treatment of cultured spinal astrocytes with specific REV-ERBs agonists SR9009 or GSK4112 significantly prevented lipopolysaccharide (LPS)-induced mRNA upregulation of pronociceptive molecules interleukin-1β (IL-1β) mRNA, interleukin-6 (IL-6) mRNA and matrix metalloprotease-9 (MMP-9) mRNA, but not CCL2 mRNA expression. Treatment with SR9009 also blocked tumor necrosis factor-induced IL-1β mRNA, IL-6 mRNA and MMP-9 mRNA. In addition, treatment with SR9009 significantly blocked LPS-induced upregulation of IL-1β protein, IL-6 protein and MMP-9 activity. The inhibitory effects of SR9009 on LPS-induced expression of pronociceptive molecules were blocked by knockdown of REV-ERBs expression with short interference RNA, confirming that SR9009 exerts its effect through REV-ERBs. Intrathecal LPS treatment in male mice induces hind paw mechanical hypersensitivity, and upregulation of IL-1β mRNA, IL-6 mRNA and glial fibrillary acidic protein (GFAP) expression in spinal dorsal horn. Intrathecal pretreatment of SR9009 prevented the onset of LPS-induced mechanical hypersensitivity, cytokine expression and GFAP expression. Intrathecal injection of SR9009 also ameliorated mechanical hypersensitivity during the maintenance phase of complete Freund's adjuvant-induced inflammatory pain and partial sciatic nerve ligation-, paclitaxel-, and streptozotocin-induced neuropathy in mice. The current findings suggest that spinal astrocytic REV-ERBs could be critical in the regulation of nociceptive transduction through downregulation of pronociceptive molecule expression. Thus, spinal REV-ERBs could be an effective therapeutic target in the treatment of chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Keitaro Kodama
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mizuki Tomori
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kanade Yoshikawa
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Munenori Saeki
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse IRP, Triad Suite 3305, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Institute of Pharmacology, Taishan Medical University, 619 Changcheng Road, Taian, Shandong 271016, China
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
30
|
Insights into the Role of Circadian Rhythms in Bone Metabolism: A Promising Intervention Target? BIOMED RESEARCH INTERNATIONAL 2018; 2018:9156478. [PMID: 30363685 PMCID: PMC6180976 DOI: 10.1155/2018/9156478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/09/2018] [Indexed: 11/18/2022]
Abstract
Numerous physiological processes of mammals, including bone metabolism, are regulated by the circadian clock system, which consists of a central regulator, the suprachiasmatic nucleus (SCN), and the peripheral oscillators of the BMAL1/CLOCK-PERs/CRYs system. Various bone turnover markers and bone metabolism-regulating hormones such as melatonin and parathyroid hormone (PTH) display diurnal rhythmicity. According to previous research, disruption of the circadian clock due to shift work, sleep restriction, or clock gene knockout is associated with osteoporosis or other abnormal bone metabolism, showing the importance of the circadian clock system for maintaining homeostasis of bone metabolism. Moreover, common causes of osteoporosis, including postmenopausal status and aging, are associated with changes in the circadian clock. In our previous research, we found that agonism of the circadian regulators REV-ERBs inhibits osteoclast differentiation and ameliorates ovariectomy-induced bone loss in mice, suggesting that clock genes may be promising intervention targets for abnormal bone metabolism. Moreover, osteoporosis interventions at different time points can provide varying degrees of bone protection, showing the importance of accounting for circadian rhythms for optimal curative effects in clinical treatment of osteoporosis. In this review, we summarize current knowledge about circadian rhythms and bone metabolism.
Collapse
|