1
|
Wu R, Song Y, Wu S, Chen Y. Promising therapeutic approaches of utrophin replacing dystrophin in the treatment of Duchenne muscular dystrophy. FUNDAMENTAL RESEARCH 2022; 2:885-893. [PMID: 38933385 PMCID: PMC11197810 DOI: 10.1016/j.fmre.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a serious genetic neuromuscular rare disease that is prevalent and caused by the mutation/deletion of the X-linked DMD gene that encodes dystrophin. Utrophin is a dystrophin homologous protein on human chromosome 6. Dystrophin and utrophin are highly homologous. They can recruit many dystrophin-glycoprotein complex (DGC)-related proteins and co-localize at the sarcolemma in the early stage of human embryonic development. Moreover, utrophin is overexpressed naturally at the mature myofiber sarcolemma in DMD patients. Therefore, utrophin is considered the most promising homologous protein to replace dystrophin. This review summarizes various modulating drugs and gene therapy approaches for utrophin replacement. As a universal method to treat DMD disease, utrophin has a promising therapeutic prospect and deserves further investigation.
Collapse
Affiliation(s)
- Ruo Wu
- State Key Laboratory of Primate Biomedical Research & Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yafeng Song
- Institute of Sport and Health Science, Beijing Sport University, No.48 Xinxi Road, Haidian District, Beijing 100084, China
| | - Shiwen Wu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research & Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
2
|
Dong X, Hui T, Chen J, Yu Z, Ren D, Zou S, Wang S, Fei E, Jiao H, Lai X. Metformin Increases Sarcolemma Integrity and Ameliorates Neuromuscular Deficits in a Murine Model of Duchenne Muscular Dystrophy. Front Physiol 2021; 12:642908. [PMID: 34012406 PMCID: PMC8126699 DOI: 10.3389/fphys.2021.642908] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease characterized by progressive muscle weakness and wasting. Stimulation of AMP-activated protein kinase (AMPK) has been demonstrated to increase muscle function and protect muscle against damage in dystrophic mice. Metformin is a widely used anti-hyperglycemic drug and has been shown to be an indirect activator of AMPK. Based on these findings, we sought to determine the effects of metformin on neuromuscular deficits in mdx murine model of DMD. In this study, we found metformin treatment increased muscle strength accompanied by elevated twitch and tetanic force of tibialis anterior (TA) muscle in mdx mice. Immunofluorescence and electron microscopy analysis of metformin-treated mdx muscles revealed an improvement in muscle fiber membrane integrity. Electrophysiological studies showed the amplitude of miniature endplate potentials (mEPP) was increased in treated mice, indicating metformin also improved neuromuscular transmission of the mdx mice. Analysis of mRNA and protein levels from muscles of treated mice showed an upregulation of AMPK phosphorylation and dystrophin-glycoprotein complex protein expression. In conclusion, metformin can indeed improve muscle function and diminish neuromuscular deficits in mdx mice, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
Affiliation(s)
- Xia Dong
- School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Tiankun Hui
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Jie Chen
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Zheng Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Dongyan Ren
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Suqi Zou
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Erkang Fei
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 401] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
4
|
Wang L, Zhao L, Zhang L, Liu X, Hou X, Gao H, Yan H, Zhao F, Wang L. NTN1 Affects Porcine Intramuscular Fat Content by Affecting the Expression of Myogenic Regulatory Factors. Animals (Basel) 2019; 9:ani9090609. [PMID: 31461826 PMCID: PMC6770873 DOI: 10.3390/ani9090609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Intramuscular fat (IMF) is a key meat quality trait in the pork industry. In this study, we validated the effect of the copy number of Netrin-1 (NTN1-CNV) on Netrin-1 (NTN1) protein expression and explored the possible affective mechanism of NTN1 on IMF. The results indicated that NTN1-CNV may affect the expression of NTN1 protein by its gene dose, and the expression of NTN1 may affect the proliferation and differentiation of muscle cells by the AMP-activated protein kinase (AMPK) pathway and finally influence the IMF content. Abstract Intramuscular fat (IMF) content is an important economic trait for pork quality. Our previous results regarding the genome-wide association between IMF content and copy number variations (CNVs) indicated that the CNV within Netrin-1(NTN1-CNV) was significantly associated with IMF. In order to validate the effect of NTN1-CNV, we detected the Netrin-1 (NTN1) gene dose and protein expression content in the longissimus dorsi of different IMF content pigs using Western blotting and investigated the expression of NTN1 RNA in different tissues using real-time quantitative polymerase chain reaction (qPCR). The knock-down of the NTN1 gene in C2C12 and 3T3-L1 cells and over-expression in C2C12 cells during the proliferation and differentiation stage were also investigated to explore the possible pathway of action of NTN1. The results showed that in individuals with IMF content differences, the gene dose of NTN1 and the expression of NTN1 protein were also significantly different, which indicated that NTN1-CNV may directly affect IMF by its coding protein. NTN1 had the highest expression in pig longissimus dorsi and backfat tissues, which indicates that NTN1 may play an important role in muscle and fat tissues. The in vitro validation assay indicated that NTN1 silencing could promote the proliferation and inhibit the differentiation of C2C12 cells, with no effect on 3T3-L1 cells. Additionally, NTN1 over-expression could inhibit the proliferation and promote the differentiation of C2C12 cells. Combined with previous research, we conclude that NTN1-CNV may affect IMF by its gene dose, and the expression of NTN1 may affect the proliferation and differentiation of muscle cells by the AMP-activated protein kinase (AMPK) pathway and finally influence the IMF.
Collapse
Affiliation(s)
- Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lingling Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Ng SY, Mikhail A, Ljubicic V. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice. J Physiol 2019; 597:4757-4778. [PMID: 31361024 PMCID: PMC6767691 DOI: 10.1113/jp278454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
Key points Spinal muscular atrophy (SMA) is a health‐ and life‐limiting neuromuscular disorder caused by a deficiency in survival motor neuron (SMN) protein. While historically considered a motor neuron disease, current understanding of SMA emphasizes its systemic nature, which requires addressing affected peripheral tissues such as skeletal muscle in particular. Chronic physical activity is beneficial for SMA patients, but the cellular and molecular mechanisms of exercise biology are largely undefined in SMA. After a single bout of exercise, canonical responses such as skeletal muscle AMP‐activated protein kinase (AMPK), p38 mitogen‐activated protein kinase (p38) and peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) activation were preserved in SMA‐like Smn2B/− animals. Furthermore, molecules involved in SMN transcription were also altered following physical activity. Collectively, these changes were coincident with an increase in full‐length SMN transcription and corrective SMN pre‐mRNA splicing. This study advances understanding of the exercise biology of SMA and highlights the AMPK–p38–PGC‐1α axis as a potential regulator of SMN expression in muscle.
Abstract Chronic physical activity is safe and effective in spinal muscular atrophy (SMA) patients, but the underlying cellular events that drive physiological adaptations are undefined. We examined the effects of a single bout of exercise on molecular mechanisms associated with adaptive remodelling in the skeletal muscle of Smn2B/− SMA‐like mice. Skeletal muscles were collected from healthy Smn2B/+ mice and Smn2B/− littermates at pre‐ (postnatal day (P) 9), early‐ (P13) and late‐ (P21) symptomatic stages to characterize SMA disease progression. Muscles were also collected from Smn2B/− animals exercised to fatigue on a motorized treadmill. Intracellular signalling and gene expression were examined using western blotting, confocal immunofluorescence microscopy, real‐time quantitative PCR and endpoint PCR assays. Basal skeletal muscle AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38) expression and activity were not affected by SMA‐like conditions. Canonical exercise responses such as AMPK, p38 and peroxisome proliferator‐activated receptor γ coactivator‐1α (PGC‐1α) activation were observed following a bout of exercise in Smn2B/− animals. Furthermore, molecules involved in survival motor neuron (SMN) transcription, including protein kinase B (AKT) and extracellular signal‐regulated kinases (ERK)/ETS‐like gene 1 (ELK1), were altered following physical activity. Acute exercise was also able to mitigate aberrant proteolytic signalling in the skeletal muscle of Smn2B/− mice. Collectively, these changes were coincident with an exercise‐evoked increase in full‐length SMN mRNA expression. This study advances our understanding of the exercise biology of SMA and highlights the AMPK–p38–PGC‐1α axis as a potential regulator of SMN expression alongside AKT and ERK/ELK1 signalling. Spinal muscular atrophy (SMA) is a health‐ and life‐limiting neuromuscular disorder caused by a deficiency in survival motor neuron (SMN) protein. While historically considered a motor neuron disease, current understanding of SMA emphasizes its systemic nature, which requires addressing affected peripheral tissues such as skeletal muscle in particular. Chronic physical activity is beneficial for SMA patients, but the cellular and molecular mechanisms of exercise biology are largely undefined in SMA. After a single bout of exercise, canonical responses such as skeletal muscle AMP‐activated protein kinase (AMPK), p38 mitogen‐activated protein kinase (p38) and peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) activation were preserved in SMA‐like Smn2B/− animals. Furthermore, molecules involved in SMN transcription were also altered following physical activity. Collectively, these changes were coincident with an increase in full‐length SMN transcription and corrective SMN pre‐mRNA splicing. This study advances understanding of the exercise biology of SMA and highlights the AMPK–p38–PGC‐1α axis as a potential regulator of SMN expression in muscle.
Collapse
Affiliation(s)
- Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Andrew Mikhail
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
vanLieshout TL, Bonafiglia JT, Gurd BJ, Ljubicic V. Protein arginine methyltransferase biology in humans during acute and chronic skeletal muscle plasticity. J Appl Physiol (1985) 2019; 127:867-880. [PMID: 31369333 DOI: 10.1152/japplphysiol.00142.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins. While dysregulation of PRMTs has been documented in a number of the most prevalent diseases, our understanding of PRMT biology in human skeletal muscle is limited. This study served to address this knowledge gap by exploring PRMT expression and function in human skeletal muscle in vivo and characterizing PRMT biology in response to acute and chronic stimuli for muscle plasticity. Fourteen untrained, healthy men performed one session of sprint interval exercise (SIE) before completing four bouts of SIE per week for 6 wk as part of a sprint interval training (SIT) program. Throughout this time course, multiple muscle biopsies were collected. We found that at basal, resting conditions PRMT1, PRMT4, PRMT5, and PRMT7 were the most abundantly expressed PRMT mRNAs in human quadriceps muscle. Additionally, the broad subcellular distribution pattern of PRMTs suggests methyltransferase activity throughout human myofibers. A spectrum of PRMT-specific inductions, and decrements, in expression and activity were observed in response to acute and chronic cues for muscle plasticity. In conclusion, our findings demonstrate that PRMTs are present and active in human skeletal muscle in vivo and that there are distinct, enzyme-specific responses and adaptations in PRMT biology to acute and chronic stimuli for muscle plasticity. This work advances our understanding of this critical family of enzymes in humans.NEW & NOTEWORTHY This is the first report of protein arginine methyltransferase (PRMT) biology in human skeletal muscle in vivo. We observed that PRMT1, -4, -5, and -7 were the most abundant PRMT mRNAs in human muscle and that PRMT proteins exhibited a broad subcellular localization that included myonuclear, cytosolic, and sarcolemmal compartments. Acute exercise and chronic training evoked PRMT-specific alterations in expression and activity. This study reveals a hitherto unknown complexity to PRMT biology in human muscle.
Collapse
Affiliation(s)
| | - Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,Birchmount Park Collegiate Institute, Scarborough, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Birchmount Park Collegiate Institute, Scarborough, Ontario, Canada
| |
Collapse
|
7
|
Manta A, Stouth DW, Xhuti D, Chi L, Rebalka IA, Kalmar JM, Hawke TJ, Ljubicic V. Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice. J Physiol 2019; 597:1361-1381. [PMID: 30628727 DOI: 10.1113/jp277123] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Myotonic dystrophy type 1 (DM1), the second most common muscular dystrophy and most prevalent adult form of muscular dystrophy, is characterized by muscle weakness, wasting and myotonia. A microsatellite repeat expansion mutation results in RNA toxicity and dysregulation of mRNA processing, which are the primary downstream causes of the disorder. Recent studies with DM1 participants demonstrate that exercise is safe, enjoyable and elicits benefits in muscle strength and function; however, the molecular mechanisms of exercise adaptation in DM1 are undefined. Our results demonstrate that 7 weeks of volitional running wheel exercise in a pre-clinical DM1 mouse model resulted in significantly improved motor performance, muscle strength and endurance, as well as reduced myotonia. At the cellular level, chronic physical activity attenuated RNA toxicity, liberated Muscleblind-like 1 protein from myonuclear foci and improved mRNA alternative splicing. ABSTRACT Myotonic dystrophy type 1 (DM1) is a trinucleotide repeat expansion neuromuscular disorder that is most prominently characterized by skeletal muscle weakness, wasting and myotonia. Chronic physical activity is safe and satisfying, and can elicit functional benefits such as improved strength and endurance in DM1 patients, but the underlying cellular basis of exercise adaptation is undefined. Our purpose was to examine the mechanisms of exercise biology in DM1. Healthy, sedentary wild-type (SED-WT) mice, as well as sedentary human skeletal actin-long repeat animals, a murine model of DM1 myopathy (SED-DM1), and DM1 mice with volitional access to a running wheel for 7 weeks (EX-DM1), were utilized. Chronic exercise augmented strength and endurance in vivo and in situ in DM1 mice. These alterations coincided with normalized measures of myopathy, as well as increased mitochondrial content. Electromyography revealed a 70-85% decrease in the duration of myotonic discharges in muscles from EX-DM1 compared to SED-DM1 animals. The exercise-induced enhancements in muscle function corresponded at the molecular level with mitigated spliceopathy, specifically the processing of bridging integrator 1 and muscle-specific chloride channel (CLC-1) transcripts. CLC-1 protein content and sarcolemmal expression were lower in SED-DM1 versus SED-WT animals, but they were similar between SED-WT and EX-DM1 groups. Chronic exercise also attenuated RNA toxicity, as indicated by reduced (CUG)n foci-positive myonuclei and sequestered Muscleblind-like 1 (MBNL1). Our data indicate that chronic exercise-induced physiological improvements in DM1 occur in concert with mitigated primary downstream disease mechanisms, including RNA toxicity, MBNL1 loss-of-function, and alternative mRNA splicing.
Collapse
Affiliation(s)
- Alexander Manta
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Donald Xhuti
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Leon Chi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jayne M Kalmar
- Department of Kinesiology & Physical Education, Wilfred Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
8
|
Abdelazim A, Khater S, Ali H, Shalaby S, Afifi M, Saddick S, Alkaladi A, Almaghrabi OA. Panax ginseng improves glucose metabolism in streptozotocin-induced diabetic rats through 5' adenosine monophosphate kinase up-regulation. Saudi J Biol Sci 2018; 26:1436-1441. [PMID: 31762606 PMCID: PMC6864146 DOI: 10.1016/j.sjbs.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
5′ AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mellitus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin (STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase (GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats. In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabolism in diabetic models.
Collapse
Affiliation(s)
- Aaser Abdelazim
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Safaa Khater
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham Ali
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Shimaa Shalaby
- Department of Physiology, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia.,University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Saudi Arabia
| | - Salina Saddick
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ali Alkaladi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Omar A Almaghrabi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Dial AG, Ng SY, Manta A, Ljubicic V. The Role of AMPK in Neuromuscular Biology and Disease. Trends Endocrinol Metab 2018; 29:300-312. [PMID: 29572064 DOI: 10.1016/j.tem.2018.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a primary regulator of cellular metabolism. Recent studies have revealed that AMPK also mediates the maintenance and plasticity of α-motoneurons, the neuromuscular junction, and skeletal muscle. Furthermore, AMPK stimulation by either genetic, pharmacological, or physiological approaches elicits beneficial phenotypic remodeling in neuromuscular disorders (NMDs). Here, we review the role of AMPK as a governor of neuromuscular biology, and present evidence for AMPK as an effective molecular target for therapeutic pursuit in the context of the most prevalent NMDs, including Duchenne muscular dystrophy, spinal muscular atrophy, and myotonic dystrophy type 1. This information may be useful for engineering AMPK-targeted pharmacological- or lifestyle-based strategies to treat disorders of the neuromuscular system.
Collapse
Affiliation(s)
- Athan G Dial
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Alexander Manta
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|