1
|
Cera N, Pinto J, Pignatelli D. What do we know about abnormally low prolactin levels in polycystic ovary syndrome? A narrative review. Rev Endocr Metab Disord 2024; 25:1127-1138. [PMID: 39425884 PMCID: PMC11624252 DOI: 10.1007/s11154-024-09912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Hyper and hypoprolactinemia seem to be related to the occurrence of metabolic alterations in PCOS patients. In contrast, between significantly elevated and significantly low, prolactin levels seem to be protective against metabolic consequences. In the present review, we found 4 studies investigating hypoprolactinemia in patients with PCOS. We also identified 6 additional studies that reported low levels of PRL in PCOS patients. Although its prevalence is not considered high (13.2-13.9%), its contribution is certainly significant to the metabolic alterations observed in PCOS (insulin resistance, obesity, diabetes mellitus, and fatty liver disease). Dopamine inhibits the secretion of prolactin and GnRH. If dopamine levels are low or the dopamine receptor is less expressed or mutated, the levels of prolactin and GnRH increase, and consequently, LH also increases. On the other hand, hyperprolactinemia, in prolactinomas-typical levels, acting through kisspeptin inhibition causes GnRH suppression and hypogonadotropic hypogonadism. In situations of hypoprolactinemia due to excessive dopamine agonist treatment, dosage reduction is important to minimize the decrease in prolactin levels. Nevertheless, there is a lack of prospective studies confirming these hypotheses, as well as randomized clinical trials with appropriate drugs targeting both hyperprolactin and hypoprolactin in patients with PCOS.
Collapse
Affiliation(s)
- Nicoletta Cera
- Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
- Research Unit in Medical Imaging and Radiotherapy, Cross I&D Lisbon Research Center, Escola Superior de Saúde da Cruz Vermelha Portuguesa, Lisbon, Portugal
| | - Joana Pinto
- Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Duarte Pignatelli
- Faculty of Medicine, University of Porto, Porto, Portugal.
- Department of Endocrinology, University Hospital S João and Faculty of Medicine of the University of Porto, Porto, Portugal.
- I3S Institute for Innovation in Health, Porto, Portugal.
| |
Collapse
|
2
|
Khan A, Di Dalmazi G, Najafian Zahmatkeshan K, Caturegli P. Isolated hypoprolactinemia: The rarest of the rare? Rev Endocr Metab Disord 2024; 25:1047-1064. [PMID: 39271619 DOI: 10.1007/s11154-024-09901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/15/2024]
Abstract
Isolated hypoprolactinemia (IHP) can be defined as the presence of consistently low serum levels of prolactin in the absence of other anterior pituitary hormone abnormalities. It is an extremely rare condition, and consequently incompletely understood and unrecognized. A recent study has reported the first cases of IHP caused by mutation in the PRL gene. There are also cases where the pathogenesis of IHP is likely secondary to an autoimmune response against the PRL-secreting cells. But most published cases are acquired and idiopathic. The best characterized function of PRL is to facilitate milk production in the puerperium. Analysis of the GTEX data repository, however, shows that PRL is the most abundantly expressed gene in the human pituitary, independently of gender and age, suggesting the presence of additional roles for PRL. Newer studies have indeed revealed a much larger spectrum of PRL functions and will likely uncover novel clinical phenotypes associated with severe PRL deficiency.
Collapse
Affiliation(s)
- Amna Khan
- School of Medicine, Department of Pathology, Johns Hopkins Hospital, Ross building - Room 656, 720 Rutland Avenue, Baltimore, MD, USA
| | - Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "Gabriele d' Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Patrizio Caturegli
- School of Medicine, Department of Pathology, Johns Hopkins Hospital, Ross building - Room 656, 720 Rutland Avenue, Baltimore, MD, USA.
| |
Collapse
|
3
|
Chasseloup F, Bernard V, Chanson P. Prolactin: structure, receptors, and functions. Rev Endocr Metab Disord 2024; 25:953-966. [PMID: 39476210 DOI: 10.1007/s11154-024-09915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 12/08/2024]
Abstract
Prolactin (PRL) is a 23-kDa protein synthesized and secreted by lactotroph cells of the anterior pituitary gland but also by other peripheral tissues. PRL binds directly to a unique transmembrane receptor (PRLR), and the JAK2/signal transducer and activator of transcription 5 (Stat5) pathway is considered the major downstream pathway for PRLR signaling. To a lesser extent, PRL may be cleaved into the shorter 16-kDa PRL, also called vasoinhibin, whose signaling is not fully known. According to rodent models of PRL signaling inactivation and the identification of human genetic alterations in PRL signaling, a growing number of biological processes are partly mediated by PRL or its downstream effectors. In this review, we focused on PRL structure and signaling and its canonical function in reproduction. In addition to regulating reproductive functions, PRL also plays a role in behavior, notably in initiating nurturing and maternal behavior. We also included recent insights into PRL function in several fields, including migraines, metabolic homeostasis, inflammatory and autoimmune disease, and cancer. Despite the complexity of understanding the many functions of PRL, new research in this field offers interesting perspectives on physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Fanny Chasseloup
- Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse (HYPO), Hôpital Bicêtre, INSERM, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, 94275, France
| | - Valérie Bernard
- Department of Gynecology and Reproductive Medicine, CHU de Bordeaux, Bordeaux, F-33000, France
- Univ. Bordeaux, Bordeaux Institute in Oncology-BRIC-BioGo Team, INSERM U1312, Bordeaux, F-33000, France
| | - Philippe Chanson
- Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse (HYPO), Hôpital Bicêtre, INSERM, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, 94275, France.
| |
Collapse
|
4
|
Szukiewicz D. Current Insights in Prolactin Signaling and Ovulatory Function. Int J Mol Sci 2024; 25:1976. [PMID: 38396659 PMCID: PMC10889014 DOI: 10.3390/ijms25041976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic-pituitary-ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic-pituitary-gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
5
|
Abeledo-Machado A, Peña-Zanoni M, Bornancini D, Díaz-Torga G. Revealing Sexual Dimorphism in Prolactin Regulation From Early Postnatal Development to Adulthood in Murine Models. J Endocr Soc 2023; 8:bvad146. [PMID: 38045876 PMCID: PMC10690727 DOI: 10.1210/jendso/bvad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/05/2023] Open
Abstract
Serum prolactin (PRL) levels exhibit a gradual rise both in male and female rats from birth to adulthood, with females consistently displaying higher levels compared to age-matched males. This pattern has traditionally been attributed to the development and maturation of endocrine and neuroendocrine networks responsible for regulating PRL synthesis and secretion. However, the effect of dopamine (DA), which acts as an inhibitory factor on lactotroph function, also increases from birth to puberty, particularly in females. Nonetheless, the secretion of PRL remains higher in females compared to males. On the other hand, the observed sex differences in serum PRL levels during early postnatal development cannot be attributed to the influence of estradiol (E2). While serum E2 levels gradually increase after birth, only after 45 days of life do the disparities in E2 levels between females and males become evident. These observations collectively suggest that neither the maturation of hypothalamic DA regulation nor the rise in E2 levels can account for the progressive and sustained elevation in serum PRL levels and the observed sexual dimorphism during postnatal development. This review highlights the importance of recent discoveries in animal models that shed light on inhibitory mechanisms in the control of PRL secretion within the pituitary gland itself, that is intrapituitary mechanisms, with a specific emphasis on the role of transforming growth factor β1 and activins in PRL secretion.
Collapse
Affiliation(s)
- Alejandra Abeledo-Machado
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| | - Milagros Peña-Zanoni
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| | - Dana Bornancini
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| |
Collapse
|
6
|
Araujo-Castro M, Marazuela M, Puig-Domingo M, Biagetti B. Prolactin and Growth Hormone Signaling and Interlink Focused on the Mammosomatotroph Paradigm: A Comprehensive Review of the Literature. Int J Mol Sci 2023; 24:14002. [PMID: 37762304 PMCID: PMC10531307 DOI: 10.3390/ijms241814002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Prolactin (PRL) and growth hormone (GH) are peptide hormones that bind to the class 1 cytokine receptor superfamily, a highly conserved cell surface class of receptors. Both hormones control their own secretion via a negative autocrine loop in their own mammosomatotroph, lactotroph or somatotroph. In this regard, GH and PRL are regulated by similar signaling pathways involving cell growth and hormone secretion. Thus, GH and PRL dysregulation and pituitary neuroendocrine tumor (PitNET) development may have common pathogenic pathways. Based on cell linage, lactotroph and somatotroph PitNETs come from pituitary-specific POU-class homeodomain transcription factor (Pit-1). Mammosomatotroph and plurihormonal PitNETs are a unique subtype of PitNETs that arise from a single-cell population of Pit-1 lineage. In contrast, mixed somatotroph-lactotroph PitNETs are composed of two distinct cell populations: somatotrophs and lactotrophs. Morphologic features that distinguish indolent PitNETs from locally aggressive ones are still unidentified, and no single prognostic parameter can predict tumor aggressiveness or treatment response. In this review, we aim to explore the latest research on lactotroph and somatotroph PitNETs, the molecular mechanisms involved in PRL and GH axis regulation and the signaling pathways involved in their aggressiveness, particularly focused on mammosomatotroph and mixed subtypes. Finally, we summarize epidemiological, clinical, and radiological features of these exceptional tumors. We aim to shed light, from basic to clinical settings, on new perspectives and scientific gaps in this field.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Colmenar Viejo Street km 9, 28034 Madrid, Spain
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Colmenar Viejo Street km 9, 28034 Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology and Nutrition, Hospital Universitario La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Monforte de Lemos Avenue, 28029 Madrid, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Research Institute and Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER G747, Monforte de Lemos Avenue, 28029 Madrid, Spain
| | - Betina Biagetti
- Department of Endocrinology and Nutrition, Vall d’Hebron University Hospital, Reference Networks (ERN) and Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Avenue, 119, 08035 Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Avenida Can Domènech s/n, 08193 Bellaterra, Spain
| |
Collapse
|
7
|
de Castro Moreira AR, Trarbach E, Bueno CBF, Monteiro ALS, Grande IPP, Padula M, Maciel GAR, Glezer A. PRL-R Variants Are Not Only Associated With Prolactinomas But Also With Dopamine Agonist Resistance. J Clin Endocrinol Metab 2023; 108:e450-e457. [PMID: 36638053 DOI: 10.1210/clinem/dgad020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
CONTEXT Knockout prolactin receptor gene (PRL-R) mice are animal models for prolactinomas and PRL acts via autocrine/paracrine inhibiting lactotroph proliferation. Recently, variants of the PRL-R were identified in prolactinoma patients and their frequency was higher compared to individuals from the genomic database. OBJECTIVE We analyzed PRL-R variants frequency in an extensive cohort of prolactinoma patients and evaluated their association with clinical, laboratorial, and imaging characteristics and hormonal response to cabergoline. DESIGN Observational, retrospective, and cross-sectional study. SETTING This study took place at the Neuroendocrinology Unit of Clinics Hospital, Medical School of University of São Paulo, Brazil, a tertiary referral center. PATIENTS AND METHODS Study participants included adults with sporadic prolactinomas treated with cabergoline, where response to therapy was defined by prolactin normalization with up to 3 mg/week doses. DNA was extracted from blood samples and the PRL-R was analyzed by polymerase chain reaction techniques and automatic sequencing. The association of PRL-R variants with serum prolactin levels, maximal tumor diameter, tumor parasellar invasiveness, and response to cabergoline was analyzed. RESULTS We found 6 PRL-R variants: p.Ile100(76)Val, p.Ile170(146)Leu, p.Glu400(376)Gln/p.Asn516(492)Ile, p.Glu470Asp e p.Ala591Pro; the last 2 are newly described in prolactinomas' patients. The variants p.Glu400(376)Gln/p.Asn516(492)Ile and p.Ala591Pro were more frequent amongst patients compared to genomic databases, and the p.Asn516(492)Ile showed pathogenic potential using in silico analysis as previously described. PRL-R variants were associated with male sex (P = 0.015), higher serum PRL levels (P = 0.007), larger tumors (P = 0.001), and cabergoline resistance (P < 0.001). CONCLUSIONS The prolactin/prolactin receptor system seems to be related to prolactinoma tumorigenesis and cabergoline resistance. Additional studies are needed to better understand the PRL-R variants' role and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Andrea Ramos de Castro Moreira
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Ericka Trarbach
- Laboratório de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | | | - Anna Louise Stellfeld Monteiro
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Isabella Pacetti Pajaro Grande
- Laboratório de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Mario Padula
- Department of Radiology, Instituto de Radiologia-INRAD, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Arantes Rosa Maciel
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Andrea Glezer
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
- Laboratório de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
8
|
Dai LL, Cho SB, Li HF, A LS, Ji XP, Pan S, Bao ML, Bai L, Ba GN, Fu MH. Lomatogonium rotatum extract alleviates diabetes mellitus induced by a high-fat, high-sugar diet and streptozotocin in rats. World J Diabetes 2023; 14:846-861. [PMID: 37383587 PMCID: PMC10294064 DOI: 10.4239/wjd.v14.i6.846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Lomatogonium rotatum (LR) is traditionally used in Mongolian folk medicine as a hypoglycemic agent, but its evidence-based pharmacological effects and me-chanisms of action have not been fully elucidated.
AIM To emphasize the hypoglycemic action mechanism of LR in a type 2 diabetic rat model and examine potential biomarkers to obtain mechanistic understanding regarding serum metabolite modifications.
METHODS A high-fat, high-sugar diet and streptozotocin injection-induced type 2 diabetic rat model was established. The chemical composition of the LR was identified by high performance liquid chromatography. LR extract administrated as oral gavage at 0.5 g/kg, 2.5 g/kg, and 5 g/kg for 4 wk. Anti-diabetic effects of LR extract were evaluated based on histopathological examination as well as the measurement of blood glucose, insulin, glucagon-like peptide 1 (GLP-1), and lipid levels. Serum metabolites were analyzed using an untargeted metabolomics approach.
RESULTS According to a chemical analysis, swertiamarin, sweroside, hesperetin, coumarin, 1.7-dihydroxy-3,8-dimethoxyl xanthone, and 1-hydroxy-2,3,5 trimethoxanone are the principal active ingredients in LR. An anti-diabetic experiment revealed that the LR treatment significantly increased plasma insulin and GLP-1 levels while effectively lowering blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and oral glucose tolerance test compared to the model group. Furthermore, untargeted metabolomic analysis of serum samples detected 236 metabolites, among which 86 were differentially expressed between the model and the LR group. It was also found that LR considerably altered the levels of metabolites such as vitamin B6, mevalonate-5P, D-proline, L-lysine, and taurine, which are involved in the regulation of the vitamin B6 metabolic pathway, selenium amino acid metabolic pathway, pyrimidine metabolic pathway, and arginine and proline metabolic pathways.
CONCLUSION These findings indicated that LR may have a hypoglycemic impact and that its role may be related to changes in the serum metabolites and to facilitate the release of insulin and GLP-1, which lower blood glucose and lipid profiles.
Collapse
Affiliation(s)
- Li-Li Dai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Sung-Bo Cho
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Hui-Fang Li
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Li-Sha A
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Xiao-Ping Ji
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Sirigunqiqige Pan
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Lan Bao
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Laxinamujila Bai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Gen-Na Ba
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Hai Fu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
9
|
Begon E, Bernard V. [Prolactin and its receptor: From animal models to pituitary pathophysiology]. Biol Aujourdhui 2023; 216:105-110. [PMID: 36744975 DOI: 10.1051/jbio/2022019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 02/07/2023]
Abstract
Prolactin (PRL) is a polypeptide hormone that is mainly synthesized and secreted by lactotroph cells of the anterior pituitary gland. The actions of prolactin are mediated by its transmembrane receptor, PRLR. The principal role attributed to PRL is to stimulate the proliferation and differentiation of the mammary cells required for lactation, but studies of animal models have assigned more than 300 separate actions to this hormone in various species. Hyperprolactinaemia is the prototypical pathological state associated with this hormone. Indeed, hyperprolactinaemia is the most common cause of amenorrhoea due to hypogonadotropic anovulation and is one of the most prevalent endocrine causes of infertility in women. In recent years, the study of conditional or complete Prlr -/- mouse models had improved the understanding concerning the regulation of gonadotroph and lactotroph axes. It is now demonstrated that prolactin exerts autocrine or paracrine actions on lactotroph cells in vivo. One of the major advances was to better understand, using mouse models, the impact of hyperprolactinemia on gonadotroph axis. It is now accepted that hypogonadotropic hypogonadism in patients with hyperprolactinemia is mediated by a decrease of hypothalamic kisspeptin secretion. Gonadotroph axis can be restored by intravenous administration of kisspeptin. However, the mechanisms of lactotroph tumorigenesis in Prlr -/- animals remain incompletely understood and transposable to the human species, since the only patient with biallelic PRLR loss-of-function mutation leading to complete prolactin resistance that has been described so far did not have pituitary adenoma visible on MRI.
Collapse
Affiliation(s)
- Emmanuelle Begon
- Service de chirurgie gynécologique, gynécologie médicale et de médecine de la reproduction, Centre Aliénor d'Aquitaine, CHU et Université de Bordeaux, Place Amélie Raba-Léon, 33076 Bordeaux Cedex, France
| | - Valérie Bernard
- Service de chirurgie gynécologique, gynécologie médicale et de médecine de la reproduction, Centre Aliénor d'Aquitaine, CHU et Université de Bordeaux, Place Amélie Raba-Léon, 33076 Bordeaux Cedex, France
| |
Collapse
|
10
|
Ferraris J. Is prolactin receptor signaling a target in dopamine-resistant prolactinomas? Front Endocrinol (Lausanne) 2023; 13:1057749. [PMID: 36714572 PMCID: PMC9877409 DOI: 10.3389/fendo.2022.1057749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The hypothalamic neuroendocrine catecholamine dopamine regulates the lactotroph function, including prolactin (PRL) secretion, proliferation, and apoptosis. The treatment of PRL-secreting tumors, formerly known as prolactinomas, has relied mainly on this physiological characteristic, making dopamine agonists the first therapeutic alternative. Nevertheless, the group of patients that do not respond to this treatment has few therapeutical options. Prolactin is another physiological regulator of lactotroph function, acting as an autocrine/paracrine factor that controls PRL secretion and cellular turnover, inducing apoptosis and decreasing proliferation. Furthermore, the signaling pathways related to these effects, mainly JAK/STAT and PI3K/Akt, and MAPK, have been extensively studied in prolactinomas and other tumors as therapeutic targets. In the present work, the relationship between PRL pathophysiology and prolactinoma development is explored, aiming to comprehend the value of PRL and PRLR-associated pathways as exploratory fields alternative to dopamine-related approaches, which are worth physiological characteristics that might be impaired and can be potentially restored or upregulated to provide more options to the patients.
Collapse
Affiliation(s)
- Jimena Ferraris
- Department of Biophysics and Biochemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Zhao H, Gong S, Shi Y, Luo C, Qiu H, He J, Sun Y, Huang Y, Wang S, Miao Y, Wu W. The role of prolactin/vasoinhibins in cardiovascular diseases. Animal Model Exp Med 2022; 6:81-91. [PMID: 35923071 PMCID: PMC10158951 DOI: 10.1002/ame2.12264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Prolactin (PRL) is a polypeptide hormone that is mainly synthesized and secreted by the lactotroph cells of the pituitary. There are two main isoforms of PRL: 23-kDa PRL (named full-length PRL) and vasoinhibins (including 5.6-18 kDa fragments). Both act as circulating hormones and cytokines to stimulate or inhibit vascular formation at different stages and neovascularization, including endothelial cell proliferation and migration, protease production, and apoptosis. However, their effects on vascular function and cardiovascular diseases are different or even contrary. In addition to the structure, secretion regulation, and signal transduction of PRL/vasoinhibins, this review focuses on the pathological mechanism and clinical significance of PRL/vasoinhibins in cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China.,Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yongcong Shi
- Respiratory Medicine, Dongchuan District People's Hospital, Kunming, China
| | - Cijun Luo
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hongling Qiu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Sun
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuxia Huang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shang Wang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Ghoreshi ZAS, Akbari H, Sharif-Zak M, Arefinia N, Abbasi-Jorjandi M, Asadikaram G. Recent findings on hyperprolactinemia and its pathological implications: a literature review. J Investig Med 2022; 70:1443-1451. [PMID: 35768141 DOI: 10.1136/jim-2022-002351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
Abstract
The prolactin hormone (PRL) is often secreted by lactotrophic cells of the anterior pituitary and has been shown to play a role in various biological processes, including breast feeding and reproduction. The predominant form of this hormone is the 23 kDa form and acts through its receptor (PRLR) on the cell membrane. This receptor is a member of the superfamily of hematopoietic/cytokine receptors. PRL also has a 16 kDa subunit with anti-angiogenic, proapoptotic, and anti-inflammatory effects which is produced by the proteolytic breakdown of this hormone under oxidative stress. Although the common side effects of hyperprolactinemia are exerted on the reproductive system, new studies have shown that hyperprolactinemia has a wide variety of effects, including playing a role in the development of autoimmune diseases and increasing the risk of cardiovascular disease, peripartum cardiomyopathy, and diabetes among others. The range of PRL functions is increasing with the discovery of multiple sites of PRL secretion as well as PRLR expression in various tissues. This review summarizes current knowledge of the biology of PRL and its receptor, as well as the role of PRL in human pathophysiology.
Collapse
Affiliation(s)
- Zohreh Al-Sadat Ghoreshi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Institute of Basic and Clinical Physiology Sciences, Kerman, The Islamic Republic of Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Institute of Basic and Clinical Physiology Sciences, Kerman, The Islamic Republic of Iran.,Department of Clinical Biochemistry, Afzalipur Faculty of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| | - Mohsen Sharif-Zak
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Institute of Basic and Clinical Physiology Sciences, Kerman, The Islamic Republic of Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| | - Nasir Arefinia
- Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| | - Mojtaba Abbasi-Jorjandi
- Department of Clinical Biochemistry, Afzalipur Faculty of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, Afzalipur Faculty of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran .,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| |
Collapse
|
13
|
Biagetti B, Simò R. Molecular Pathways in Prolactinomas: Translational and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms222011247. [PMID: 34681905 PMCID: PMC8538771 DOI: 10.3390/ijms222011247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Prolactinoma has the highest incidence rate among patients with functional pituitary tumours. Although mostly benign, there is a subgroup that can be aggressive. Some clinical, radiological and pathology features have been associated with a poor prognostic. Therefore, it can be considered as a group of heterogeneous tumours. The aim of this paper is to give an overview of the molecular pathways involved in the behaviour of prolactinoma in order to improve our approach and gain deeper insight into the better understanding of tumour development and its management. This is essential for identifying patients harbouring aggressive prolactinoma and to establish personalised therapeutics options.
Collapse
|
14
|
LaPierre MP, Godbersen S, Torres Esteban M, Schad AN, Treier M, Ghoshdastider U, Stoffel M. MicroRNA-7a2 Regulates Prolactin in Developing Lactotrophs and Prolactinoma Cells. Endocrinology 2021; 162:6009069. [PMID: 33248443 PMCID: PMC7774778 DOI: 10.1210/endocr/bqaa220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Prolactin production is controlled by a complex and temporally dynamic network of factors. Despite this tightly coordinated system, pathological hyperprolactinemia is a common endocrine disorder that is often not understood, thereby highlighting the need to expand our molecular understanding of lactotroph cell regulation. MicroRNA-7 (miR-7) is the most highly expressed miRNA family in the pituitary gland and the loss of the miR-7 family member, miR-7a2, is sufficient to reduce prolactin gene expression in mice. Here, we used conditional loss-of-function and gain-of-function mouse models to characterize the function of miR-7a2 in lactotroph cells. We found that pituitary miR-7a2 expression undergoes developmental and sex hormone-dependent regulation. Unexpectedly, the loss of mir-7a2 induces a premature increase in prolactin expression and lactotroph abundance during embryonic development, followed by a gradual loss of prolactin into adulthood. On the other hand, lactotroph development is delayed in mice overexpressing miR-7a2. This regulation of lactotroph function by miR-7a2 involves complementary mechanisms in multiple cell populations. In mouse pituitary and rat prolactinoma cells, miR-7a2 represses its target Raf1, which promotes prolactin gene expression. These findings shed light on the complex regulation of prolactin production and may have implications for the physiological and pathological mechanisms underlying hyperprolactinemia.
Collapse
Affiliation(s)
- Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Anaïs Nura Schad
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Mathias Treier
- Max Delbrück Zentrum für molekulare Medizin (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Germany
| | | | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Medical Faculty, University of Zürich, Zürich, Switzerland
- Correspondence: Markus Stoffel, Swiss Federal Institute of Technology, ETH Zürich, Institute for Molecular Health Science, HPL H36, Otto-Stern Weg 7, CH 8093 Zürich, Switzerland.
| |
Collapse
|
15
|
Prolactin: A hormone with diverse functions from mammary gland development to cancer metastasis. Semin Cell Dev Biol 2020; 114:159-170. [PMID: 33109441 DOI: 10.1016/j.semcdb.2020.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 01/14/2023]
Abstract
Prolactin has a rich mechanistic set of actions and signaling in order to elicit developmental effects in mammals. Historically, prolactin has been appreciated as an endocrine peptide hormone that is responsible for final, functional mammary gland development and lactation. Multiple signaling pathways impacted upon by the microenvironment contribute to cell function and differentiation. Endocrine, autocrine and paracrine signaling are now apparent in not only mammary development, but also in cancer, and involve multiple cell types including those of the immune system. Multiple ligands agonists are capable of binding to the prolactin receptor, potentially expanding receptor function. Prolactin has an important role not only in tumorigenesis of the breast, but also in a number of hormonally responsive cancers such as prostate, ovarian and endometrial cancer, as well as pancreatic and lung cancer. Although pituitary and extra-pituitary sources of prolactin such as the epithelium are important, stromal sourced prolactin is now also being recognized as an important factor in tumor progression, all of which potentially signal to multiple cell types in the tumor microenvironment. While prolactin has important roles in milk production including calcium and bone homeostasis, in the disease state it can also affect bone homeostasis. Prolactin also impacts metastatic cancer of the breast to modulate the bone microenvironment and promote bone damage. Prolactin has a fascinating contribution in both physiologic and pathologic settings of mammals.
Collapse
|
16
|
Abstract
The principal role of prolactin in mammals is the regulation of lactation. Prolactin is a hormone that is mainly synthesized and secreted by lactotroph cells in the anterior pituitary gland. Prolactin signalling occurs via a unique transmembrane prolactin receptor (PRL-R). The structure of the PRL-R has now been elucidated and is similar to that of many biologically fundamental receptors of the class 1 haematopoietic cytokine receptor family such as the growth hormone receptor. The PRL-R is expressed in a wide array of tissues, and a growing number of biological processes continue to be attributed to prolactin. In this Review, we focus on the newly discovered roles of prolactin in human health and disease, particularly its involvement in metabolic homeostasis including body weight control, adipose tissue, skin and hair follicles, pancreas, bone, the adrenal response to stress, the control of lactotroph cell homeostasis and maternal behaviour. New data concerning the pathological states of hypoprolactinaemia and hyperprolactinaemia will also be presented and discussed.
Collapse
Affiliation(s)
- Valérie Bernard
- Inserm U1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Hôpital Saint Antoine, Service d'Endocrinologie et des Maladies de la Reproduction, Paris, France
| | - Jacques Young
- Inserm U1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Paris, France
| | - Nadine Binart
- Inserm U1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
17
|
Gorvin CM, Newey PJ, Rogers A, Stokes V, Neville MJ, Lines KE, Ntali G, Lees P, Morrison PJ, Singhellakis PN, Malandrinou FC, Karavitaki N, Grossman AB, Karpe F, Thakker RV. Association of prolactin receptor (PRLR) variants with prolactinomas. Hum Mol Genet 2019; 28:1023-1037. [PMID: 30445560 PMCID: PMC6400049 DOI: 10.1093/hmg/ddy396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023] Open
Abstract
Prolactinomas are the most frequent type of pituitary tumors, which represent 10-20% of all intracranial neoplasms in humans. Prolactinomas develop in mice lacking the prolactin receptor (PRLR), which is a member of the cytokine receptor superfamily that signals via Janus kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) or phosphoinositide 3-kinase-Akt (PI3K-Akt) pathways to mediate changes in transcription, differentiation and proliferation. To elucidate the role of the PRLR gene in human prolactinomas, we determined the PRLR sequence in 50 DNA samples (35 leucocytes, 15 tumors) from 46 prolactinoma patients (59% males, 41% females). This identified six germline PRLR variants, which comprised four rare variants (Gly57Ser, Glu376Gln, Arg453Trp and Asn492Ile) and two low-frequency variants (Ile76Val, Ile146Leu), but no somatic variants. The rare variants, Glu376Gln and Asn492Ile, which were in complete linkage disequilibrium, and are located in the PRLR intracellular domain, occurred with significantly higher frequencies (P < 0.0001) in prolactinoma patients than in 60 706 individuals of the Exome Aggregation Consortium cohort and 7045 individuals of the Oxford Biobank. In vitro analysis of the PRLR variants demonstrated that the Asn492Ile variant, but not Glu376Gln, when compared to wild-type (WT) PRLR, increased prolactin-induced pAkt signaling (>1.3-fold, P < 0.02) and proliferation (1.4-fold, P < 0.02), but did not affect pSTAT5 signaling. Treatment of cells with an Akt1/2 inhibitor or everolimus, which acts on the Akt pathway, reduced Asn492Ile signaling and proliferation to WT levels. Thus, our results identify an association between a gain-of-function PRLR variant and prolactinomas and reveal a new etiology and potential therapeutic approach for these neoplasms.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Paul J Newey
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Angela Rogers
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Victoria Stokes
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Matt J Neville
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Metabolic Research Group, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Georgia Ntali
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Lees
- Department of Neurosurgery, Southampton General Hospital, Southampton, Hampshire
| | - Patrick J Morrison
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Lisburn Road, Belfast, UK
| | - Panagiotis N Singhellakis
- Department of Endocrinology, Metabolism and Diabetes Mellitus, St Savvas Cancer Hospital, Athens, Greece
| | - Fotini Ch Malandrinou
- Department of Endocrinology, Metabolism and Diabetes Mellitus, St Savvas Cancer Hospital, Athens, Greece
| | - Niki Karavitaki
- Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Ashley B Grossman
- Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Metabolic Research Group, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
18
|
Binart N, Young J, Chanson P. Prolactin Assays and Regulation of Secretion: Animal and Human Data. PROLACTIN DISORDERS 2019. [DOI: 10.1007/978-3-030-11836-5_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
de Dios N, Orrillo S, Irizarri M, Theas MS, Boutillon F, Candolfi M, Seilicovich A, Goffin V, Pisera D, Ferraris J. JAK2/STAT5 Pathway Mediates Prolactin-Induced Apoptosis of Lactotropes. Neuroendocrinology 2019; 108:84-97. [PMID: 30376668 DOI: 10.1159/000494975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023]
Abstract
Prolactinomas are increasingly viewed as a "problem of signal transduction." Consequently, the identification of factors and signaling pathways that control lactotrope cell turnover is needed in order to encourage new therapeutic developments. We have previously shown that prolactin (PRL) acts as a proapoptotic and antiproliferative factor on lactotropes, maintaining anterior pituitary cell homeostasis, which contrasts with the classical antiapoptotic and/or proliferative actions exerted by PRL in most other target tissues. We aimed to investigate the PRLR-triggered signaling pathways mediating these nonclassical effects of PRL in the pituitary. Our results suggest that (i) the PRLR/Jak2/STAT5 pathway is constitutively active in GH3 cells and contributes to PRL-induced apoptosis by increasing the Bax/Bcl-2 ratio, (ii) PRL inhibits ERK1/2 and Akt phosphorylation, thereby contributing to its proapoptotic effect, and (iii) the PI3K/Akt pathway participates in the PRL-mediated control of lactotrope proliferation. We hypothesize that the alteration of PRL actions in lactotrope homeostasis due to the dysregulation of any of the mechanisms of actions described above may contribute to the pathogenesis of prolactinomas.
Collapse
Affiliation(s)
- Nataly de Dios
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago Orrillo
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Irizarri
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Susana Theas
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florence Boutillon
- Inserm Unit 1151, Institut Necker-Enfants Malades (INEM), Université Paris Descartes, Paris, France
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker-Enfants Malades (INEM), Université Paris Descartes, Paris, France
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires,
| |
Collapse
|