1
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
2
|
Castillo P, Kuda O, Kopecky J, Pomar CA, Palou A, Palou M, Picó C. Stachydrine, N-acetylornithine and trimethylamine N-oxide levels as candidate milk biomarkers of maternal consumption of an obesogenic diet during lactation. Biofactors 2023; 49:1022-1037. [PMID: 37227188 DOI: 10.1002/biof.1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
We aimed to evaluate whether improving maternal diet during lactation in diet-induced obese rats reverts the impact of western diet (WD) consumption on the metabolome of milk and offspring plasma, as well as to identify potential biomarkers of these conditions. Three groups of dams were followed: control-dams (CON-dams), fed with standard diet (SD); WD-dams, fed with WD prior and during gestation and lactation; and reversion-dams (REV-dams), fed as WD-dams but moved to SD during lactation. Metabolomic analysis was performed in milk at lactation days 5, 10, and 15, and in plasma from their male and female offspring at postnatal day 15. Milk of WD-dams presented, throughout lactation and compared to CON-dams, altered profiles of amino acids and of the carnitine pool, accompanied by changes in other polar metabolites, being stachydrine, N-acetylornithine, and trimethylamine N-oxide the most relevant and discriminatory metabolites between groups. The plasma metabolome profile was also altered in the offspring of WD-dams in a sex-dependent manner, and stachydrine, ergothioneine and the acylcarnitine C12:1 appeared as the top three most discriminating metabolites in both sexes. Metabolomic changes were largely normalized to control levels both in the milk of REV-dams and in the plasma of their offspring. We have identified a set of polar metabolites in maternal milk and in the plasma of the offspring whose alterations may indicate maternal intake of an unbalanced diet during gestation and lactation. Levels of these metabolites may also reflect the beneficial effects of implementing a healthier diet during lactation.
Collapse
Affiliation(s)
- Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
3
|
Cetin AK, Buyukdere Y, Gulec A, Akyol A. Taurine supplementation reduces adiposity and hepatic lipid metabolic activity in adult offspring following maternal cafeteria diet. Nutr Res 2023; 117:15-29. [PMID: 37423013 DOI: 10.1016/j.nutres.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Maternal taurine supplementation has been shown to exert protective effects following a maternal obesogenic diet on offspring growth and metabolism. However, the long-term effects of maternal cafeteria diet on adiposity, metabolic profile, and hepatic gene expression patterns following supplementation of taurine in adult offspring remains unclear. In this study, we hypothesized that exposure to maternal taurine supplementation would modulate the effects of maternal cafeteria diet by reducing adiposity and hepatic gene expression patterns involved in lipid metabolism in adult offspring. Female Wistar rats were fed a control diet, control diet supplemented with 1.5% taurine in drinking water, cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks, all animals were mated and maintained on the same diets during pregnancy and lactation. After weaning, all offspring were fed with control chow diet until the age of 20 weeks. Despite similar body weights, CAFT offspring had significantly lower fat deposition and body fat when compared with CAF offspring. Microarray analysis revealed that genes (Akr1c3, Cyp7a1, Hsd17b6, Cd36, Acsm3, and Aldh1b1) related to steroid hormone biosynthesis, cholesterol metabolism, peroxisome proliferator-activated receptor signaling pathway, butanoate metabolism, and fatty acid degradation were down-regulated in CAFT offspring. The current study shows that exposure to maternal cafeteria diet promoted adiposity and taurine supplementation reduced lipid deposition and in both male and female offspring and led to alterations in hepatic gene expression patterns, reducing the detrimental effects of maternal cafeteria diet.
Collapse
Affiliation(s)
- Arzu Kabasakal Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Yucel Buyukdere
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Atila Gulec
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Asli Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey.
| |
Collapse
|
4
|
Abellan-Borja A, Rodriguez-Sanchez IP, Carrera-Treviño R, Villanueva-Segura OK, Zapata-Morin PA, Martinez-de-Villareal LE, Barboza-Aranda LJ, Gomez-Govea MA, Martinez-Fierro ML, Delgado-Enciso I, Ruiz-Ayma G, Gonzalez-Rojas JI, Guzman-Velasco A. Free amino acid and acylcarnitine values in Ursus americanus Pallas 1780 (black bear) from Northeastern Mexico. PLoS One 2023; 18:e0272979. [PMID: 36735654 PMCID: PMC9897576 DOI: 10.1371/journal.pone.0272979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Ursus americanus Pallas 1780 is the largest carnivore and the only ursid in Mexico. It is considered an endangered species in the country because its distribution and population have been reduced by up to 80% because of habitat loss or furtive hunting. These problems can lead to a diet change, which could result in metabolic disorders, such as fatty acid β-oxidation defects or organic acid metabolism disorders. In our study, a free amino acid and acylcarnitine profile was characterized. METHODS Peripheral blood samples were drawn from nine free-ranging black bears in a period of five months, from June to October of 2019 in Northeastern Mexico, and 12 amino acids and 30 acylcarnitines were determined and quantified. Age differences were observed in the samples through ANOVA and post-hoc Tukey test. RESULTS Only three metabolites showed a significant difference with age: alanine (Ala) [cubs vs juvenile], free-carnitine (C0) [juvenile vs cubs] and acetylcarnitine (C2) [cubs vs adults and juvenile vs cubs]. CONCLUSION Metabolites with variability due to age were identified, making them potential biomarkers to monitor metabolic status as early diagnosis in endangered species. This is the first study of black bear amino acid and acylcarnitine profiles, and the values found could be used as reference for free amino acid and acylcarnitine concentrations in further studies of the species.
Collapse
Affiliation(s)
- Andres Abellan-Borja
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Iram P. Rodriguez-Sanchez
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Rogelio Carrera-Treviño
- Facultad de Medicina Veterinaria y Zootecnia, Laboratorio de Vida Silvestre, Universidad Autonoma de Nuevo Leon, General Escobedo, Mexico
| | - Olga Karina Villanueva-Segura
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Patricio Adrian Zapata-Morin
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | | | - Luis Javier Barboza-Aranda
- Facultad de Medicina Veterinaria y Zootecnia, Laboratorio de Vida Silvestre, Universidad Autonoma de Nuevo Leon, General Escobedo, Mexico
| | - Mayra A. Gomez-Govea
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | | | - Ivan Delgado-Enciso
- Universidad de Colima, Colima, Mexico
- Secretaria de Salud de Colima, Instituto Estatal de Cancer, Colima, Mexico
| | - Gabriel Ruiz-Ayma
- Facultad de Ciencias Biologicas, Laboratorio de Conservacion de Vida Silvestre y Desarrollo Sustentable, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Jose Ignacio Gonzalez-Rojas
- Facultad de Ciencias Biologicas, Laboratorio de Conservacion de Vida Silvestre y Desarrollo Sustentable, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
- * E-mail: (AGV); (JIGR)
| | - Antonio Guzman-Velasco
- Facultad de Ciencias Biologicas, Laboratorio de Conservacion de Vida Silvestre y Desarrollo Sustentable, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
- * E-mail: (AGV); (JIGR)
| |
Collapse
|
5
|
Kabasakal Çetin A, Alkan Tuğ T, Güleç A, Akyol A. Effects of maternal taurine supplementation on maternal dietary intake, plasma metabolites and fetal growth and development in cafeteria diet fed rats. PeerJ 2021; 9:e11547. [PMID: 34141487 PMCID: PMC8180190 DOI: 10.7717/peerj.11547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Maternal obesity may disrupt the developmental process of the fetus during gestation in rats. Recent evidence suggests that taurine can exert protective role against detrimental influence of obesogenic diets. This study aimed to examine the effect of maternal cafeteria diet and/or taurine supplementation on maternal dietary intake, plasma metabolites, fetal growth and development. METHODS Female Wistar rats were fed a control diet (CON), CON supplemented with 1.5% taurine in drinking water (CONT), cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks all animals were mated and maintained on the same diets during pregnancy and lactation. RESULTS Dietary intakes were significantly different between the groups. Both CAF and CAFT fed dams consumed less water in comparison to CON and CONT dams. Taurine supplementation only increased plasma taurine concentrations in CONT group. Maternal plasma adiponectin concentrations increased in CAF and CAFT fed dams compared to CON and CONT fed dams and there was no effect of taurine. Hyperleptinemia was observed in CAF fed dams but not in CAFT fed dams. Malondialdehyde was significantly increased only in CAF fed dams. Litter size, sex ratio and birth weight were similar between the groups. There was an increase in neonatal mortality in CONT group. DISCUSSION This study showed that maternal taurine supplementation exerted modest protective effects on cafeteria diet induced maternal obesity. The increased neonatal mortality in CONT neonates indicates possible detrimental effects of taurine supplementation in the setting of normal pregnancy. Therefore, future studies should investigate the optimal dose of taurine supplementation and long term potential effects on the offspring.
Collapse
Affiliation(s)
- Arzu Kabasakal Çetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Tuǧba Alkan Tuğ
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Atila Güleç
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Aslı Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
6
|
Lagerwaard B, van der Hoek MD, Hoeks J, Grevendonk L, Nieuwenhuizen AG, Keijer J, de Boer VCJ. Propionate hampers differentiation and modifies histone propionylation and acetylation in skeletal muscle cells. Mech Ageing Dev 2021; 196:111495. [PMID: 33932454 DOI: 10.1016/j.mad.2021.111495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022]
Abstract
Protein acylation via metabolic acyl-CoA intermediates provides a link between cellular metabolism and protein functionality. A process in which acetyl-CoA and acetylation are fine-tuned is during myogenic differentiation. However, the roles of other protein acylations remain unknown. Protein propionylation could be functionally relevant because propionyl-CoA can be derived from the catabolism of amino acids and fatty acids and was shown to decrease during muscle differentiation. We aimed to explore the potential role of protein propionylation in muscle differentiation, by mimicking a pathophysiological situation with high extracellular propionate which increases propionyl-CoA and protein propionylation, rendering it a model to study increased protein propionylation. Exposure to extracellular propionate, but not acetate, impaired myogenic differentiation in C2C12 cells and propionate exposure impaired myogenic differentiation in primary human muscle cells. Impaired differentiation was accompanied by an increase in histone propionylation as well as histone acetylation. Furthermore, chromatin immunoprecipitation showed increased histone propionylation at specific regulatory myogenic differentiation sites of the Myod gene. Intramuscular propionylcarnitine levels are higher in old compared to young males and females, possibly indicating increased propionyl-CoA levels with age. The findings suggest a role for propionylation and propionyl-CoA in regulation of muscle cell differentiation and ageing, possibly via alterations in histone acylation.
Collapse
Affiliation(s)
- Bart Lagerwaard
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands; TI Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
| | - Marjanne D van der Hoek
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands; Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, the Netherlands; MCL Academy, Medical Centre Leeuwarden, Leeuwarden, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Lotte Grevendonk
- TI Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, the Netherlands; Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Arie G Nieuwenhuizen
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Widmer M, Thommen EB, Becker C, Beck K, Vincent AM, Perrig S, Keller A, Bernasconi L, Neyer P, Marsch S, Pargger H, Sutter R, Tisljar K, Hunziker S. Association of acyl carnitines and mortality in out-of-hospital-cardiac-arrest patients: Results of a prospective observational study. J Crit Care 2020; 58:20-26. [PMID: 32279017 DOI: 10.1016/j.jcrc.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Out-of-hospital cardiac arrest (OHCA) is a leading cause of mortality, yet the prediction of its outcome remains challenging. Serum Acyl Carnitines (ACs), a biomarker of beta-oxidation, have been associated with cardiovascular events. We evaluated the association of different AC species with mortality and neurological outcome in a cohort of OHCA patients. MATERIAL AND METHODS We consecutively included OHCA patients in this prospective observational study upon admission to the intensive care unit. We studied the association of thirty-nine different ACs measured at admission and 30-day mortality (primary endpoint), as well as neurological outcome at hospital discharge (secondary endpoint) using the Cerebral Performance Category scale. Multivariate models were adjusted for age, gender, comorbidities and shock markers. RESULTS Of 281 included patients, 137 (48.8%) died within 30 days and of the 144 survivors (51.2%), 15 (10.4%) had poor neurological outcome. While several ACs were associated with mortality, AC C2 had the highest prognostic value for mortality (fully-adjusted odds ratio 4.85 (95%CI 1.8 to 13.06, p < .01), area under curve (AUC) 0.65) and neurological outcome (fully-adjusted odds ratio 3.96 (95%CI 1.47 to 10.66, p < .01), AUC 0.63). CONCLUSIONS ACs are interesting surrogate biomarkers that are associated with mortality and poor neurological outcome in patients after OHCA and may help to improve the understanding of pathophysiological mechanisms and risk stratification.
Collapse
Affiliation(s)
- Madlaina Widmer
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Emanuel B Thommen
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Christoph Becker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland; Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Emergency Department, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Katharina Beck
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Alessia M Vincent
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Sebastian Perrig
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Annalena Keller
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Stephan Marsch
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Hans Pargger
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Raoul Sutter
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Kai Tisljar
- Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Sabina Hunziker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland; Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
| |
Collapse
|
8
|
Pomar CA, Castro H, Picó C, Palou A, Sánchez J. Maternal Overfeeding during Lactation Impairs the Metabolic Response to Fed/Fasting Changing Conditions in the Postweaning Offspring. Mol Nutr Food Res 2019; 63:e1900504. [PMID: 31419033 DOI: 10.1002/mnfr.201900504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Indexed: 01/01/2023]
Abstract
SCOPE The metabolic response to fed/fasting changing conditions at early age in rats with different predisposition to obesity-related alterations due to maternal conditions during the perinatal period is studied. METHODS AND RESULTS Offspring of dams made obese by a cafeteria diet and moved to a normal-fat diet 1 month before gestation (O-PCaf, with an apparently normal phenotype in adulthood), and offspring of cafeteria diet-fed dams during lactation (O-CAF, with a thin-outside-fat inside phenotype), together with the offspring of control dams (O-C), are studied at early age. Fasting is associated with downregulation of lipogenesis-related genes in liver and rpWAT, and upregulation of genes related to lipolysis and fatty acid uptake in rpWAT in O-C animals. The response to fed/fasting conditions is impaired in O-CAF, but not in O-PCaf animals. The fasting-induced increase in the expression of Prkaa1 in liver and rpWAT, and the corresponding increase of hepatic AMPKα1 protein levels of O-C animals are attenuated in O-CAF rats, while no alterations are found in O-PCaf animals versus controls. CONCLUSION Maternal intake of a cafeteria diet during lactation causes early alterations in the offspring, impairing their metabolic flexibility in response to fed/fasting changing conditions, which may contribute to hindering energy homeostasis maintenance.
Collapse
Affiliation(s)
- Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, 07020, Palma, Spain.,CIBER Fisiopatología de la Obesidady Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Heriberto Castro
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, 64460, Nuevo León, México
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, 07020, Palma, Spain.,CIBER Fisiopatología de la Obesidady Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, 07020, Palma, Spain.,CIBER Fisiopatología de la Obesidady Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, 07020, Palma, Spain.,CIBER Fisiopatología de la Obesidady Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
9
|
Buresova J, Janovska P, Kuda O, Krizova J, der Stelt IRV, Keijer J, Hansikova H, Rossmeisl M, Kopecky J. Postnatal induction of muscle fatty acid oxidation in mice differing in propensity to obesity: a role of pyruvate dehydrogenase. Int J Obes (Lond) 2018; 44:235-244. [PMID: 30538280 DOI: 10.1038/s41366-018-0281-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND/OBJECTIVE Adaptation to the extrauterine environment depends on a switch from glycolysis to catabolism of fatty acids (FA) provided as milk lipids. We sought to learn whether the postnatal induction of muscle FA oxidation in mice could reflect propensity to obesity and to characterize the mechanisms controlling this induction. METHODS Experiments were conducted using obesity-resistant A/J and obesity-prone C57BL/6J (B6) mice maintained at 30 °C, from 5 to 28 days after birth. At day 10, both A/J and B6 mice with genetic ablation (KO) of α2 subunit of AMP-activated protein kinase (AMPK) were also used. In skeletal muscle, expression of selected genes was determined using quantitative real-time PCR, and AMPK subunits content was evaluated using Western blotting. Activities of both AMPK and pyruvate dehydrogenase (PDH), as well as acylcarnitine levels in the muscle were measured. RESULTS Acylcarnitine levels and gene expression indicated transient increase in FA oxidation during the first 2 weeks after birth, with a stronger increase in A/J mice. These data correlated with (i) the surge in plasma leptin levels, which peaked at day 10 and was higher in A/J mice, and (ii) relatively low activity of PDH linked with up-regulation of PDH kinase 4 gene (Pdk4) expression in the 10-day-old A/J mice. In contrast with the Pdk4 expression, transient up-regulation of uncoupling protein 3 gene was observed in B6 but not A/J mice. AMPK activity changed during the development, without major differences between A/J and B6 mice. Expression of neither Pdk4 nor other muscle genes was affected by AMPK-KO. CONCLUSIONS Our results indicate a relatively strong postnatal induction of FA oxidation in skeletal muscle of the obesity-resistant A/J mice. This induction is transient and probably results from suppression of PDH activity, linked with a postnatal surge in plasma leptin levels, independent of AMPK.
Collapse
Affiliation(s)
- Jana Buresova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Krizova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|