1
|
Yang J, Wang Z, Zhou Y, Jiang S, Qin X, Xu Z, Wang Y, Zuo M, Meng Z, Chen S, Wang Q, Wang J, Sun K. Manic Fringe promotes endothelial-to-mesenchymal transition mediated by the Notch signalling pathway during heart valve development. J Mol Med (Berl) 2025; 103:51-71. [PMID: 39528804 PMCID: PMC11739230 DOI: 10.1007/s00109-024-02492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
A fundamental event in the formation of heart valves involves the transformation of endocardial cells within the outflow tract (OFT) and atrioventricular canal (AVC) cushions through a process known as endothelial-to-mesenchymal transition (EndMT). Aberrant EndMT is a primary cause of congenital valvular malformations. Manic Fringe (MFNG) has been previously associated with cardiovascular development, although its role in heart valve development remains underexplored. In this study, we seek to enhance our understanding of MFNG's involvement in valve formation and its association with EndMT. Staining results of histological section revealed the expression of MFNG in the AVC and OFT from embryonic day 9.5 to 10.5 (E9.5-E10.5), when EndMT takes place. Cellular data demonstrated that MFNG exerts a positive regulatory influence on the EndMT process, promoting endothelial cell (EC) migration by enhancing the activity of the Notch signalling pathway. MFNG knockdown mediated by antisense morpholino oligonucleotides (MO) injection caused abnormal development of the heart and valves in zebrafish. Furthermore, through whole-exome sequencing (WES), we identified a heterozygous MFNG mutation in patients diagnosed with tetralogy of Fallot-pulmonary valve stenosis (TOF-PS). Cellular and molecular assays confirmed that this deleterious mutation reduced MFNG expression and hindered the EndMT process. In summary, our study verifies that MFNG plays a role in promoting EndMT mediated by the Notch signalling pathway during the heart and valve development. The MFNG deleterious variant induces MFNG loss of function, potentially elucidating the underlying molecular mechanisms of MFNG's involvement in the pathogenesis of congenital heart valve defects. These observations contribute to our current genetic understanding of congenital heart valve disease and may provide a potential target for prenatal diagnosis and treatment. KEY MESSAGES: Our examination revealed, for the first time, that MFNG exhibited high expression levels during EndMT of heart valve development in mice. Our findings provide compelling evidence that MFNG plays a role in promoting EndMT mediated by the Notch signalling pathway. Our results identified, for the first time, a deleterious MFNG p. T77M variant that inhibited the EndMT process by downregulating the activity of the Notch signalling pathway, thereby preventing the normal valve formation. MFNG may serve as an early diagnostic marker and an effective therapeutic target for the clinical treatment of congenital heart valve defects.
Collapse
Affiliation(s)
- Junjie Yang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Wang
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhou
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Jiang
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiji Qin
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhikang Xu
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mengying Zuo
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhuo Meng
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Wang
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
3
|
Liu J, Li W, Jin X, Lin F, Han J, Zhang Y. Optimal tagging strategies for illuminating expression profiles of genes with different abundance in zebrafish. Commun Biol 2023; 6:1300. [PMID: 38129658 PMCID: PMC10739737 DOI: 10.1038/s42003-023-05686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
CRISPR-mediated knock-in (KI) technology opens a new era of fluorescent-protein labeling in zebrafish, a preferred model organism for in vivo imaging. We described here an optimized zebrafish gene-tagging strategy, which enables easy and high-efficiency KI, ensures high odds of obtaining seamless KI germlines and is suitable for wide applications. Plasmid donors for 3'-labeling were optimized by shortening the microhomologous arms and by reducing the number and reversing the sequence of the consensus Cas9/sgRNA binding sites. To allow for scar-less KI across the genome, linearized dsDNA donors with 5'-chemical modifications were generated and successfully incorporated into our method. To refine the germline screen workflow and expedite the screen process, we combined fluorescence enrichment and caudal-fin junction-PCR. Furthermore, to trace proteins expressed at a low abundance, we developed a fluorescent signal amplifier using the transcriptional activation strategy. Together, our strategies enable efficient gene-tagging and sensitive expression detection for almost every gene in zebrafish.
Collapse
Affiliation(s)
- Jiannan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Wenyuan Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xuepu Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Fanjia Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Laboratory Animal Center, Xiamen University, 361102, Xiamen, Fujian, China.
- Research Unit of Cellular Stress of CAMS, Cancer Research Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
4
|
Gui Y, Zhang Y, Zhang Q, Chen X, Wang F, Wu F, Gui Y, Li Q. The functional verification and analysis of Fugu promoter of cardiac gene tnni1a in zebrafish. Cells Dev 2022; 171:203801. [PMID: 35787465 DOI: 10.1016/j.cdev.2022.203801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023]
Abstract
Troponin I type 1b (Tnni1b) is thought to be a novel isoform that is expressed only in the zebrafish heart. Knocking down of tnni1b can lead to cardiac defects in zebrafish. Although both the zebrafish tnni1b and human troponin I1 (TNNI1) genes are thought to be closely associated with fatal cardiac development, the regulatory molecular mechanisms of these genes are poorly understood. Analyzing the functionally conserved sequence, especially in the noncoding regulatory region involved in gene expression, clarified these mechanisms. In this study, we isolated a 3 kb fragment upstream of Fugu tnni1a that can regulate green fluorescence protein (GFP) expression in a heart-specific manner, similar to the pattern of zebrafish homologue expression. Three evolutionarily conserved regions (ECRs) in the 5'-flanking sequence of Fugu tnni1a were identified by sequence alignment. Deletion analysis led to the identification of ECR2 as a core sequence that affects the heart-specific expression function of the Fugu tnni1a promoter. Interestingly, both the Fugu tnni1a promoter and ECR2 sequence were functionally conserved in zebrafish, although they shared no sequence similarity. Together, the findings of our study provided further evidence for the important role of tnni1a homologous in cardiac development and demonstrated that two functionally conserved sequences in the zebrafish and Fugu genomes may be ECRs, despite their lack of similarity.
Collapse
Affiliation(s)
- Yiting Gui
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Fang Wu
- Department of Neonatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Yonghao Gui
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| |
Collapse
|
5
|
Derrick CJ, Pollitt EJG, Sanchez Sevilla Uruchurtu A, Hussein F, Grierson AJ, Noël ES. Lamb1a regulates atrial growth by limiting second heart field addition during zebrafish heart development. Development 2021; 148:272294. [PMID: 34568948 DOI: 10.1242/dev.199691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022]
Abstract
During early vertebrate heart development, the heart transitions from a linear tube to a complex asymmetric structure, a morphogenetic process that occurs simultaneously with growth of the heart. Cardiac growth during early heart morphogenesis is driven by deployment of cells from the second heart field (SHF) into both poles of the heart. Laminin is a core component of the extracellular matrix and, although mutations in laminin subunits are linked with cardiac abnormalities, no role for laminin has been identified in early vertebrate heart morphogenesis. We identified tissue-specific expression of laminin genes in the developing zebrafish heart, supporting a role for laminins in heart morphogenesis. Analysis of heart development in lamb1a zebrafish mutant embryos reveals mild morphogenetic defects and progressive cardiomegaly, and that Lamb1a functions to limit heart size during cardiac development by restricting SHF addition. lamb1a mutants exhibit hallmarks of altered haemodynamics, and blocking cardiac contractility in lamb1a mutants rescues heart size and atrial SHF addition. Together, these results suggest that laminin mediates interactions between SHF deployment and cardiac biomechanics during heart morphogenesis and growth in the developing embryo.
Collapse
Affiliation(s)
| | - Eric J G Pollitt
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Farah Hussein
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
6
|
Cahill T, da Silveira WA, Renaud L, Williamson T, Wang H, Chung D, Overton I, Chan SSL, Hardiman G. Induced Torpor as a Countermeasure for Low Dose Radiation Exposure in a Zebrafish Model. Cells 2021; 10:906. [PMID: 33920039 PMCID: PMC8071006 DOI: 10.3390/cells10040906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022] Open
Abstract
The development of the Artemis programme with the goal of returning to the moon is spurring technology advances that will eventually take humans to Mars and herald a new era of interplanetary space travel. However, long-term space travel poses unique challenges including exposure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to microgravity and specific nutritional challenges arising from earth independent exploration. Ionising radiation is one of the major obstacles facing future space travel as it can generate oxidative stress and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere shortening, extracellular-matrix remodelling and persistent inflammation. In the gastrointestinal tract (GIT) this can lead to leaky gut syndrome, perforations and motility issues, which impact GIT functionality and affect nutritional status. While current countermeasures such as shielding from the spacecraft can attenuate harmful biological effects, they produce harmful secondary particles that contribute to radiation exposure. We hypothesised that induction of a torpor-like state would confer a radioprotective effect given the evidence that hibernation extends survival times in irradiated squirrels compared to active controls. To test this hypothesis, a torpor-like state was induced in zebrafish using melatonin treatment and reduced temperature, and radiation exposure was administered twice over the course of 10 days. The protective effects of induced-torpor were assessed via RNA sequencing and qPCR of mRNA extracted from the GIT. Pathway and network analysis were performed on the transcriptomic data to characterise the genomic signatures in radiation, torpor and torpor + radiation groups. Phenotypic analyses revealed that melatonin and reduced temperature successfully induced a torpor-like state in zebrafish as shown by decreased metabolism and activity levels. Genomic analyses indicated that low dose radiation caused DNA damage and oxidative stress triggering a stress response, including steroidal signalling and changes to metabolism, and cell cycle arrest. Torpor attenuated the stress response through an increase in pro-survival signals, reduced oxidative stress via the oxygen effect and detection and removal of misfolded proteins. This proof-of-concept model provides compelling initial evidence for utilizing an induced torpor-like state as a potential countermeasure for radiation exposure.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Tucker Williamson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; (T.W.); (S.S.L.C.)
| | - Hao Wang
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Ian Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; (T.W.); (S.S.L.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Parisi C, Vashisht S, Winata CL. Fish-Ing for Enhancers in the Heart. Int J Mol Sci 2021; 22:3914. [PMID: 33920121 PMCID: PMC8069060 DOI: 10.3390/ijms22083914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precise control of gene expression is crucial to ensure proper development and biological functioning of an organism. Enhancers are non-coding DNA elements which play an essential role in regulating gene expression. They contain specific sequence motifs serving as binding sites for transcription factors which interact with the basal transcription machinery at their target genes. Heart development is regulated by intricate gene regulatory network ensuring precise spatiotemporal gene expression program. Mutations affecting enhancers have been shown to result in devastating forms of congenital heart defect. Therefore, identifying enhancers implicated in heart biology and understanding their mechanism is key to improve diagnosis and therapeutic options. Despite their crucial role, enhancers are poorly studied, mainly due to a lack of reliable way to identify them and determine their function. Nevertheless, recent technological advances have allowed rapid progress in enhancer discovery. Model organisms such as the zebrafish have contributed significant insights into the genetics of heart development through enabling functional analyses of genes and their regulatory elements in vivo. Here, we summarize the current state of knowledge on heart enhancers gained through studies in model organisms, discuss various approaches to discover and study their function, and finally suggest methods that could further advance research in this field.
Collapse
Affiliation(s)
- Costantino Parisi
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Shikha Vashisht
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
8
|
Gou D, Zhou J, Song Q, Wang Z, Bai X, Zhang Y, Zuo M, Wang F, Chen A, Yousaf M, Yang Z, Peng H, Li K, Xie W, Tang J, Yao Y, Han M, Ke T, Chen Q, Xu C, Wang Q. Mog1 knockout causes cardiac hypertrophy and heart failure by downregulating tbx5-cryab-hspb2 signalling in zebrafish. Acta Physiol (Oxf) 2021; 231:e13567. [PMID: 33032360 DOI: 10.1111/apha.13567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
AIMS MOG1 is a small protein that can bind to small GTPase RAN and regulate transport of RNA and proteins between the cytoplasm and nucleus. However, the in vivo physiological role of mog1 in the heart needs to be fully defined. METHODS Mog1 knockout zebrafish was generated by TALEN. Echocardiography, histological analysis, and electrocardiograms were used to examine cardiac structure and function. RNA sequencing and real-time RT-PCR were used to elucidate the molecular mechanism and to analyse the gene expression. Isoproterenol was used to induce cardiac hypertrophy. Whole-mount in situ hybridization was used to observe cardiac morphogenesis. RESULTS Mog1 knockout zebrafish developed cardiac hypertrophy and heart failure (enlarged pericardium, increased nppa and nppb expression and ventricular wall thickness, and reduced ejection fraction), which was aggravated by isoproterenol. RNAseq and KEGG pathway analyses revealed the effect of mog1 knockout on the pathways of cardiac hypertrophy, dilatation and contraction. Mechanistic studies revealed that mog1 knockout decreased expression of tbx5, which reduced expression of cryab and hspb2, resulting in cardiac hypertrophy and heart failure. Overexpression of cryab, hspb2 and tbx5 rescued the cardiac oedema phenotype of mog1 KO zebrafish. Telemetry electrocardiogram monitoring showed QRS and QTc prolongation and a reduced heart rate in mog1 knockout zebrafish, which was associated with reduced scn1b expression. Moreover, mog1 knockout resulted in abnormal cardiac looping during embryogenesis because of the reduced expression of nkx2.5, gata4 and hand2. CONCLUSION Our data identified an important molecular determinant for cardiac hypertrophy and heart failure, and rhythm maintenance of the heart.
Collapse
Affiliation(s)
- Dongzhi Gou
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Juan Zhou
- School of Basic Medicine Gannan Medical University Ganzhou P. R. China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Zhijie Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Xuemei Bai
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Yidan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Mengxia Zuo
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Department of Cardiovascular Medicine Cleveland Clinic Cleveland OH USA
- Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of CaseWestern Reserve University Cleveland OH USA
| | - Ailan Chen
- Department of Cardiology Guangzhou Medical University Guangzhou P. R. China
| | - Muhammad Yousaf
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Zhongcheng Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Huixing Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Ke Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Wen Xie
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Jingluo Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Meng Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Tie Ke
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Department of Cardiovascular Medicine Cleveland Clinic Cleveland OH USA
- Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of CaseWestern Reserve University Cleveland OH USA
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology and Center for Human Genome Research Huazhong University of Science and Technology Wuhan P. R. China
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Department of Cardiovascular Medicine Cleveland Clinic Cleveland OH USA
- Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of CaseWestern Reserve University Cleveland OH USA
- Department of Genetics and Genome Science Case Western Reserve University School of Medicine Cleveland OH USA
| |
Collapse
|
9
|
Yang X, Liang J, Wu Q, Li M, Shan W, Zeng L, Yao L, Liang Y, Wang C, Gao J, Guo Y, Liu Y, Liu R, Luo Q, Zhou Q, Qu G, Jiang G. Developmental Toxicity of Few-Layered Black Phosphorus toward Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1134-1144. [PMID: 33356192 DOI: 10.1021/acs.est.0c05724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black phosphorus (BP) has extensive applications in various fields. The release of BP into aquatic ecosystems and the potential toxic effects on aquatic organisms are becoming major concerns. Here, we investigated the developmental toxicity of few-layered BP toward the zebrafish. We found that BP could adsorb on the surface of the chorion and could subsequently penetrate within the embryo. After exposure of embryos to 10 mg/L BP, developmental malformations appeared at 96 hpf, especially heart deformities such as pericardial edema and bradycardia, accompanied by severe circulatory system failure. Using transgenic zebrafish larvae, we further characterized cardiovascular defects with cardiac enlargement and impaired cardiac vessels as indicators of damage to the cardiovascular system upon BP exposure. We performed transcriptomic analysis on zebrafish embryos treated with a lower concentration of 2 mg/L. The results showed disruption in genes associated with muscle development, oxygen involved processes, focal adhesion, and VEGF and MAPK signaling pathways. These alterations also indicated that BP carries a risk of developmental perturbation at lower concentrations. This study provides new insights into the effects of BP on aquatic organisms.
Collapse
Affiliation(s)
- Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chang Wang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhang Y, Wang F, Wu F, Wang Y, Wang X, Gui Y, Li Q. Tnni1b-ECR183-d2, an 87 bp cardiac enhancer of zebrafish. PeerJ 2020; 8:e10289. [PMID: 33194440 PMCID: PMC7648457 DOI: 10.7717/peerj.10289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Several heart malformations are associated with mutations in the regulatory regions of cardiac genes. Troponin I type 1b (tnni1b) is important for the formation of the atrioventricular canal in zebrafish hearts; however, the regulation of tnni1b is poorly understand. We aimed to identify a small but functional enhancer that is distal to tnni1b. Methods Evolutionary Conserved Region (ECR) Browser was used to analyze the 219 kb zebrafish and human genomes covering the tnni1b gene as well as the 100 kb regions upstream and downstream of tnni1b. Putative transcription factor binding sites (TFBSs) were analyzed using JASPAR and PROMO, and the enhancer activity was identified using zebrafish embryos and the luciferase reporter assay. A correlation analysis between the enhancer and transcription factors (TFs) was performed via TF overexpression and TFBS mutation experiments and the electrophoretic mobility shift assay (EMSA). To analyze the conservation between zebrafish and human enhancers, human DNA fragments were functionally verified. Images were captured and analyzed by fluorescence microscopy or confocal microscopy. Results Combined with comparative analysis and functional validation, we identified a 183 bp ECR (termed tnni1b-ECR183) that was located approximately 84 kb upstream of tnni1b that had the heart-specific enhancer activity in zebrafish. TFBS analysis and the enhancer activity detection assay data showed that the 87 bp core region (termed tnni1b-ECR183-d2) was capable of driving specific GFP expression near the atrioventricular junction and increased luciferase expression in HEK293 and HL1 cell lines. The GFP pattern in zebrafish embryos was similar to the expression profiles of tnni1b. A correlation analysis showed that the enhancer activity of tnni1b-ECR183-d2 was increased when NKX2.5 (p = 0.0006) or JUN (p < 0.0001) was overexpressed and was decreased when the TFBSs of NKX2.5 (p < 0.0001) or JUN (p = 0.0018) were mutated. In addition, DNA-protein interactions were not observed between these TFs and tnni1b-ECR183-d2 in the EMSA experiment. The conservation analysis showed that tnni1b-ECR183-h179 (aligned from tnni1b-ECR183) drove GFP expression in the heart and skeletal muscles and increased the luciferase expression after NKX2.5 (p < 0.0001), JUN (p < 0.0001) or ETS1 (p < 0.0001) was overexpressed. Interestingly, the truncated fragment tnni1b-ECR183-h84 mainly drove GFP expression in the skeletal muscles of zebrafish and the enhancer activity decreased when NKX2.5 (p = 0.0028), ETS1 (p = 0.0001) or GATA4 (p < 0.0001) was overexpressed. Conclusions An 87 bp cardiac-specific enhancer located 84 kb upstream of tnni1b in zebrafish was positively correlated with NKX2.5 or JUN. The zebrafish and human enhancers in this study target different tissues. The GFP expression mediated by tnni1b-ECR183-d2 is a valuable tool for marking the domain around the atrioventricular junction.
Collapse
Affiliation(s)
- Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Wu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Youhua Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yonghao Gui
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Liu R, Hu X, Lü A, Song Y, Lian Z, Sun J, Sung YY. Proteomic Profiling of Zebrafish Challenged by Spring Viremia of Carp Virus Provides Insight into Skin Antiviral Response. Zebrafish 2020; 17:91-103. [PMID: 32176570 DOI: 10.1089/zeb.2019.1843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Spring viremia of carp virus (SVCV) causes the skin hemorrhagic disease in cyprinid species, but its molecular mechanism of skin immune response remains unclear at the protein level. In the present study, the differential proteomics of the zebrafish (Danio rerio) skin in response to SVCV infection were examined by isobaric tags for relative and absolute quantitation and quantitative polymerase chain reaction (qPCR) assays. A total of 3999 proteins were identified, of which 320 and 181 proteins were differentially expressed at 24 and 96 h postinfection, respectively. The expression levels of 16 selected immune-related differentially expressed proteins (DEPs) were confirmed by qPCR analysis. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that DEPs were significantly associated with complement, inflammation, and antiviral response. The protein-protein interaction network of cytoskeleton-associated proteins, ATPase-related proteins, and parvalbumins from DEPs was shown to be involved in skin immune response. This is first report on the skin proteome profiling of zebrafish against SVCV infection, which will contribute to understand the molecular mechanism of local mucosal immunity in fish.
Collapse
Affiliation(s)
- Rongrong Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Yajiao Song
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Zhengyi Lian
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, University Malaysia Terengganu, Terengganu, Malaysia
| |
Collapse
|