1
|
Sun M, Wei Y, Zhang C, Nian H, Du B, Wei R. Integrated DNA Methylation and Transcriptomics Analyses of Lacrimal Glands Identify the Potential Genes Implicated in the Development of Sjögren's Syndrome-Related Dry Eye. J Inflamm Res 2023; 16:5697-5714. [PMID: 38050559 PMCID: PMC10693829 DOI: 10.2147/jir.s440263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Purpose Sjögren's syndrome-related dry eye (SS-related dry eye) is an intractable autoimmune disease characterized by chronic inflammation of lacrimal glands (LGs), where epigenetic factors are proven to play a crucial role in the pathogenesis of this disease. However, the alteration of DNA methylation in LGs and its role in the pathogenesis of SS-related dry eye is still unknown. Here, we performed an integrated analysis of DNA methylation and RNA-Seq data in LGs to identify novel DNA methylation-regulated differentially expressed genes (MeDEGs) in the pathogenesis of SS-related dry eye. Methods The DNA methylation and transcription profiles of LGs in NOD mice at different stages of SS-related dry eye (4-, 8-, 12- and 16 weeks old) were generated by reduced representation bisulfite sequencing (RRBS) and RNA-Seq. The differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were analyzed by MethylKit R package and edgeR. Correlation analysis between methylation level and mRNA expression was conducted with R software. The functional correlation of DMGs and DEGs was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, LG tissues from another litter of NOD mice were collected for methylation-specific polymerase chain reaction (MSP) and quantitative real-time PCR (qRT-PCR) to validate the methylation and expression levels of key genes. CD4+ cell infiltration of LGs was detected by immunofluorescence staining. Results Hypermethylation of LGs was identified in NOD mice with the progression of SS-related dry eye and the DMGs were mainly enriched in the GTPases activation and Ras signaling pathway. RNA-seq analysis revealed 1321, 2549, and 3712 DEGs in the 8-, 12- and 16-week-old NOD mice compared with 4-week-old normal control mice. For GO analysis, the DEGs were mainly enriched in T cell immune responses. Further, a total of 140 MeDEGs were obtained by integrated analysis of methylome and transcriptome, which were primarily enriched in T cell activation, proliferation and differentiation. Based on the main GO terms and KEGG pathways of MeDEGs, 8 genes were screened out. The expression levels of these key genes, especially Itgal, Vav1, Irf4 and Icosl, were verified to elevate after the onset of SS-related dry eye in NOD mice and positively correlated with the extent of inflammatory cell infiltration in LGs. Immunofluorescence assay revealed that CD4+ cell infiltration dramatically increased in LGs of SS-related dry eye mice compared with the control mice. And the expression levels of four genes showed significantly positive correlation with the extent of CD4+ cell infiltration in LGs. MSP showed the hypomethylation of the Irf4 and Itgal promoters in NOD mice with SS-related dry eye compared to control group. Conclusion Our study revealed the critical role of epigenetic regulation of T cell immunity-related genes in the progression of SS-related dry eye and reminded us that DNA methylation-regulated genes such as Itgal, Vav1, Irf4 and Icosl may be used as new targets for SS-related dry eye therapy.
Collapse
Affiliation(s)
- Mei Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Chengyuan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
2
|
Yin W, Sun L, Liang Y, Luo C, Feng T, Zhang Y, Zhang W, Yin Y. Maternal intermittent fasting deteriorates offspring metabolism via suppression of hepatic mTORC1 signaling. FASEB J 2023; 37:e22831. [PMID: 36856728 DOI: 10.1096/fj.202201907r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 03/02/2023]
Abstract
The metabolic benefits of intermittent fasting (IF) have been well recognized. However, limited studies have examined the relationship between long-term maternal IF before pregnancy and offspring health. In this study, a C57BL/6J mouse model of long-term IF before pregnancy was established: 4-week-old female mice were subjected to alternate-day fasting for 12 weeks and resumed normal diet after mating. Female mice in the control group were fed ad libitum. Offspring mice were weaned at 6 weeks of age and fed a normal chow diet or a 60% high-fat diet. The effects of long-term pre-pregnancy IF on offspring metabolism and its underlying mechanism were examined. We found that neonatal IF offspring weighted significantly less relevant to control mice. This difference gradually disappeared as a result of catch-up growth. In the IF offspring, adipose tissue mass was significantly increased. This alteration was associated with a considerable deterioration in glucose tolerance. No significant difference in food intake was observed. Further, lipid deposition as well as triglyceride contents in the liver were greatly increased. Maternal IF significantly decreased levels of DNA methyltransferase in the liver of offspring. DNA methylation modifications of molecules associated with the mTORC1 signaling pathway were significantly altered, leading to the significant inhibition of mTORC1 signaling. Overexpression of S6K1 activated hepatic mTORC1 signaling and reversed the metabolic dysfunction in IF offspring. In conclusion, long-term pre-pregnancy IF increases hepatic steatosis and adiposity, as well as impairs glucose metabolism in adult offspring. This occurs through DNA methylation-dependent suppression of hepatic mTORC1 signaling activity.
Collapse
Affiliation(s)
- Wenzhen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China.,Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yuan Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Chao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Tiange Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yunhua Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China.,Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
3
|
Kaczynski P, van der Weijden V, Goryszewska-Szczurek E, Baryla M, Ulbrich SE, Waclawik A. Novel role for conceptus signals in mRNA expression regulation by DNA methylation in porcine endometrium during early pregnancy†. Biol Reprod 2022; 108:150-168. [PMID: 36322137 PMCID: PMC9843678 DOI: 10.1093/biolre/ioac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
During early pregnancy, porcine conceptuses (the embryos with associated membranes) secrete estradiol-17β (E2)-their major signal for maternal recognition of pregnancy-and prostaglandin E2 (PGE2). Both hormones induce prominent changes of the endometrial transcriptome in vivo. Studies on endometrial pathologies have shown that E2 affects gene expression by epigenetic mechanisms related to DNA methylation. Herein, we determined the effects of E2 and PGE2 alone, and a combined E2 + PGE2 treatment administered into the uterine lumen in vivo on the expression and activity of DNA-methyltransferases (DNMTs) and on CpG methylation patterns of selected genes in porcine endometrium. To compare the effect of treatment with the physiological effect of pregnancy, endometria from day 12 pregnant/cyclic gilts were included. Both E2 and PGE2 significantly reduced the expression of DNMTs. Likewise, the expressions of DNMT1 and DNMT3A were decreased on day 12 of pregnancy compared to the estrous cycle. DNMT activity increased in endometrial samples following E2 treatment and in gilts on day 12 of pregnancy. Treatment with E2 alone and/or simultaneously with PGE2 altered endometrial DNA methylation of CpG sites of ADAMTS20, ADH1C, BGN, PSAT1, and WNT5A. Different CpG methylation patterns of ADAMTS20, BGN, DMBT1, RASSF1, and WNT5A were found in the endometrium on day 12 of pregnancy compared to day 12 of the estrous cycle. Significant correlations were detected between CpG methylation and gene expression for ADAMTS20, ADH1C, BGN, DMBT1, PSAT1, and WNT5A. Our results indicate that CpG methylation induced by embryonic signals may contribute to regulating endometrial gene expression during pregnancy establishment.
Collapse
Affiliation(s)
- Piotr Kaczynski
- Correspondence: Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland. Tel: +48895393111; E-mail: ; (A. Waclawik); Tel: +48895393180; E-mail: (P. Kaczynski)
| | - Vera van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | | | - Monika Baryla
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Agnieszka Waclawik
- Correspondence: Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland. Tel: +48895393111; E-mail: ; (A. Waclawik); Tel: +48895393180; E-mail: (P. Kaczynski)
| |
Collapse
|
4
|
Zhao F, Wei QW, Li BJ, Weng QN, Jiang Y, Ning CB, Liu KQ, Wu WJ, Liu HL. Impact of adrenocorticotropin hormone administration on the endocrinology, estrus onset, and ovarian function of weaned sows. Endocr J 2022; 69:23-33. [PMID: 34456194 DOI: 10.1507/endocrj.ej21-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic stress affects the reproductive health of mammals; however, the impact of adrenocorticotropin hormone (ACTH) level elevation during chronic stress on the reproduction of weaned sows remains unclear. In this study, nine weaned sows with the same parturition date were randomly divided into control group (n = 4) and ACTH group (n = 5). Each group received intravenous administration of ACTH three times daily for 7 days. Blood samples were collected every 3 h after injection. A radioimmunoassay was used to measure the concentrations of cortisol, luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (P4) and estradiol-17β (E2) in the blood. Estrus was determined according to changes in the vulva and the boar contact test. The mRNA expressions of glucocorticoid receptor, FSH receptor, LH receptor (LHR) in the corpus luteum (CL) were detected by qRT-PCR. The results showed that ACTH administration substantially delayed the initiation of estrus and the pre-ovulatory LH peak. The sows of control group ovulated within 10 days and the ovulation rate was 100%, while it was 60% in the ACTH group. Two sows of ACTH group showed pseudo-estrus. The E2 concentrations significantly decreased in the ACTH group at 36 h, 42 h and 66 h of the experimental period. The P4 concentrations in the ACTH group significantly decreased at 132, 138, and 147 h of the experimental period. ACTH significantly reduced the LHR mRNA expression in CLs. In conclusion, long-term repeated ACTH administration affects the endocrinology, estrus onset, and ovarian function of weaned sows.
Collapse
Affiliation(s)
- Fang Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Quan-Wei Wei
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo-Jiang Li
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian-Nan Weng
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Jiang
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cai-Bo Ning
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai-Qing Liu
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wang-Jun Wu
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Lin Liu
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Chen X, Luo J, Liu J, Chen T, Sun J, Zhang Y, Xi Q. Exploration of the Effect on Genome-Wide DNA Methylation by miR-143 Knock-Out in Mice Liver. Int J Mol Sci 2021; 22:13075. [PMID: 34884879 PMCID: PMC8658369 DOI: 10.3390/ijms222313075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
MiR-143 play an important role in hepatocellular carcinoma and liver fibrosis via inhibiting hepatoma cell proliferation. DNA methyltransferase 3 alpha (DNMT3a), as a target of miR-143, regulates the development of primary organic solid tumors through DNA methylation mechanisms. However, the effect of miR-143 on DNA methylation profiles in liver is unclear. In this study, we used Whole-Genome Bisulfite Sequencing (WGBS) to detect the differentially methylated regions (DMRs), and investigated DMR-related genes and their enriched pathways by miR-143. We found that methylated cytosines increased 0.19% in the miR-143 knock-out (KO) liver fed with high-fat diet (HFD), compared with the wild type (WT). Furthermore, compared with the WT group, the CG methylation patterns of the KO group showed lower CG methylation levels in CG islands (CGIs), promoters and hypermethylation in CGI shores, 5'UTRs, exons, introns, 3'UTRs, and repeat regions. A total of 984 DMRs were identified between the WT and KO groups consisting of 559 hypermethylation and 425 hypomethylation DMRs. Furthermore, DMR-related genes were enriched in metabolism pathways such as carbon metabolism (serine hydroxymethyltransferase 2 (Shmt2), acyl-Coenzyme A dehydrogenase medium chain (Acadm)), arginine and proline metabolism (spermine synthase (Sms), proline dehydrogenase (Prodh2)) and purine metabolism (phosphoribosyl pyrophosphate synthetase 2 (Prps2)). In summary, we are the first to report the change in whole-genome methylation levels by miR-143-null through WGBS in mice liver, and provide an experimental basis for clinical diagnosis and treatment in liver diseases, indicating that miR-143 may be a potential therapeutic target and biomarker for liver damage-associated diseases and hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (X.C.); (J.L.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (X.C.); (J.L.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
6
|
Yin W, Liang Y, Sun L, Yin Y, Zhang W. Maternal intermittent fasting before mating alters hepatic DNA methylation in offspring. Epigenomics 2021; 13:341-356. [PMID: 33504196 DOI: 10.2217/epi-2020-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Our aim was to explore how maternal intermittent fasting (IF) influences offspring metabolism. Materials & methods: A model of female C57BL/6J mice alternate-day feeding before mating was established and alteration of hepatic DNA methylation in offspring analyzed by whole genome bisulfite sequencing. Results: IF dams weighed less (p = 0.03) and had lower random blood glucose levels (p = 0.04). Lower birth weight (p = 0.0031) and impaired glucose metabolism were also observed in the offspring of the IF mice. The hepatic genome-wide DNA methylation maps showed a correlation between maternal IF and decreased hepatic global DNA methylation of adult offspring. In the offspring liver, 2869 differentially methylated DNA regions were altered. Conclusions: Our finding suggests that maternal IF before mating significantly alters hepatic DNA methylation in offspring.
Collapse
Affiliation(s)
- Wenzhen Yin
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yuan Liang
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Lijun Sun
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|