1
|
Wang WM, Zhang Z, Sun L, Ma C, Liu ZH, Wu SC. Protective effect of 13-methylberberine against mouse enteritis caused by MRSA. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:115994. [PMID: 36535335 DOI: 10.1016/j.jep.2022.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The emergence and spread of antibiotic resistance bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), urgently need to develop alternative strategies or novel antibacterial drugs. Coptis chinensis Franch., one ancient Chinese herb, has been widely used for the treatment of intestine disease, such as diarrhea. Alkaloids are the major active compounds of Coptis chinensis Franch., and has anti-inflammatory, antioxidant, and antimicrobial effects. AIM OF THE STUDY The aim of the study was tried to investigate the potential antibacterial effects of the alkaloids from Coptis chinensis Franch. and explore the mechanism. MATERIALS AND METHODS A checkerboard assay, time-killing analysis, membrane functions assay, transcriptome analysis, and inducible resistance test showed the antibacterial effects and mechanisms of alkaloids from Coptis chinensis Franch. Hemolytic assay and MRSA-infected RAW264.7 cells were used to evaluate anti-virulence and anti-inflammatory activities of 13-methylberberine (13-MB). MRSA-infected Vero cells and mouse enteritis models were used to evaluate the anti-infectious effect of 13-MB against MRSA both in vitro and in vivo. RESULTS 13-methylberberine (13-MB) displayed high bactericidal efficiency against methicillin-resistant S. aureus (MRSA). Mechanistic studies showed that 13-MB rapidly killed MRSA by interfering with the proton motive force, ROS generation and membrane fluidity via direct interaction with membrane phospholipids. 13-MB suppressed the virulence of MRSA, modulated the host immune response, and effectively eliminated MRSA in Vero cells. Importantly, 13-MB suppressed weight loss, inflammatory response, bacterial colonization and intestinal lesion in mouse enteritis caused by 13-MB susceptible and resistant S. aureus. CONCLUSION These results supported the 13-MB has promising potential to be developed as natural drug with antibacterial activity, anti-virulence activity, and host modulation activity for the treatment of enteritis caused by MRSA.
Collapse
Affiliation(s)
- Wei-Mei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong, 266109, China
| | - Zhen Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong, 266109, China
| | - Liang Sun
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong, 266109, China
| | - Chao Ma
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong, 266109, China
| | - Zhi-Hai Liu
- College of Veterinary Medicine, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Shandong, 266109, China
| | - Shuai-Cheng Wu
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong, 266109, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
2
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Luo Z, Li Z, Liang Z, Wang L, He G, Wang D, Shen L, Wang Z, Ma X, Geng F, Wang H, Liu W, Liu H, Li B. Berberine increases stromal production of Wnt molecules and activates Lgr5 + stem cells to promote epithelial restitution in experimental colitis. BMC Biol 2022; 20:287. [PMID: 36528592 PMCID: PMC9759859 DOI: 10.1186/s12915-022-01492-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are characterized by sustained inflammation and/or ulcers along the lower digestive tract, and have complications such as colorectal cancer and inflammation in other organs. The current treatments for IBDs, which affect 0.3% of the global population, mainly target immune cells and inflammatory cytokines with a success rate of less than 40%. RESULTS Here we show that berberine, a natural plant product, is more effective than the frontline drug sulfasalazine in treating DSS (dextran sulfate sodium)-induced colitis in mice, and that berberine not only suppresses macrophage and granulocyte activation but also promotes epithelial restitution by activating Lgr5+ intestinal stem cells (ISCs). Mechanistically, berberine increases the expression of Wnt genes in resident mesenchymal stromal cells, an ISC niche, and inhibiting Wnt secretion diminishes the therapeutic effects of berberine. We further show that berberine controls the expression of many circadian rhythm genes in stromal cells, which in turn regulate the expression of Wnt molecules. CONCLUSIONS Our findings suggest that berberine acts on the resident stromal cells and ISCs to promote epithelial repair in experimental colitis and that Wnt-β-Catenin signaling may be a potential target for colitis treatment.
Collapse
Affiliation(s)
- Zecheng Luo
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Li
- grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Liang
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanlin He
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdi Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- grid.16821.3c0000 0004 0368 8293Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuying Ma
- Good Doctor Pharmaceutical Group of Sichuan, Chengdu, 610000 Sichuan China
| | - Funeng Geng
- Good Doctor Pharmaceutical Group of Sichuan, Chengdu, 610000 Sichuan China
| | - Haozhong Wang
- grid.411304.30000 0001 0376 205XCollege of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Wenping Liu
- grid.411304.30000 0001 0376 205XCollege of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Huijuan Liu
- grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. The key roles of organelles and ferroptosis in Alzheimer's disease. J Neurosci Res 2022; 100:1257-1280. [PMID: 35293012 DOI: 10.1002/jnr.25033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, is a striking global health problem. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation products and the accumulation of lethal reactive oxygen species. Strict regulation of iron metabolism is essential to ensure neuronal homeostasis. Excess and deficiency of iron are both associated with neurodegeneration. Studies have shown that oxidative stress caused by cerebral iron metabolism disorders in the body is involved in the process of AD, ferroptosis may play an important role in the pathogenesis of AD, and regulating ferroptosis is expected to be a new direction for the treatment of AD. Various organelles are closely related to ferroptosis: mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosome are involved in the regulation of ferroptosis from the aspects of iron metabolism and redox imbalance. In this review, the relationship between AD and the dysfunction of organelles (including mitochondria, endoplasmic reticulum, lysosome, and Golgi apparatus) and the role of organelles in ferroptosis of AD were reviewed to provide insights for understanding the relationship between organelles and ferroptosis in AD and the treatment of AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
5
|
MAP kinase-dependent autophagy controls phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells. Life Sci 2022; 297:120481. [PMID: 35304128 DOI: 10.1016/j.lfs.2022.120481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
We investigated the mechanisms and the role of autophagy in the differentiation of HL-60 human acute myeloid leukemia cells induced by protein kinase C (PKC) activator phorbol myristate acetate (PMA). PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase in intracellular acidification, accumulation/punctuation of autophagosome marker LC3-II, and the increase in autophagic flux. PMA also increased nuclear translocation of autophagy transcription factors TFEB, FOXO1, and FOXO3, as well as the expression of several autophagy-related (ATG) genes in HL-60 cells. PMA failed to activate autophagy inducer AMP-activated protein kinase (AMPK) and inhibit autophagy suppressor mechanistic target of rapamycin complex 1 (mTORC1). On the other hand, it readily stimulated the phosphorylation of mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) via a protein kinase C-dependent mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear translocation of TFEB and FOXO1/3, ATG expression, dissociation of pro-autophagic beclin-1 from its inhibitor BCL2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells. Pharmacological or genetic inhibition of autophagy also blocked PMA-induced macrophage differentiation of HL-60 cells. Therefore, MAP kinases ERK and JNK control PMA-induced macrophage differentiation of HL-60 leukemia cells through AMPK/mTORC1-independent, TFEB/FOXO-mediated transcriptional and beclin-1-dependent post-translational activation of autophagy.
Collapse
|
6
|
Ozturk M, Chia JE, Hazra R, Saqib M, Maine R, Guler R, Suzuki H, Mishra BB, Brombacher F, Parihar SP. Evaluation of Berberine as an Adjunct to TB Treatment. Front Immunol 2021; 12:656419. [PMID: 34745081 PMCID: PMC8563784 DOI: 10.3389/fimmu.2021.656419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis (TB) is the global health problem with the second highest number of deaths from a communicable disease after COVID-19. Although TB is curable, poor health infrastructure, long and grueling TB treatments have led to the spread of TB pandemic with alarmingly increasing multidrug-resistant (MDR)-TB prevalence. Alternative host modulating therapies can be employed to improve TB drug efficacies or dampen the exaggerated inflammatory responses to improve lung function. Here, we investigated the adjunct therapy of natural immune-modulatory compound berberine in C57BL/6 mouse model of pulmonary TB. Berberine treatment did not affect Mtb growth in axenic cultures; however, it showed increased bacterial killing in primary murine bone marrow-derived macrophages and human monocyte-derived macrophages. Ad libitum berberine administration was beneficial to the host in combination with rifampicin and isoniazid. Berberine adjunctive treatment resulted in decreased lung pathology with no additive or synergistic effects on bacterial burdens in mice. Lung immune cell flow cytometry analysis showed that adjunctive berberine treatment decreased neutrophil, CD11b+ dendritic cell and recruited interstitial macrophage numbers. Late onset of adjunctive berberine treatment resulted in a similar phenotype with consistently reduced numbers of neutrophils both in lungs and the spleen. Together, our results suggest that berberine can be supplemented as an immunomodulatory agent depending on the disease stage and inflammatory status of the host.
Collapse
Affiliation(s)
- Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudranil Hazra
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Rebeng A. Maine
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Bibhuti B. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR. Acta Pharm Sin B 2021; 11:3134-3149. [PMID: 34745852 PMCID: PMC8551420 DOI: 10.1016/j.apsb.2021.03.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) cascade is an effective therapeutic target for immune checkpoint blockade (ICB) therapy. Targeting PD-L1/PD-1 axis by small-molecule drug is an attractive approach to enhance antitumor immunity. Using flow cytometry-based assay, we identify tubeimoside-1 (TBM-1) as a promising antitumor immune modulator that negatively regulates PD-L1 level. TBM-1 disrupts PD-1/PD-L1 interaction and enhances the cytotoxicity of T cells toward cancer cells through decreasing the abundance of PD-L1. Furthermore, TBM-1 exerts its antitumor effect in mice bearing Lewis lung carcinoma (LLC) and B16 melanoma tumor xenograft via activating tumor-infiltrating T-cell immunity. Mechanistically, TBM-1 triggers PD-L1 lysosomal degradation in a TFEB-dependent, autophagy-independent pathway. TBM-1 selectively binds to the mammalian target of rapamycin (mTOR) kinase and suppresses the activation of mTORC1, leading to the nuclear translocation of TFEB and lysosome biogenesis. Moreover, the combination of TBM-1 and anti-CTLA-4 effectively enhances antitumor T-cell immunity and reduces immunosuppressive infiltration of myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our findings reveal a previously unrecognized antitumor mechanism of TBM-1 and represent an alternative ICB therapeutic strategy to enhance the efficacy of cancer immunotherapy.
Collapse
Key Words
- 4EBP1, eIF4E-binding protein 1
- Baf, bafilomycin A1
- CETSA, cellular thermal shift assay
- CHX, cycloheximide
- CQ, chloroquine
- IB, immunoblotting
- ICB, immune checkpoint blockade
- IHC, immunohistochemistry
- Immune checkpoint blockade
- LLC, Lewis lung carcinoma
- Lysosome
- MDSCs, myeloid-derived suppressor cells
- NAG, β-N-acetylglucosaminidase
- NSCLC, non-small cell lung cancer
- PD-1, programmed cell death-1
- PD-L1
- PD-L1, programmed cell death ligand- 1
- SPR, surface plasmon resonance
- TBM-1, tubeimoside-1
- TFEB, nuclear transcriptional factor EB
- TILs, tumor-infiltrating lymphocytes
- Transcription factor EB
- Tregs, regulatory T-lymphocytes
- mTOR
- mTOR, mammalian target of rapamycin
- p70S6K, phosphorylation of p70 S6 kinase
- qRT-PCR, quantitative real-time polymerase chain reaction
Collapse
|
8
|
Zhu SY, Yao RQ, Li YX, Zhao PY, Ren C, Du XH, Yao YM. The Role and Regulatory Mechanism of Transcription Factor EB in Health and Diseases. Front Cell Dev Biol 2021; 9:667750. [PMID: 34490237 PMCID: PMC8418145 DOI: 10.3389/fcell.2021.667750] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factor EB (TFEB) is a member of the microphthalmia-associated transcription factor/transcription factor E (MiTF/TFE) family and critically involved in the maintenance of structural integrity and functional balance of multiple cells. In this review, we described the effects of post-transcriptional modifications, including phosphorylation, acetylation, SUMOylation, and ubiquitination, on the subcellular localization and activation of TFEB. The activated TFEB enters into the nucleus and induces the expressions of targeted genes. We then presented the role of TFEB in the biosynthesis of multiple organelles, completion of lysosome-autophagy pathway, metabolism regulation, immune, and inflammatory responses. This review compiles existing knowledge in the understanding of TFEB regulation and function, covering its essential role in response to cellular stress. We further elaborated the involvement of TFEB dysregulation in the pathophysiological process of various diseases, such as the catabolic hyperactivity in tumors, the accumulation of abnormal aggregates in neurodegenerative diseases, and the aberrant host responses in inflammatory diseases. In this review, multiple drugs have also been introduced, which enable regulating the translocation and activation of TFEB, showing beneficial effects in mitigating various disease models. Therefore, TFEB might serve as a potential therapeutic target for human diseases. The limitation of this review is that the mechanism of TFEB-related human diseases mainly focuses on its association with lysosome and autophagy, which needs deep description of other mechanism in diseases progression after getting more advanced information.
Collapse
Affiliation(s)
- Sheng-Yu Zhu
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ren-Qi Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu-Xuan Li
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng-Yue Zhao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Ren
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Milani G, Cavalluzzi MM, Solidoro R, Salvagno L, Quintieri L, Di Somma A, Rosato A, Corbo F, Franchini C, Duilio A, Caputo L, Habtemariam S, Lentini G. Molecular Simplification of Natural Products: Synthesis, Antibacterial Activity, and Molecular Docking Studies of Berberine Open Models. Biomedicines 2021; 9:452. [PMID: 33922200 PMCID: PMC8146520 DOI: 10.3390/biomedicines9050452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Berberine, the main bioactive component of many medicinal plants belonging to various genera such as Berberis, Coptis, and Hydrastis is a multifunctional compound. Among the numerous interesting biological properties of berberine is broad antimicrobial activity including a range of Gram-positive and Gram-negative bacteria. With the aim of identifying berberine analogues possibly endowed with higher lead-likeness and easier synthetic access, the molecular simplification approach was applied to the secondary metabolite and a series of analogues were prepared and screened for their antimicrobial activity against Gram-positive and Gram-negative bacterial test species. Rewardingly, the berberine simplified analogues displayed 2-20-fold higher potency with respect to berberine. Since our berberine simplified analogues may be easily synthesized and are characterized by lower molecular weight than the parent compound, they are further functionalizable and should be more suitable for oral administration. Molecular docking simulations suggested FtsZ, a well-known protein involved in bacterial cell division, as a possible target.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Roberta Solidoro
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Lara Salvagno
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II” Via Cinthia 4, 80126 Napoli, Italy; (A.D.S.); (A.D.)
| | - Antonio Rosato
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Filomena Corbo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Carlo Franchini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II” Via Cinthia 4, 80126 Napoli, Italy; (A.D.S.); (A.D.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK;
| | - Giovanni Lentini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| |
Collapse
|
10
|
Berberine-induced TFEB deacetylation by SIRT1 promotes autophagy in peritoneal macrophages. Aging (Albany NY) 2021; 13:7096-7119. [PMID: 33639613 PMCID: PMC7993719 DOI: 10.18632/aging.202566] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that commonly affects the elderly and is characterized by vascular damage, macrophage infiltration, and plaque formation. Moreover, it increases the risk of cardiovascular disease. The pathogenesis of atherosclerosis involves an interplay between macrophage autophagy and apoptosis. A recently discovered transcription factor, transcription factor EB (TFEB) is known to activate autophagy in macrophages. Sirtuin deacetylase 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase, activates several transcription factors, including TFEB. We studied the effects of berberine on the NAD+ synthesis pathway and interactions between SIRT1 and TFEB. We also studied the effects of berberine-induced TFEB activation via SIRT1 on autophagy and apoptosis of peritoneal macrophages. We found that berberine promoted autophagy of peritoneal macrophages by activating SIRT1 via the NAD+ synthesis pathway and, in turn, promoting TFEB nuclear translocation and deacetylation. The functional regulation of SIRT1 and TFEB by berberine could be exploited as a potential therapeutic strategy for atherosclerosis.
Collapse
|
11
|
Sachdeva K, Sundaramurthy V. The Interplay of Host Lysosomes and Intracellular Pathogens. Front Cell Infect Microbiol 2020; 10:595502. [PMID: 33330138 PMCID: PMC7714789 DOI: 10.3389/fcimb.2020.595502] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Lysosomes are an integral part of the intracellular defense system against microbes. Lysosomal homeostasis in the host is adaptable and responds to conditions such as infection or nutritional deprivation. Pathogens such as Mycobacterium tuberculosis (Mtb) and Salmonella avoid lysosomal targeting by actively manipulating the host vesicular trafficking and reside in a vacuole altered from the default lysosomal trafficking. In this review, the mechanisms by which the respective pathogen containing vacuoles (PCVs) intersect with lysosomal trafficking pathways and maintain their distinctness are discussed. Despite such active inhibition of lysosomal targeting, emerging literature shows that different pathogens or pathogen derived products exhibit a global influence on the host lysosomal system. Pathogen mediated lysosomal enrichment promotes the trafficking of a sub-set of pathogens to lysosomes, indicating heterogeneity in the host-pathogen encounter. This review integrates recent advancements on the global lysosomal alterations upon infections and the host protective role of the lysosomes against these pathogens. The review also briefly discusses the heterogeneity in the lysosomal targeting of these pathogens and the possible mechanisms and consequences.
Collapse
|
12
|
Nourbakhsh F, Read MI, Barreto GE, Sahebkar A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer's disease. IUBMB Life 2020; 72:2360-2281. [PMID: 32894821 DOI: 10.1002/iub.2369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
The lysosome is a membrane-enclosed organelle in eukaryotic cells, which has basic pattern recognition for nutrient-dependent signal transduction. In Alzheimer's disease, the already declining autophagy-lysosomal function is exacerbated by an increased need for clearance of damaged proteins and organelles in aged cells. Recent evidence suggests that numerous diseases are linked to impaired autophagy upstream of lysosomes. In this way, a comprehensive survey on the pathophysiology of the disease seems necessary. Hence, in the first section of this review, we will discuss the ultimate findings in lysosomal signaling functions and how they affect cellular metabolism and trafficking under neurodegenerative conditions, specifically Alzheimer's disease. In the second section, we focus on how natural products and their derivatives are involved in the regulation of inflammation and lysosomal dysfunction pathways, including how these should be considered a crucial target for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn I Read
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
13
|
Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med 2020; 14:564-582. [DOI: 10.1007/s11684-019-0724-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
|