1
|
Li Y, Liu X, Li Y, Wang J, Zhang M, Xue W, Zhang M. USP19 exerts a tumor-promoting role in diffuse large B cell lymphoma through stabilizing PARK7. FEBS J 2024; 291:4757-4774. [PMID: 39240655 DOI: 10.1111/febs.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and is associated with a poor prognosis. Data from the Gene Expression Profiling Interactive Analysis (GEPIA) database revealed dysregulated expression of several ubiquitin-specific proteases (USPs) in DLBCL tissues (DLBCL vs. non-DLBCL = 47 vs. 337), including USP19 (log2fold change = 1.17, P < 0.05). USP19 is closely linked to tumorigenesis, but its role in DLBCL progression remains largely unknown. Here, we investigated the role of USP19 in DLBCL development. Genetic manipulation of USP19 using adenovirus-based vectors was performed in two DLBCL cell lines, SUDHL4 and DB cells. The results showed that USP19 knockdown suppressed the proliferation, anchorage-independent growth and xenograft tumor formation of DLBCL cells and arrested the cell cycle at the G1 stage. In parallel, DLBCL cells overexpressing USP19 acquired a more malignant phenotype. Next, to explore USP19 interactors, we performed co-immunoprecipitation/liquid chromatography-mass spectrometry and identified potential interacting proteins. Among them, Parkinson disease protein 7 (PARK7), a member of the peptidase C56 family known to be involved in carcinogenesis, was further validated to bind with and be stabilized by USP19. Additionally, we found that USP19 induced PARK7 deubiquitylation in both DLBCL cell lines, and PARK7 acted as a downstream effector of USP19 in regulating the growth of DLBCL cells. Collectively, USP19 exerts a tumor-promoting role in DLBCL through interacting with and stabilizing PARK7.
Collapse
Affiliation(s)
- Yaqing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xiyang Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Yulai Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Jieting Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mengqian Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Weili Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| |
Collapse
|
2
|
Dillon ST, Otu HH, Ngo LH, Fong TG, Vasunilashorn SM, Xie Z, Kunze LJ, Vlassakov KV, Abdeen A, Lange JK, Earp BE, Cooper ZR, Schmitt E, Arnold SE, Hshieh T, Jones RN, Inouye SK, Marcantonio ER, Libermann TA. Patterns and Persistence of Perioperative Plasma and Cerebrospinal Fluid Neuroinflammatory Protein Biomarkers After Elective Orthopedic Surgery Using SOMAscan. Anesth Analg 2023; 136:163-175. [PMID: 35389379 PMCID: PMC9537343 DOI: 10.1213/ane.0000000000005991] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The neuroinflammatory response to surgery can be characterized by peripheral acute plasma protein changes in blood, but corresponding, persisting alterations in cerebrospinal fluid (CSF) proteins remain mostly unknown. Using the SOMAscan assay, we define acute and longer-term proteome changes associated with surgery in plasma and CSF. We hypothesized that biological pathways identified by these proteins would be in the categories of neuroinflammation and neuronal function and define neuroinflammatory proteome changes associated with surgery in older patients. METHODS SOMAscan analyzed 1305 proteins in blood plasma (n = 14) and CSF (n = 15) samples from older patients enrolled in the Role of Inflammation after Surgery for Elders (RISE) study undergoing elective hip and knee replacement surgery with spinal anesthesia. Systems biology analysis identified biological pathways enriched among the surgery-associated differentially expressed proteins in plasma and CSF. RESULTS Comparison of postoperative day 1 (POD1) to preoperative (PREOP) plasma protein levels identified 343 proteins with postsurgical changes ( P < .05; absolute value of the fold change [|FC|] > 1.2). Comparing postoperative 1-month (PO1MO) plasma and CSF with PREOP identified 67 proteins in plasma and 79 proteins in CSF with altered levels ( P < .05; |FC| > 1.2). In plasma, 21 proteins, primarily linked to immune response and inflammation, were similarly changed at POD1 and PO1MO. Comparison of plasma to CSF at PO1MO identified 8 shared proteins. Comparison of plasma at POD1 to CSF at PO1MO identified a larger number, 15 proteins in common, most of which are regulated by interleukin-6 (IL-6) or transforming growth factor beta-1 (TGFB1) and linked to the inflammatory response. Of the 79 CSF PO1MO-specific proteins, many are involved in neuronal function and neuroinflammation. CONCLUSIONS SOMAscan can characterize both short- and long-term surgery-induced protein alterations in plasma and CSF. Acute plasma protein changes at POD1 parallel changes in PO1MO CSF and suggest 15 potential biomarkers for longer-term neuroinflammation that warrant further investigation.
Collapse
Affiliation(s)
- Simon T. Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, MA
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Long H. Ngo
- Harvard Medical School, Boston, MA
- Divisions of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Tamara G. Fong
- Harvard Medical School, Boston, MA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
| | - Sarinnapha M. Vasunilashorn
- Harvard Medical School, Boston, MA
- Divisions of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Zhongcong Xie
- Harvard Medical School, Boston, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Lisa J. Kunze
- Harvard Medical School, Boston, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Kamen V. Vlassakov
- Harvard Medical School, Boston, MA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Ayesha Abdeen
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jeffrey K. Lange
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Brandon E. Earp
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Faulkner Hospital, Boston, MA
| | - Zara R. Cooper
- Harvard Medical School, Boston, MA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Eva Schmitt
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
| | - Steven E. Arnold
- MGH Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Tammy Hshieh
- Harvard Medical School, Boston, MA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Divisions of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Richard N. Jones
- Departments of Psychiatry and Human Behavior and Neurology, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Sharon K. Inouye
- Harvard Medical School, Boston, MA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Edward R. Marcantonio
- Harvard Medical School, Boston, MA
- Divisions of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, MA
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, MA
- Harvard Medical School, Boston, MA
| | | |
Collapse
|
3
|
14-3-3β is essential for milk composition stimulated by Leu/IGF-1 via IGF1R signaling pathway in BMECs. In Vitro Cell Dev Biol Anim 2022; 58:384-395. [PMID: 35648337 DOI: 10.1007/s11626-022-00682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
Abstract
The cell proliferation of bovine mammary epithelial cells (BMECs) and consequent milk synthesis are regulated by multiple factors. The purpose of this study was to examine the effect of 14-3-3β on cellular proliferation and milk fat/β-casein synthesis in BMECs and reveal its underlying mechanisms. In this study, we employed gene function analysis to explore the regulatory effect and molecular mechanisms of 14-3-3β on milk synthesis and proliferation in BMECs. We found that leucine and IGF-1 enhance cell proliferation and milk synthesis in a 14-3-3β-dependent manner and only exhibiting such effect in the presence of 14-3-3β. We further determined that 14-3-3β interacts with the IGF1R self-phosphorylation site and it additionally mediated leucine and IGF-1 to stimulate the synthesis of milk through the IGF1R-AKT-mTORC1 signaling pathway. In summary, our data indicated that 14-3-3β mediates the expression of milk fat and protein stimulated by leucine and IGF-1, leading to lactogenesis through IGF1R signaling pathway in BMECs.
Collapse
|
4
|
Gharbi N, Røise D, Førre JE, Edson AJ, Hushagen HA, Tronci V, Frøyset AK, Fladmark KE. Reintroduction of DJ-1 in Müller Cells Inhibits Retinal Degeneration in the DJ-1 Deficient Retina. Antioxidants (Basel) 2021; 10:1862. [PMID: 34942966 PMCID: PMC8698414 DOI: 10.3390/antiox10121862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
The eye is continuously under oxidative stress due to high metabolic activity and reactive oxygen species generated by daily light exposure. The redox-sensitive protein DJ-1 has proven to be essential in order to protect retina and retinal pigment epithelium (RPE) from oxidative-stress-induced degeneration. Here, we analyzed the specific role of Müller cell DJ-1 in the adult zebrafish retina by re-establishing Müller-cell-specific DJ-1 expression in a DJ-1 knockout retina. Loss of DJ-1 resulted in an age-dependent retinal degeneration, including loss of cells in the ganglion cell layer, retinal thinning, photoreceptor disorganization and RPE cell dysfunction. The degenerative phenotype induced by the absence of DJ-1 was inhibited by solely expressing DJ-1 in Müller cells. The protective effect was dependent upon the cysteine-106 residue of DJ-1, which has been shown to be an oxidative sensor of DJ-1. In a label-free proteomics analysis of isolated retinas, we identified proteins differentially expressed after DJ-1 knockout, but with restored levels after Müller cell DJ-1 re-insertion. Our data show that Müller cell DJ-1 has a major role in protecting the retina from age-dependent oxidative stress.
Collapse
Affiliation(s)
- Naouel Gharbi
- Integrative Fish Biology Group (IFB), NORCE Norwegian Research Center AS, N-5020 Bergen, Norway; (N.G.); (V.T.)
| | - Dagne Røise
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Jorunn-Elise Førre
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Amanda J. Edson
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Helena A. Hushagen
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Valentina Tronci
- Integrative Fish Biology Group (IFB), NORCE Norwegian Research Center AS, N-5020 Bergen, Norway; (N.G.); (V.T.)
| | - Ann-Kristin Frøyset
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Kari E. Fladmark
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| |
Collapse
|
5
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
6
|
Mencke P, Boussaad I, Romano CD, Kitami T, Linster CL, Krüger R. The Role of DJ-1 in Cellular Metabolism and Pathophysiological Implications for Parkinson's Disease. Cells 2021; 10:347. [PMID: 33562311 PMCID: PMC7915027 DOI: 10.3390/cells10020347] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
DJ-1 is a multifunctional protein associated with pathomechanisms implicated in different chronic diseases including neurodegeneration, cancer and diabetes. Several of the physiological functions of DJ-1 are not yet fully understood; however, in the last years, there has been increasing evidence for a potential role of DJ-1 in the regulation of cellular metabolism. Here, we summarize the current knowledge on specific functions of DJ-1 relevant to cellular metabolism and their role in modulating metabolic pathways. Further, we illustrate pathophysiological implications of the metabolic effects of DJ-1 in the context of neurodegeneration in Parkinson´s disease.
Collapse
Affiliation(s)
- Pauline Mencke
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Chiara D. Romano
- Biospecimen Research Group, Integrated Biobank of Luxembourg, Luxembourg Institute of Health (LIH), 3531 Dudelange, Luxembourg;
- Enzymology & Metabolism, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Toshimori Kitami
- RIKEN Outpost Laboratory, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Carole L. Linster
- Enzymology & Metabolism, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg (Belair), Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
| |
Collapse
|
7
|
De Lazzari F, Prag HA, Gruszczyk AV, Whitworth AJ, Bisaglia M. DJ-1: A promising therapeutic candidate for ischemia-reperfusion injury. Redox Biol 2021; 41:101884. [PMID: 33561740 PMCID: PMC7872972 DOI: 10.1016/j.redox.2021.101884] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/31/2022] Open
Abstract
DJ-1 is a multifaceted protein with pleiotropic functions that has been implicated in multiple diseases, ranging from neurodegeneration to cancer and ischemia-reperfusion injury. Ischemia is a complex pathological state arising when tissues and organs do not receive adequate levels of oxygen and nutrients. When the blood flow is restored, significant damage occurs over and above that of ischemia alone and is termed ischemia-reperfusion injury. Despite great efforts in the scientific community to ameliorate this pathology, its complex nature has rendered it challenging to obtain satisfactory treatments that translate to the clinic. In this review, we will describe the recent findings on the participation of the protein DJ-1 in the pathophysiology of ischemia-reperfusion injury, firstly introducing the features and functions of DJ-1 and, successively highlighting the therapeutic potential of the protein. DJ-1 has been shown to confer protection in ischemia-reperfusion injury models. DJ-1 protection relies on the activation of antioxidant signaling pathways. DJ-1 regulates mitochondrial homeostasis during ischemia and reperfusion. DJ-1 seems to modulate ion homeostasis during ischemia and reperfusion. DJ-1 may represent a promising therapeutic target for ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Federica De Lazzari
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131, Padova, Italy
| | - Hiran A Prag
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Anja V Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Alexander J Whitworth
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Marco Bisaglia
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
8
|
Zhang L, Li Q, Hong H, Luo Y, Lametsch R. Search for proteomic markers for stunning stress and stress-induced textural tenderization in silver carp (Hypophthalmichthys molitrix) fillets using label-free strategy. Food Res Int 2020; 137:109678. [DOI: 10.1016/j.foodres.2020.109678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
|
9
|
Guo K, Zhang X, Hou Y, Liu J, Feng Q, Wang K, Xu L, Zhang Y. A novel PCV2 ORF5-interacting host factor YWHAB inhibits virus replication and alleviates PCV2-induced cellular response. Vet Microbiol 2020; 251:108893. [PMID: 33096469 PMCID: PMC7568206 DOI: 10.1016/j.vetmic.2020.108893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022]
Abstract
YWHAB is a PCV2 ORF5-interacting host factor. YWHAB expression is activated by PCV2 infection and ORF5 transfection. YWHAB inhibits PCV2 replication. YWHAB alleviates PCV2 infection induced ERS, autophagy, ROS production and apoptosis.
Porcine circovirus type 2 (PCV2) infection causes porcine circovirus associated diseases (PCVAD) worldwide. Identification of host factors that interact with viral proteins is a fundamental step to understand the pathogenesis of PCV2. Our previous study reported that ORF5, a newly identified PCV2 viral protein supports PCV2 replication and interacts with multiple host factors. Here, we showed that a host factor YWHAB is an ORF5-interacting protein and plays essential roles during PCV2 infection. By using protein-protein interaction assays, we confirmed that YWHAB directly interacts with PCV2-ORF5 protein. We further showed that YWHAB expression was potently induced upon ORF5 overexpression and PCV2 infection. Remarkably, we found that the YWHAB strongly inhibited PCV2 replication, suggesting its role in defending PCV2 infection. By using the ectopic overexpression and gene knockdown approaches, we revealed that YWHAB inhibits PCV2-induced endoplasmic reticulum stress (ERS), autophagy, reactive oxygen species (ROS) production and apoptosis, suggesting its vital role in alleviating PCV2-induced cellular damage. Together, this study demonstrated that an ORF5-interacting host factor YWHAB affects PCV2 infection and PCV2-induced cellular response, which expands the current understanding of YWHAB biological function and might serves as a new therapeutic target to manage PCV2 infection-associated diseases.
Collapse
Affiliation(s)
- Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quanwen Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Mnatsakanyan N, Jonas EA. The new role of F 1F o ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol 2020; 332:113400. [PMID: 32653453 DOI: 10.1016/j.expneurol.2020.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The mitochondrial F1Fo ATP synthase is one of the most abundant proteins of the mitochondrial inner membrane, which catalyzes the final step of oxidative phosphorylation to synthesize ATP from ADP and Pi. ATP synthase uses the electrochemical gradient of protons (ΔμH+) across the mitochondrial inner membrane to synthesize ATP. Under certain pathophysiological conditions, ATP synthase can run in reverse to hydrolyze ATP and build the necessary ΔμH+ across the mitochondrial inner membrane. Tight coupling between these two processes, proton translocation and ATP synthesis, is achieved by the unique rotational mechanism of ATP synthase and is necessary for efficient cellular metabolism and cell survival. The uncoupling of these processes, dissipation of mitochondrial inner membrane potential, elevated levels of ROS, low matrix content of ATP in combination with other cellular malfunction trigger the opening of the mitochondrial permeability transition pore in the mitochondrial inner membrane. In this review we will discuss the new role of ATP synthase beyond oxidative phosphorylation. We will highlight its function as a unique regulator of cell life and death and as a key target in mitochondria-mediated neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. J Mol Cell Cardiol 2020; 144:109-118. [PMID: 32461058 PMCID: PMC7877492 DOI: 10.1016/j.yjmcc.2020.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) or mitochondrial megachannel is arguably one of the most mysterious phenomena in biology today. mPTP has been at the center of ongoing extensive scientific research for the last several decades. In this review we will discuss recent advances in the field that enhance our understanding of the molecular composition of mPTP, its regulatory mechanisms and its pathophysiological role. We will describe our recent findings on the role of ATP synthase c-subunit ring as a central player in mitochondrial permeability transition and as an important metabolic regulator during development and in degenerative diseases.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Zhu X, Luo C, Lin K, Bu F, Ye F, Huang C, Luo H, Huang J, Zhu Z. Overexpression of DJ-1 enhances colorectal cancer cell proliferation through the cyclin-D1/MDM2-p53 signaling pathway. Biosci Trends 2020; 14:83-95. [PMID: 32132307 DOI: 10.5582/bst.2019.01272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Emerging evidence indicates that DJ-1 is highly expressed in different cancers. It modulates cancer progression, including cell proliferation, cell apoptosis, invasion, and metastasis. However, its role in colorectal cancer (CRC) remains poorly defined. The current study noted increased DJ-1 expression in CRC tumor tissue and found that its expression was closely related to clinical-pathological features. Similarly, DJ-1 increased in CRC cells (SW480, HT-29, Caco-2, LoVo, HCT116, and SW620), and especially in SW480 and HCT116 cells. Functional analyses indicated that overexpression of DJ-1 promoted CRC cell invasion, migration, and proliferation in vitro and in vivo. Mechanistic studies indicated that DJ-1 increased in CRC cell lines, activated specific protein cyclin-D1, and modulated the MDM2/p53 signaling pathway by regulating the levels of the downstream factors Bax, Caspase-3, and Bcl-2, which are related to the cell cycle and apoptosis. Conversely, knockdown of DJ-1 upregulated p53 expression by disrupting the interaction between p53 and MDM2 and inhibiting CRC cell proliferation, revealing the pro-oncogenic mechanism of DJ-1 in CRC. In conclusion, the current findings provide compelling evidence that DJ-1 might be a promoter of CRC cell invasion, proliferation, and migration via the cyclin-D1/MDM2-p53 signaling pathway. Findings also suggest its potential role as a postoperative adjuvant therapy for patients with CRC.
Collapse
Affiliation(s)
- Xiaojian Zhu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Chen Luo
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Kang Lin
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Fanqin Bu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Fan Ye
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Chao Huang
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Huang
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengming Zhu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Poljsak B, Kovac V, Dahmane R, Levec T, Starc A. Cancer Etiology: A Metabolic Disease Originating from Life's Major Evolutionary Transition? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7831952. [PMID: 31687086 PMCID: PMC6800902 DOI: 10.1155/2019/7831952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
A clear understanding of the origins of cancer is the basis of successful strategies for effective cancer prevention and management. The origin of cancer at the molecular and cellular levels is not well understood. Is the primary cause of the origin of cancer the genomic instability or impaired energy metabolism? An attempt was made to present cancer etiology originating from life's major evolutionary transition. The first evolutionary transition went from simple to complex cells when eukaryotic cells with glycolytic energy production merged with the oxidative mitochondrion (The Endosymbiosis Theory first proposed by Lynn Margulis in the 1960s). The second transition went from single-celled to multicellular organisms once the cells obtained mitochondria, which enabled them to obtain a higher amount of energy. Evidence will be presented that these two transitions, as well as the decline of NAD+ and ATP levels, are the root of cancer diseases. Restoring redox homeostasis and reactivation of mitochondrial oxidative metabolism are important factors in cancer prevention.
Collapse
Affiliation(s)
- B. Poljsak
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - V. Kovac
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - R. Dahmane
- 2Faculty of Health Sciences, University of Ljubljana, Chair of Biomedicine in Health Care, Ljubljana, Slovenia
| | - T. Levec
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - A. Starc
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| |
Collapse
|