1
|
Jimenez-Trinidad FR, Calvo-Gomez S, Sabaté M, Brugaletta S, Campuzano V, Egea G, Dantas AP. Extracellular Vesicles as Mediators of Endothelial Dysfunction in Cardiovascular Diseases. Int J Mol Sci 2025; 26:1008. [PMID: 39940780 PMCID: PMC11816526 DOI: 10.3390/ijms26031008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
This comprehensive review aims to provide a thorough overview of the vital role that extracellular vesicles (EVs) play in endothelial dysfunction, particularly emphasizing how physiological factors-such as sex and aging-along with significant cardiovascular risk factors, influence this process. The review covers studies ranging from the first description of EVs in 1945 to contemporary insights into their biological roles in intercellular signaling and endothelial dysfunction. A comprehensive analysis of peer-reviewed articles and reviews indexed in the PubMed database was conducted to compile the information. Initially, Medical Subject Headings (MeSH) terms included keywords aimed at providing general knowledge about the role of EVs in the regulation of endothelial signaling, such as "extracellular vesicles", "endothelium", and "intercellular signaling". Subsequently, terms related to the pathophysiological implications of EV interactions with endothelial dysfunction and cardiovascular disease were added, including "cardiovascular disease", "sex", "aging", "atherosclerosis", "obesity", and "diabetes". Additionally, the potential applications of EVs in cardiovascular disease were explored using the MeSH terms "extracellular vesicles", "cardiovascular disease", "biomarker", and "therapeutic strategy". The results of this bibliographical review reveal that EVs have the capacity to induce various cellular responses within the cardiovascular system and play a significant role in the complex landscape of endothelial dysfunction and cardiovascular disease. The composition of the EV cargo is subject to modification by pathophysiological conditions such as sex, aging, and cardiovascular risk factors, which result in a complex regulatory influence on endothelial function and neighboring cells when released from a dysfunctional endothelium. Moreover, the data suggest that this field still requires further exploration, as EV biology is continuously evolving, presenting a dynamic and engaging area for research. A deeper understanding of the molecular cargo involved in EV-endothelium interactions could yield valuable biomarkers for monitoring cardiovascular disease progression and facilitate the development of innovative bioengineered therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Francisco Rafael Jimenez-Trinidad
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Sergi Calvo-Gomez
- Department of Biomedical Sciences, School of Medicine, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain;
| | - Manel Sabaté
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Salvatore Brugaletta
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Rare Diseases Biomedical Research Network Center (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center of Medical Genetics, University of Antwerpen, 2659 Edegem, Belgium
| | - Ana Paula Dantas
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
2
|
Luk C, Bridge KI, Warmke N, Simmons KJ, Drozd M, Moran A, MacCannell ADV, Cheng CW, Straw S, Scragg JL, Smith J, Ozber CH, Wilkinson CG, Skromna A, Makava N, Prag HA, Simon Futers T, Brown OI, Bruns AF, Walker AM, Watt NT, Mughal R, Griffin KJ, Yuldasheva NY, Limumpornpetch S, Viswambharan H, Sukumar P, Beech DJ, Vidal-Puig A, Witte KK, Murphy MP, Hartley RC, Wheatcroft SB, Cubbon RM, Roberts LD, Kearney MT, Haywood NJ. Paracrine role of endothelial IGF-1 receptor in depot-specific adipose tissue adaptation in male mice. Nat Commun 2025; 16:170. [PMID: 39747815 PMCID: PMC11696296 DOI: 10.1038/s41467-024-54669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
During recent decades, changes in lifestyle have led to widespread nutritional obesity and its related complications. Remodelling adipose tissue as a therapeutic goal for obesity and its complications has attracted much attention and continues to be actively explored. The endothelium lines all blood vessels and is close to all cells, including adipocytes. The endothelium has been suggested to act as a paracrine organ. We explore the role of endothelial insulin-like growth factor-1 receptor (IGF-1R), as a paracrine modulator of white adipose phenotype. We show that a reduction in endothelial IGF-1R expression in the presence of high-fat feeding in male mice leads to depot-specific beneficial white adipose tissue remodelling, increases whole-body energy expenditure and enhances insulin sensitivity via a non-cell-autonomous paracrine mechanism. We demonstrate that increased endothelial malonate may be contributory and that malonate prodrugs have potentially therapeutically relevant properties in the treatment of obesity-related metabolic disease.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katie J Simmons
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, Leeds, UK
| | - Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Amy Moran
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Amanda D V MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Chew W Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jason L Scragg
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Claire H Ozber
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Division of Gastroenterology & Surgery, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Chloe G Wilkinson
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, St Mary's Hospital, Oxford Road, Manchester, UK
| | - Anna Skromna
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natallia Makava
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - T Simon Futers
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Oliver I Brown
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Alexander-Francisco Bruns
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Andrew Mn Walker
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nicole T Watt
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Romana Mughal
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Department of Optometry and Vision Sciences, University of Huddersfield, Huddersfield, UK
| | - Kathryn J Griffin
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sunti Limumpornpetch
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Division of Internal Medicine, Cardiology Unit, Faculty of Medicine Prince of Songkla University, Songkhla, Thailand
| | - Hema Viswambharan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Stepanov A, Shishkova D, Markova V, Markova Y, Frolov A, Lazebnaya A, Oshchepkova K, Perepletchikova D, Smirnova D, Basovich L, Repkin E, Kutikhin A. Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59. Int J Mol Sci 2024; 25:11382. [PMID: 39518935 PMCID: PMC11546392 DOI: 10.3390/ijms252111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Calciprotein particles (CPPs) are essential circulating scavengers of excessive Ca2+ and PO43- ions, representing a vehicle that removes them from the human body and precludes extraskeletal calcification. Having been internalised by endothelial cells (ECs), CPPs induce their dysfunction, which is accompanied by a remarkable molecular reconfiguration, although little is known about this process's extracellular signatures. Here, we applied ultra-high performance liquid chromatography-tandem mass spectrometry to perform a secretome-wide profiling of the cell culture supernatant from primary human coronary artery ECs (HCAECs) and internal thoracic artery ECs (HITAECs) treated with primary CPPs (CPP-P), secondary CPPs (CPP-S), magnesiprotein particles (MPPs), or Ca2+/Mg2+-free Dulbecco's phosphate-buffered saline (DPBS) for 24 h. Incubation with CPP-P/CPP-S significantly altered the profiles of secreted proteins, delineating physiological and pathological endothelial secretomes. Neither pathway enrichment analysis nor the interrogation of protein-protein interactions detected extracellular matrix- and basement membrane-related molecular terms in the protein datasets from CPP-P/CPP-S-treated ECs. Both proteomic profiling and enzyme-linked immunosorbent assay identified an increased level of protectin (CD59) and reduced levels of osteonectin (SPARC), perlecan (HSPG2), and fibronectin (FN1) in the cell culture supernatant upon CPP-P/CPP-S treatment. Elevated soluble CD59 and decreased release of basement membrane components might be considered as potential signs of dysfunctional endothelium.
Collapse
Affiliation(s)
- Alexander Stepanov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Alexey Frolov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Anastasia Lazebnaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Karina Oshchepkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Daria Perepletchikova
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia; (D.P.); (D.S.); (L.B.)
| | - Daria Smirnova
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia; (D.P.); (D.S.); (L.B.)
| | - Liubov Basovich
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia; (D.P.); (D.S.); (L.B.)
| | - Egor Repkin
- Resource Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, 199034 St. Petersburg, Russia;
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| |
Collapse
|
4
|
Chu JY, McCormick B, Sundaram K, Hardisty G, Karmakar U, Pumpe C, Krull E, Lucas CD, Amado-Azevedo J, Hordijk PL, Caporali A, Mellor H, Baillie JK, Rossi AG, Vermeren S. ARAP3 protects from excessive formylated peptide-induced microvascular leakage by acting on endothelial cells and neutrophils. J Pathol 2024; 263:347-359. [PMID: 38734878 DOI: 10.1002/path.6288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 05/13/2024]
Abstract
Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Julia Y Chu
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Barry McCormick
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Kruthika Sundaram
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Gareth Hardisty
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Utsa Karmakar
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Caroline Pumpe
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Elizabeth Krull
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Christopher D Lucas
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Joana Amado-Azevedo
- Department of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Andrea Caporali
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol, UK
| | - J Kenneth Baillie
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Kutluk H, Bastounis EE, Constantinou I. Integration of Extracellular Matrices into Organ-on-Chip Systems. Adv Healthc Mater 2023; 12:e2203256. [PMID: 37018430 PMCID: PMC11468608 DOI: 10.1002/adhm.202203256] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Indexed: 04/07/2023]
Abstract
The extracellular matrix (ECM) is a complex, dynamic network present within all tissues and organs that not only acts as a mechanical support and anchorage point but can also direct fundamental cell behavior, function, and characteristics. Although the importance of the ECM is well established, the integration of well-controlled ECMs into Organ-on-Chip (OoC) platforms remains challenging and the methods to modulate and assess ECM properties on OoCs remain underdeveloped. In this review, current state-of-the-art design and assessment of in vitro ECM environments is discussed with a focus on their integration into OoCs. Among other things, synthetic and natural hydrogels, as well as polydimethylsiloxane (PDMS) used as substrates, coatings, or cell culture membranes are reviewed in terms of their ability to mimic the native ECM and their accessibility for characterization. The intricate interplay among materials, OoC architecture, and ECM characterization is critically discussed as it significantly complicates the design of ECM-related studies, comparability between works, and reproducibility that can be achieved across research laboratories. Improving the biomimetic nature of OoCs by integrating properly considered ECMs would contribute to their further adoption as replacements for animal models, and precisely tailored ECM properties would promote the use of OoCs in mechanobiology.
Collapse
Affiliation(s)
- Hazal Kutluk
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| | - Effie E. Bastounis
- Institute of Microbiology and Infection Medicine (IMIT)Eberhard Karls University of TübingenAuf der Morgenstelle 28, E872076TübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections” EXC 2124Eberhard Karls University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Iordania Constantinou
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| |
Collapse
|
6
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
7
|
Raju S, Botts SR, Blaser M, Prajapati K, Ho TWW, Ching C, Galant NJ, Fiddes L, Wu R, Clift CL, Pham T, Lee WL, Singh SA, Aikawa E, Fish JE, Howe KL. Endothelial cells secrete small extracellular vesicles bidirectionally containing distinct cargo to uniquely reprogram vascular cells in the circulation and vessel wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538787. [PMID: 37162986 PMCID: PMC10168399 DOI: 10.1101/2023.04.28.538787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Rationale Extracellular vesicles (EVs) contain bioactive cargo including microRNAs (miRNAs) and proteins that are released by cells as a form of cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels and thereby interface with cells in the circulation as well as cells residing in the vascular wall. It is unknown whether ECs have the capacity to release EVs capable of governing recipient cells within two separate compartments, and how this is affected by endothelial activation commonly seen in atheroprone regions. Objective Given their boundary location, we propose that ECs utilize bidirectional release of distinct EV cargo in quiescent and activated states to communicate with cells within the circulation and blood vessel wall. Methods and Results EVs were isolated from primary human aortic endothelial cells (ECs) (+/-IL-1β activation), quantified, and analysed by miRNA transcriptomics and proteomics. Compared to quiescent ECs, activated ECs increased EV release, with miRNA and protein cargo that were related to atherosclerosis. RNA sequencing of EV-treated monocytes and smooth muscle cells (SMCs) revealed that EVs from activated ECs altered pathways that were pro-inflammatory and atherogenic. Apical and basolateral EV release was assessed using ECs on transwells. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined that compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and SMCs, respectively. Conclusions The demonstration that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance our ability to design endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.
Collapse
Affiliation(s)
- Sneha Raju
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Vascular Surgery, Toronto General Hospital, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto ON, Canada
| | - Steven R. Botts
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto ON, Canada
| | - Mark Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kamalben Prajapati
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Tse Wing Winnie Ho
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | - Lindsey Fiddes
- Faculty of Medicine, University of Toronto, Toronto ON, Canada
| | - Ruilin Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Cassandra L. Clift
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tan Pham
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Canada
| | - Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Vascular Surgery, Toronto General Hospital, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto ON, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
8
|
Haywood NJ, Kearney MT. Emerging paracrine functions of the endothelium in the setting of Diabetes. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Villari G, Gioelli N, Valdembri D, Serini G. Vesicle choreographies keep up cell-to-extracellular matrix adhesion dynamics in polarized epithelial and endothelial cells. Matrix Biol 2022; 112:62-71. [PMID: 35961423 DOI: 10.1016/j.matbio.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022]
Abstract
In metazoans, cell adhesion to the extracellular matrix (ECM) drives the development, functioning, and repair of different tissues, organs, and systems. Disruption or dysregulation of cell-to-ECM adhesion promote the initiation and progression of several diseases, such as bleeding, immune disorders and cancer. Integrins are major ECM transmembrane receptors, whose function depends on both allosteric changes and exo-endocytic traffic, which carries them to and from the plasma membrane. In apico-basally polarized cells, asymmetric adhesion to the ECM is maintained by continuous targeting of the plasma membrane by vesicles coming from the trans Golgi network and carrying ECM proteins. Active integrin-bound ECM is indeed endocytosed and replaced by the exocytosis of fresh ECM. Such vesicular traffic is finely driven by the teamwork of microtubules (MTs) and their associated kinesin and dynein motors. Here, we review the main cytoskeletal actors involved in the control of the spatiotemporal distribution of active integrins and their ECM ligands, highlighting the key role of the synchronous (ant)agonistic cooperation between MT motors transporting vesicular cargoes, in the same or in opposite direction, in the regulation of traffic logistics, and the establishment of epithelial and endothelial cell polarity.
Collapse
Affiliation(s)
- Giulia Villari
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy.
| | - Guido Serini
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
10
|
Bosma EK, Darwesh S, Zheng JY, van Noorden CJF, Schlingemann RO, Klaassen I. Quantitative Assessment of the Apical and Basolateral Membrane Expression of VEGFR2 and NRP2 in VEGF-A-stimulated Cultured Human Umbilical Vein Endothelial Cells. J Histochem Cytochem 2022; 70:557-569. [PMID: 35876388 PMCID: PMC9393510 DOI: 10.1369/00221554221115767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells (ECs) form a precisely regulated polarized monolayer in capillary walls. Vascular endothelial growth factor-A (VEGF-A) induces endothelial hyperpermeability, and VEGF-A applied to the basolateral side, but not the apical side, has been shown to be a strong barrier disruptor in blood-retinal barrier ECs. We show here that VEGF-A presented to the basolateral side of human umbilical vein ECs (HUVECs) induces higher permeability than apical stimulation, which is similar to results obtained with bovine retinal ECs. We investigated with immunocytochemistry and confocal imaging the distribution of VEGF receptor-2 (VEGFR2) and neuropilin-2 (NRP2) in perinuclear apical and basolateral membrane domains. Orthogonal z-sections of cultured HUVECs were obtained, and the fluorescence intensity at the apical and basolateral membrane compartments was measured. We found that VEGFR2 and NRP2 are evenly distributed throughout perinuclear apical and basolateral membrane compartments in unstimulated HUVECs grown on Transwell inserts, whereas basolateral VEGF-A stimulation induces a shift toward basolateral VEGFR2 and NRP2 localization. When HUVECs were grown on coverslips, the distribution of VEGFR2 and NRP2 across the perinuclear apical and basolateral membrane domains was different. Our findings demonstrate that HUVECs dynamically regulate VEGFR2 and NRP2 localization on membrane microdomains, depending on growth conditions and the polarity of VEGF-A stimulation.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shahan Darwesh
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Jia Y Zheng
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands.,Department of Ophthalmology, Fondation Asile des Aveugles, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Brewer KD, Shi SM, Wyss-Coray T. Unraveling protein dynamics to understand the brain - the next molecular frontier. Mol Neurodegener 2022; 17:45. [PMID: 35717317 PMCID: PMC9206758 DOI: 10.1186/s13024-022-00546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The technological revolution to measure global gene expression at the single-cell level is currently transforming our knowledge of the brain and neurological diseases, leading from a basic understanding of genetic regulators and risk factors to one of more complex gene interactions and biological pathways. Looking ahead, our next challenge will be the reliable measurement and understanding of proteins. We describe in this review how to apply new, powerful methods of protein labeling, tracking, and detection. Recent developments of these methods now enable researchers to uncover protein mechanisms in vivo that may previously have only been hypothesized. These methods are also useful for discovering new biology because how proteins regulate systemic interactions is not well understood in most cases, such as how they travel through the bloodstream to distal targets or cross the blood–brain barrier. Genetic sequencing of DNA and RNA have enabled many great discoveries in the past 20 years, and now, the protein methods described here are creating a more complete picture of how cells to whole organisms function. It is likely that these developments will generate another transformation in biomedical research and our understanding of the brain and will ultimately allow for patient-specific medicine on a protein level.
Collapse
Affiliation(s)
- Kyle D Brewer
- ChEM-H, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sophia M Shi
- ChEM-H, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- ChEM-H, Stanford University, Stanford, CA, USA. .,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Howe KL, Cybulsky M, Fish JE. The Endothelium as a Hub for Cellular Communication in Atherogenesis: Is There Directionality to the Message? Front Cardiovasc Med 2022; 9:888390. [PMID: 35498030 PMCID: PMC9051343 DOI: 10.3389/fcvm.2022.888390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells line every blood vessel and thereby serve as an interface between the blood and the vessel wall. They have critical functions for maintaining homeostasis and orchestrating vascular pathogenesis. Atherosclerosis is a chronic disease where cholesterol and inflammatory cells accumulate in the artery wall below the endothelial layer and ultimately form plaques that can either progress to occlude the lumen or rupture with thromboembolic consequences - common outcomes being myocardial infarction and stroke. Cellular communication lies at the core of this process. In this review, we discuss traditional (e.g., cytokines, chemokines, nitric oxide) and novel (e.g., extracellular vesicles) modes of endothelial communication with other endothelial cells as well as circulating and vessel wall cells, including monocytes, macrophages, neutrophils, vascular smooth muscle cells and other immune cells, in the context of atherosclerosis. More recently, the growing appreciation of endothelial cell plasticity during atherogenesis suggests that communication strategies are not static. Here, emerging data on transcriptomics in cells during the development of atherosclerosis are considered in the context of how this might inform altered cell-cell communication. Given the unique position of the endothelium as a boundary layer that is activated in regions overlying vascular inflammation and atherosclerotic plaque, there is a potential to exploit the unique features of this group of cells to deliver therapeutics that target the cellular crosstalk at the core of atherosclerotic disease. Data are discussed supporting this concept, as well as inherent pitfalls. Finally, we briefly review the literature for other regions of the body (e.g., gut epithelium) where cells similarly exist as a boundary layer but provide discrete messages to each compartment to govern homeostasis and disease. In this light, the potential for endothelial cells to communicate in a directional manner is explored, along with the implications of this concept - from fundamental experimental design to biomarker potential and therapeutic targets.
Collapse
Affiliation(s)
- Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Soubeyrand S, Lau P, Nikpay M, Dang AT, McPherson R. Common Polymorphism That Protects From Cardiovascular Disease Increases Fibronectin Processing and Secretion. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003428. [PMID: 35130031 DOI: 10.1161/circgen.121.003428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Fibronectin (FN1) is an essential regulator of homodynamic processes and tissue remodeling that have been proposed to contribute to atherosclerosis. Moreover, recent large-scale genome-wide association studies (GWAS) have linked common genetic variants within the FN1 gene to coronary artery disease risk. METHODS Public databases were analyzed by 2-Sample Mendelian Randomization. Expression constructs encoding short FN1 reporter constructs and full-length plasma FN1 variants were introduced in various cell models. Secreted and cellular levels were then analyzed and quantified by SDS-PAGE and fluorescence microscopy. Mass spectrometry and glycosylation analyses were performed to probe possible posttranscriptional differences. RESULTS Bioinformatic analyses revealed that common coronary artery disease risk single nucleotide polymorphisms in the FN1 locus associate with circulating levels of FN1 and that higher FN1 (fibronectin 1) protein levels in plasma are linked to lower coronary artery disease risk. The coronary artery disease-associated FN1 locus encompasses a common polymorphism that translates a L15Q variant situated within the FN1 signal peptide. Introduction of FN1 reporter constructs, differing at position 15, revealed differences in secretion, with the FN1 Q15 variant being less well secreted. Moreover, the L15Q polymorphism was found to alter glycosylation in some cell models but not in human plasma. CONCLUSIONS In addition to providing novel functional evidence implicating FN1 in cardioprotection, these findings demonstrate that a common variant within a secretion signal peptide regulates protein function.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory (S.S., P.L., M.N., A.-T.D., R.M.), University of Ottawa Heart Institute, Canada
| | - Paulina Lau
- Atherogenomics Laboratory (S.S., P.L., M.N., A.-T.D., R.M.), University of Ottawa Heart Institute, Canada
| | - Majid Nikpay
- Atherogenomics Laboratory (S.S., P.L., M.N., A.-T.D., R.M.), University of Ottawa Heart Institute, Canada
| | - Anh-Thu Dang
- Atherogenomics Laboratory (S.S., P.L., M.N., A.-T.D., R.M.), University of Ottawa Heart Institute, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory (S.S., P.L., M.N., A.-T.D., R.M.), University of Ottawa Heart Institute, Canada.,Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (R.M.), University of Ottawa Heart Institute, Canada
| |
Collapse
|
14
|
LPPR5 Expression in Glioma Affects Growth, Vascular Architecture, and Sunitinib Resistance. Int J Mol Sci 2022; 23:ijms23063108. [PMID: 35328529 PMCID: PMC8952597 DOI: 10.3390/ijms23063108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/21/2022] Open
Abstract
Despite intensive research, glioblastoma remains almost invariably fatal. Various promising drugs targeting specific aspects of glioma biology, in addition to or as an alternative to antiproliferative chemotherapy, were not successful in larger clinical trials. Further insights into the biology of glioma and the mechanisms behind the evasive-adaptive response to targeted therapies is needed to help identify new therapeutic targets, prognostics, or predictive biomarkers. As a modulator of the canonically oncogenic Rho-GTPase pathway, Lipid phosphate phosphatase-related protein type 5 (LPPR5) is pivotal in influencing growth, angiogenesis, and therapeutic resistance. We used a GL261 murine orthotopic allograft glioma model to quantify the tumor growth and to obtain tissue for histological and molecular analysis. Epicortical intravital epi-illumination fluorescence video microscopy of the tumor cell spheroids was used to characterize the neovascular architecture and hemodynamics. GL261-glioma growth was delayed and decelerated after LPPR5 overexpression (LPPR5OE). We observed increased tumor cell apoptosis and decreased expression and secretion of vascular endothelial growth factor A in LPPR5OE glioma. Hence, an altered micro-angioarchitecture consisting of dysfunctional small blood vessels was discovered in the LPPR5OE tumors. Sunitinib therapy eliminated these vessels but had no effect on tumor growth or apoptosis. In general, LPPR5 overexpression generated a more benign, proapoptotic glioma phenotype with delayed growth and a dysfunctional vascular architecture.
Collapse
|
15
|
Lopez Rioja A, Faulkner A, Mellor H. srGAP2 deactivates RhoA to control the duration of thrombin-mediated endothelial permeability. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:K1-K10. [PMID: 35441126 PMCID: PMC9012936 DOI: 10.1530/vb-21-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022]
Abstract
The endothelial barrier is a tightly regulated gateway in the transport of material between circulation and the tissues. Inflammatory mediators such as thrombin are able to open paracellular spaces in the endothelial monolayer to allow the extravasation of plasma proteins and leukocytes. Here we show that the protein SLIT-ROBO Rho GTPase-activating protein 2 (srGAP2) plays a critical role in regulating the extent of thrombin-mediated opening. We show that srGAP2 is not required for normal barrier function in resting endothelial cells, but that depletion of srGAP2 significantly increases the magnitude and duration of junctional opening in response to thrombin. We show that srGAP2 acts to switch off RhoA signaling after the contraction phase of thrombin-induced permeability, allowing respreading of cells and reformation of the barrier. srGAP2 is also required for effective restoration of the barrier after treatment with two other vasoactive agents that active RhoA - TNFα and angiotensin II. Taken together, we show that srGAP2 has a general function in controlling RhoA signaling in endothelial permeability, acting to limit the degree and duration of opening, by triggering the switch from endothelial cell contraction to respreading.
Collapse
Affiliation(s)
- Alba Lopez Rioja
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Ashton Faulkner
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Harry Mellor
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK
| |
Collapse
|
16
|
Xu K, Shao Y, Saaoud F, Gillespie A, Drummer C, Liu L, Lu Y, Sun Y, Xi H, Tükel Ç, Pratico D, Qin X, Sun J, Choi ET, Jiang X, Wang H, Yang X. Novel Knowledge-Based Transcriptomic Profiling of Lipid Lysophosphatidylinositol-Induced Endothelial Cell Activation. Front Cardiovasc Med 2021; 8:773473. [PMID: 34912867 PMCID: PMC8668339 DOI: 10.3389/fcvm.2021.773473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
To determine whether pro-inflammatory lipid lysophosphatidylinositols (LPIs) upregulate the expressions of membrane proteins for adhesion/signaling and secretory proteins in human aortic endothelial cell (HAEC) activation, we developed an EC biology knowledge-based transcriptomic formula to profile RNA-Seq data panoramically. We made the following primary findings: first, G protein-coupled receptor 55 (GPR55), the LPI receptor, is expressed in the endothelium of both human and mouse aortas, and is significantly upregulated in hyperlipidemia; second, LPIs upregulate 43 clusters of differentiation (CD) in HAECs, promoting EC activation, innate immune trans-differentiation, and immune/inflammatory responses; 72.1% of LPI-upregulated CDs are not induced in influenza virus-, MERS-CoV virus- and herpes virus-infected human endothelial cells, which hinted the specificity of LPIs in HAEC activation; third, LPIs upregulate six types of 640 secretomic genes (SGs), namely, 216 canonical SGs, 60 caspase-1-gasdermin D (GSDMD) SGs, 117 caspase-4/11-GSDMD SGs, 40 exosome SGs, 179 Human Protein Atlas (HPA)-cytokines, and 28 HPA-chemokines, which make HAECs a large secretory organ for inflammation/immune responses and other functions; fourth, LPIs activate transcriptomic remodeling by upregulating 172 transcription factors (TFs), namely, pro-inflammatory factors NR4A3, FOS, KLF3, and HIF1A; fifth, LPIs upregulate 152 nuclear DNA-encoded mitochondrial (mitoCarta) genes, which alter mitochondrial mechanisms and functions, such as mitochondrial organization, respiration, translation, and transport; sixth, LPIs activate reactive oxygen species (ROS) mechanism by upregulating 18 ROS regulators; finally, utilizing the Cytoscape software, we found that three mechanisms, namely, LPI-upregulated TFs, mitoCarta genes, and ROS regulators, are integrated to promote HAEC activation. Our results provide novel insights into aortic EC activation, formulate an EC biology knowledge-based transcriptomic profile strategy, and identify new targets for the development of therapeutics for cardiovascular diseases, inflammatory conditions, immune diseases, organ transplantation, aging, and cancers.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Aria Gillespie
- Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Lu Liu
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Hang Xi
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Çagla Tükel
- Center for Microbiology & Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Domenico Pratico
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xuebin Qin
- National Primate Research Center, Tulane University, Covington, LA, United States
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Eric T. Choi
- Surgery (Division of Vascular and Endovascular Surgery), Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Hong Wang
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| |
Collapse
|
17
|
Secretome and Tunneling Nanotubes: A Multilevel Network for Long Range Intercellular Communication between Endothelial Cells and Distant Cells. Int J Mol Sci 2021; 22:ijms22157971. [PMID: 34360735 PMCID: PMC8347715 DOI: 10.3390/ijms22157971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.
Collapse
|
18
|
Mastrobattista E. Formulation and delivery solutions for the next generation biotherapeutics. J Control Release 2021; 336:583-597. [PMID: 34174354 DOI: 10.1016/j.jconrel.2021.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
In 2018 I was appointed full professor of Pharmaceutical Biotechnology & Delivery at the Pharmaceutics division of the department of Pharmaceutical Sciences at Utrecht University, The Netherlands. In this contribution to the Orations - New Horizons of the Journal of Controlled Release I will introduce my research group (see also www.uu.nl/pharmaceutics) and will highlight my current and future research projects. In coming years the focus of my research will be on the administration of biotherapeutics, aiming to control their fate from the site of injection to the site of action. I will discuss issues related to formulation of biotherapeutics into nanomedicines (NMs), intracellular delivery of nucleic acids as well as protein therapeutics, and targeted delivery of biotherapeutics beyond the liver. In addition, I will provide a forward view on how current developments in the drug delivery and gene therapy field may result in sustainable and cost-effective dosing regimens for biotherapeutics.
Collapse
Affiliation(s)
- Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Wolpe AG, Ruddiman CA, Hall PJ, Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. J Vasc Res 2021; 58:65-91. [PMID: 33503620 DOI: 10.1159/000512618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes, and interendothelial junctions, as well as caveolae and calcium signaling domains. Protein localization in endothelial cells is also determined in part by the vascular bed, with differences between arteries and veins and between large and small arteries. Specific protein polarity and localization is essential for endothelial cells in responding to various extracellular stimuli. In this review, we examine protein localization in the endothelium of resistance arteries, with occasional references to other vessels for contrast, and how that polarization contributes to endothelial function and ultimately whole organism physiology. We highlight the protein localization on the luminal surface, discussing important physiological receptors and the glycocalyx. The protein polarization to the abluminal membrane is especially unique in small resistance arteries with the presence of the myoendothelial junction, a signaling microdomain that regulates vasodilation, feedback to smooth muscle cells, and ultimately total peripheral resistance. We also discuss the interendothelial junction, where tight junctions, adherens junctions, and gap junctions all convene and regulate endothelial function. Finally, we address planar cell polarity, or axial polarity, and how this is regulated by mechanosensory signals like blood flow.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Phillip J Hall
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA,
| |
Collapse
|
20
|
Valdembri D, Serini G. Angiogenesis: The Importance of RHOJ-Mediated Trafficking of Active Integrins. Curr Biol 2020; 30:R652-R654. [PMID: 32516616 DOI: 10.1016/j.cub.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In endothelial cells, trafficking of active α5β1 integrins and polarized fibronectin secretion are important for vascular morphogenesis. A new study unveils how the endothelial small GTPase RHOJ, by repressing trafficking of active α5β1 integrins, controls fibronectin polymerization and in vivo angiogenesis.
Collapse
Affiliation(s)
- Donatella Valdembri
- Candiolo Cancer Institute - FPO, IRCCS, 10060 Candiolo (TO), Italy; Department of Oncology, University of Torino School of Medicine, 10060 Candiolo (TO), Italy.
| | - Guido Serini
- Candiolo Cancer Institute - FPO, IRCCS, 10060 Candiolo (TO), Italy; Department of Oncology, University of Torino School of Medicine, 10060 Candiolo (TO), Italy.
| |
Collapse
|
21
|
Progranulin/EphA2 axis: A novel oncogenic mechanism in bladder cancer. Matrix Biol 2020; 93:10-24. [PMID: 32417448 DOI: 10.1016/j.matbio.2020.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/12/2023]
Abstract
The growth factor progranulin plays a critical role in bladder cancer by modulating tumor cell motility and invasion. Progranulin regulates remodeling of the actin cytoskeleton by interacting with drebrin, an actin binding protein that regulates tumor growth. We previously discovered that progranulin depletion inhibits epithelial-to-mesenchymal transition and markedly reduces in vivo tumor growth. Moreover, progranulin depletion sensitizes urothelial cancer cells to cisplatin treatment, further substantiating a pro-survival function of progranulin. Until recently, the progranulin signaling receptor remained unidentified, precluding a full understanding of progranulin action in tumor cell biology. We recently identified EphA2, a member of a large family of receptor tyrosine-kinases, as the functional receptor for progranulin. However, it is not established whether EphA2 plays an oncogenic role in bladder cancer. Here we demonstrate that progranulin, and not ephrin-A1, the canonical ligand for EphA2, is the predominant EphA2 ligand in bladder cancer. Progranulin evoked Akt- and Erk1/2-mediated EphA2 phosphorylation at Ser897, which could drive bladder tumorigenesis. We discovered that EphA2 depletion severely blunted progranulin-dependent motility and anchorage-independent growth, and sensitized bladder cancer cells to cisplatin treatment. We further defined the mechanisms of progranulin/EphA2-dependent motility by identifying liprin-α1 as a novel progranulin-dependent EphA2 interacting protein and establishing its critical role in cell motility. The discovery of EphA2 as the functional signaling receptor for progranulin and the identification of novel downstream effectors offer a new avenue for understanding the underlying mechanism of progranulin action and may constitute novel clinical and therapeutic targets in bladder cancer.
Collapse
|
22
|
Conformationally active integrin endocytosis and traffic: why, where, when and how? Biochem Soc Trans 2020; 48:83-93. [PMID: 32065228 PMCID: PMC7054750 DOI: 10.1042/bst20190309] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
Abstract
Spatiotemporal control of integrin-mediated cell adhesion to the extracellular matrix (ECM) is critical for physiological and pathological events in multicellular organisms, such as embryonic development, angiogenesis, platelet aggregation, leukocytes extravasation, and cancer cell metastatic dissemination. Regulation of integrin adhesive function and signaling relies on the modulation of both conformation and traffic. Indeed, integrins exist in a dynamic equilibrium between a bent/closed (inactive) and an extended/open (active) conformation, respectively endowed with low and high affinity for ECM ligands. Increasing evidence proves that, differently to what hypothesized in the past, detachment from the ECM and conformational inactivation are not mandatory for integrin to get endocytosed and trafficked. Specific transmembrane and cytosolic proteins involved in the control of ECM proteolytic fragment-bound active integrin internalization and recycling exist. In the complex masterplan that governs cell behavior, active integrin traffic is key to the turnover of ECM polymers and adhesion sites, the polarized secretion of endogenous ECM proteins and modifying enzymes, the propagation of motility and survival endosomal signals, and the control of cell metabolism.
Collapse
|