1
|
Karami E, Bazgir B, Shirvani H, Mohammadi MT, Khaledi M. Unraveling the bidirectional relationship between muscle inflammation and satellite cells activity: influencing factors and insights. J Muscle Res Cell Motil 2024:10.1007/s10974-024-09683-7. [PMID: 39508952 DOI: 10.1007/s10974-024-09683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Inflammation stands as a vital and innate function of the immune system, essential for maintaining physiological homeostasis. Its role in skeletal muscle regeneration is pivotal, with the activation of satellite cells (SCs) driving the repair and generation of new myofibers. However, the relationship between inflammation and SCs is intricate, influenced by various factors. Muscle injury and repair prompt significant infiltration of immune cells, particularly macrophages, into the muscle tissue. The interplay of cytokines and chemokines from diverse cell types, including immune cells, fibroadipogenic progenitors, and SCs, further shapes the inflammation-SCs dynamic. While some studies suggest heightened inflammation associates with reduced SC activity and increased fibro- or adipogenesis, others indicate an inflammatory stimulus benefits SC function. Yet, the existing literature struggles to delineate clearly between the stimulatory and inhibitory effects of inflammation on SCs and muscle regeneration. This paper comprehensively reviews studies exploring the impact of pharmacological agents, dietary interventions, genetic factors, and exercise regimes on the interplay between inflammation and SC activity.
Collapse
Affiliation(s)
- Esmail Karami
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Bazgir
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Zhang N, Zhai L, Wong RMY, Cui C, Law SW, Chow SKH, Goodman SB, Cheung WH. Harnessing immunomodulation to combat sarcopenia: current insights and possible approaches. Immun Ageing 2024; 21:55. [PMID: 39103919 DOI: 10.1186/s12979-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sarcopenia is a complex age-associated syndrome of progressive loss of muscle mass and strength. Although this condition is influenced by many factors, age-related changes in immune function including immune cell dynamics, and chronic inflammation contribute to its progression. The complex interplay between the immune system, gut-muscle axis, and autophagy further underscores their important roles in sarcopenia pathogenesis. Immunomodulation has emerged as a promising strategy to counteract sarcopenia. Traditional management approaches to treat sarcopenia including physical exercise and nutritional supplementation, and the emerging technologies of biophysical stimulation demonstrated the importance of immunomodulation and regulation of macrophages and T cells and reduction of chronic inflammation. Treatments to alleviate low-grade inflammation in older adults by modulating gut microbial composition and diversity further combat sarcopenia. Furthermore, some pharmacological interventions, nano-medicine, and cell therapies targeting muscle, gut microbiota, or autophagy present additional avenues for immunomodulation in sarcopenia. This narrative review explores the immunological underpinnings of sarcopenia, elucidating the relationship between the immune system and muscle during ageing. Additionally, the review discusses new areas such as the gut-muscle axis and autophagy, which bridge immune system function and muscle health. Insights into current and potential approaches for sarcopenia management through modulation of the immune system are provided, along with suggestions for future research directions and therapeutic strategies. We aim to guide further investigation into clinical immunological biomarkers and identify indicators for sarcopenia diagnosis and potential treatment targets to combat this condition. We also aim to draw attention to the importance of considering immunomodulation in the clinical management of sarcopenia.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liting Zhai
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Cornish SM, Cordingley DM. Inflammatory pathway communication with skeletal muscle-Does aging play a role? A topical review of the current evidence. Physiol Rep 2024; 12:e16098. [PMID: 38872451 PMCID: PMC11176593 DOI: 10.14814/phy2.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Skeletal muscle plays an integral role in locomotion, but also as part of the integrative physiological system. Recent progress has identified crosstalk between skeletal muscle and various physiological systems, including the immune system. Both the musculoskeletal and immune systems are impacted by aging. Increased age is associated with decreased muscle mass and function, while the immune system undergoes "inflammaging" and immunosenescence. Exercise is identified as a preventative medicine that can mitigate loss of function for both systems. This review summarizes: (1) the inflammatory pathways active in skeletal muscle; and (2) the inflammatory and skeletal muscle response to unaccustomed exercise in younger and older adults. Compared to younger adults, it appears older individuals have a muted pro-inflammatory response and elevated anti-inflammatory response to exercise. This important difference could contribute to decreased regeneration and recovery following unaccustomed exercise in older adults, as well as in chronic disease. The current research provides specific information on the role inflammation plays in altering skeletal muscle form and function, and adaptation to exercise; however, the pursuit of more knowledge in this area will delineate specific interventions that may enhance skeletal muscle recovery and promote resiliency in this tissue particularly with aging.
Collapse
Affiliation(s)
- Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dean M Cordingley
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Huang X, Chen M, Xiao Y, Zhu F, Chen L, Tian X, Hong L. The influence of biological sex in human skeletal muscle transcriptome during ageing. Biogerontology 2024; 25:461-478. [PMID: 37792135 DOI: 10.1007/s10522-023-10070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
Sex is a crucial biological variable, and influence of biological sex on the change of gene expression in ageing skeletal muscle has not yet been fully revealed. In this study, the mRNA expression profiles were obtained from the Gene Expression Omnibus database. Key genes were identified by differential expression analysis and weighted gene co-expression network analysis. The gene set enrichment analysis software and Molecular Signatures Database were used for functional and enrichment analysis. A protein-protein interaction network was constructed using STRING and visualized in Cytoscape. The results were compared between female and male subgroups. Differentially expressed genes and enriched pathways in different sex subgroups shared only limited similarities. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The muscle myosin filament pathways were downregulated in the both aged female and male samples whereas transforming growth factor beta pathway and extracellular matrix-related pathways were upregulated. With muscle ageing, the metabolism-related pathways, protein synthesis and degradation pathways, results of predicted immune cell infiltration, and gene cluster associated with slow-type myofibers drastically different between the female and male subgroups. This finding may indicate that changes in muscle type with ageing may differ between the sexes in vastus lateralis muscle.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mao Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ya Xiao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyi Zhu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Tian
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China.
- Pelvic Floor Research Centre of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Marzetti E, Lozanoska-Ochser B, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Restoring Mitochondrial Function and Muscle Satellite Cell Signaling: Remedies against Age-Related Sarcopenia. Biomolecules 2024; 14:415. [PMID: 38672432 PMCID: PMC11048011 DOI: 10.3390/biom14040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia has a complex pathophysiology that encompasses metabolic dysregulation and muscle ultrastructural changes. Among the drivers of intracellular and ultrastructural changes of muscle fibers in sarcopenia, mitochondria and their quality control pathways play relevant roles. Mononucleated muscle stem cells/satellite cells (MSCs) have been attributed a critical role in muscle repair after an injury. The involvement of mitochondria in supporting MSC-directed muscle repair is unclear. There is evidence that a reduction in mitochondrial biogenesis blunts muscle repair, thus indicating that the delivery of functional mitochondria to injured muscles can be harnessed to limit muscle fibrosis and enhance restoration of muscle function. Injection of autologous respiration-competent mitochondria from uninjured sites to damaged tissue has been shown to reduce infarct size and enhance cell survival in preclinical models of ischemia-reperfusion. Furthermore, the incorporation of donor mitochondria into MSCs enhances lung and cardiac tissue repair. This strategy has also been tested for regeneration purposes in traumatic muscle injuries. Indeed, the systemic delivery of mitochondria promotes muscle regeneration and restores muscle mass and function while reducing fibrosis during recovery after an injury. In this review, we discuss the contribution of altered MSC function to sarcopenia and illustrate the prospect of harnessing mitochondrial delivery and restoration of MSCs as a therapeutic strategy against age-related sarcopenia.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Biliana Lozanoska-Ochser
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
- DAHFMO Unit of Histology and Medical Embryology, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
| |
Collapse
|
6
|
Hsieh CC, Chang CY, Yar Lee TX, Wu J, Saovieng S, Hsieh YW, Zhu M, Huang CY, Kuo CH. Longevity, tumor, and physical vitality in rats consuming ginsenoside Rg1. J Ginseng Res 2023; 47:210-217. [PMID: 36926614 PMCID: PMC10014179 DOI: 10.1016/j.jgr.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/12/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022] Open
Abstract
Background Effects of the major ginsenoside Rg1 on mammalian longevity and physical vitality are rarely reported. Purpose To examine longevity, tumor, and spontaneous locomotor activity in rats consuming Rg1. Methods A total of 138 Wistar rats were randomized into 2 groups: control (N = 69) and Rg1 (N = 69). Rg1 (0.1 mg/kg per day) were orally supplemented from 6 months of age until natural death. Spontaneous mobility was measured by video-tracking together with body composition (dual energy x-ray absorptiometry) and inflammation markers at 5, 14, 21, and 28 months of age. Results No significant differences in longevity (control: 706 days; Rg1: 651 days, p = 0.77) and tumor incidence (control: 19%; Rg1: 12%, p = 0.24) were observed between the two groups. Movement distance in the control group declined significantly by ∼60% at 21 months of age, together with decreased TNF-α (p = 0.01) and increased IL-10 (p = 0.02). However, the movement distance in the Rg1 group was maintained ∼50% above the control groups (p = 0.01) at 21 months of age with greater magnitudes of TNF-α decreases and IL-10 increases. Glucose, insulin, and body composition (bone, muscle and fat percentages) were similar for both groups during the entire observation period. Conclusion The results of the study suggest a delay age-dependent decline in physical vitality during late life by lifelong Rg1 consumption. This improvement is associated with inflammatory modulation. Significant effects of Rg1 on longevity and tumorigenesis were not observed.
Collapse
Affiliation(s)
- Chao-Chieh Hsieh
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chiung-Yun Chang
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Tania Xu Yar Lee
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jinfu Wu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.,Laboratory of Regenerative Medicine in Sports Science, School of Physical Education & Sports Science, South China Normal University, Guangzhou, China
| | - Suchada Saovieng
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.,College of Sports Science & Technology, Mahidol University, Thailand
| | - Yu-Wen Hsieh
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Maijian Zhu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| |
Collapse
|
7
|
Ahmadi M, Karlsen A, Mehling J, Soendenbroe C, Mackey AL, Hyldahl RD. Aging is associated with an altered macrophage response during human skeletal muscle regeneration. Exp Gerontol 2022; 169:111974. [PMID: 36228835 DOI: 10.1016/j.exger.2022.111974] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022]
Abstract
Skeletal muscle injury in aged rodents is characterized by an asynchronous infiltration of pro- and anti-inflammatory macrophage waves, leading to improper and incomplete regeneration. It is unclear whether this aberration also occurs in aged human muscle. In this study, we quantified the macrophage responses in a human model of muscle damage and regeneration induced by electrical stimulation in 7 young and 21 older adults. At baseline, total resident macrophage (CD68+/DAPI+) content was not different between young and old subjects, but pro-inflammatory (CD206-/CD68+/DAPI+) macrophage content was lower in the old. Following damage, muscle Infiltration of CD206-/CD68+/DAPI+ macrophages was lower in old relative to young subjects. Further, only the increase in CD206-/CD68+ macrophages correlated with the change in muscle satellite cell content. Our data show that older individuals have a compromised macrophage response during muscle regeneration, pointing to an altered inflammatory response as a potential mechanism for reduced muscle regenerative efficacy in aged humans.
Collapse
Affiliation(s)
- Mohadeseh Ahmadi
- Department of Exercise Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jack Mehling
- Department of Exercise Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
8
|
Teixeira E, Garcia J, Bovolini A, Carvalho A, Pacheco J, Duarte JA. Sedentary Behaviour Impairs Skeletal Muscle Repair Modulating the Inflammatory Response. J Funct Morphol Kinesiol 2022; 7:jfmk7040076. [PMID: 36278737 PMCID: PMC9589940 DOI: 10.3390/jfmk7040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
This study investigated whether sedentary behaviour modulates skeletal-muscle repair and tissue inflammatory response after cardiotoxin (CTX)-induced injury. Singly caged rats spent 8 weeks either as a sedentary group (SED, n = 15) or as a control group (EX, n = 15)—caged with running wheels for voluntary running. All rats had each tibial anterior muscle infused either with CTX (CTX; right muscle) or saline solution (Sham; left muscle) and were sacrificed (n = 5 per group) on the 1st, 7th, and 15th day post-injection (dpi). Histological and immunohistochemical analyses were used to calculate myotube percentage and fibrosis accretion, and quantify the number of neutrophils and M1 and M2 macrophage subtypes. The SED group showed an increased number of both neutrophils and M1 macrophages (7th and 15th dpi) compared to the EX group (p < 0.01). The EX group showed an increased number of M2 macrophages on the 1st dpi. On the 7th dpi, the SED group showed a lower myotube percentage compared to the EX group (p < 0.01) and on the 15th dpi showed only 54% of normal undamaged fibres compared to 90% from the EX group (p < 0.01). The SED group showed increased fibrosis on both the 7th and 15th dpi. Our results show that sedentary behaviour affects the inflammatory response, enhancing and prolonging the Th1 phase, and delays and impairs the SMR process.
Collapse
Affiliation(s)
- Eduardo Teixeira
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP) and Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450 Porto, Portugal
- Faculty of Psychology, Education and Sports, Lusófona University of Porto, 4000-098 Porto, Portugal
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, 4960-320 Melgaço, Portugal
- Correspondence:
| | - Juliana Garcia
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- AquaValor-Centro de Valorização e Transferência de Tecnologia da Água-Associação, 5400-342 Chaves, Portugal
| | - António Bovolini
- Instituto Politécnico da Guarda, Unidade de Investigação para o Desenvolvimento do Interior (UDI), 6300-559 Guarda, Portugal
| | - Ana Carvalho
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University Institute of Maia, 4475-690 Maia, Portugal
| | - Júlio Pacheco
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP) and Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450 Porto, Portugal
| | - José A. Duarte
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), CRL, 4585-116 Gandra, Portugal
| |
Collapse
|
9
|
In Vitro Model of Human Skeletal Muscle Tissue for the Study of Resident Macrophages and Stem Cells. BIOLOGY 2022; 11:biology11060936. [PMID: 35741457 PMCID: PMC9219866 DOI: 10.3390/biology11060936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The skeletal muscle of younger adults has a remarkable regenerative capacity, which substantially declines with age. Despite many interspecies differences, animals have been used to study new treatments to promote muscle regeneration in humans. This study reports a novel human experimental model using human skeletal muscle tissue of older adults that was extracted during surgical procedures. We describe an optimal procedure for maintaining human skeletal muscle tissue under experimental conditions for 11 days. This experimental model allows the investigation of resident macrophages and stem cells, which mediate muscle regeneration. Abstract Findings from studies of muscle regeneration can significantly contribute to the treatment of age-related loss of skeletal muscle mass, which may predispose older adults to severe morbidities. We established a human experimental model using excised skeletal muscle tissues from reconstructive surgeries in eight older adults. Muscle samples from each participant were preserved immediately or maintained in agarose medium for the following 5, 9, or 11 days. Immunofluorescence analyses of the structural proteins, actin and desmin, confirmed the integrity of muscle fibers over 11 days of maintenance. Similarly, the numbers of CD80-positive M1 and CD163-positive M2 macrophages were stable over 11 days in vitro. However, the numbers of PAX7-positive satellite cells and MYOD-positive myoblasts changed in opposite ways, suggesting that satellite cells partially differentiated in vitro. Further experiments revealed that stimulation with unsaturated fatty acid C18[2]c (linoleic acid) increased resident M1 macrophages and satellite cells specifically. Thus, the use of human skeletal muscle tissue in vitro provides a direct experimental approach to study the regulation of muscle tissue regeneration by macrophages and stem cells and their responses to therapeutic compounds.
Collapse
|
10
|
Zhang XZ, Xie WQ, Chen L, Xu GD, Wu L, Li YS, Wu YX. Blood Flow Restriction Training for the Intervention of Sarcopenia: Current Stage and Future Perspective. Front Med (Lausanne) 2022; 9:894996. [PMID: 35770017 PMCID: PMC9234289 DOI: 10.3389/fmed.2022.894996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is a geriatric syndrome that is characterized by a progressive and generalized skeletal muscle disorder and can be associated with many comorbidities, including obesity, diabetes, and fracture. Its definitions, given by the AWGS and EWGSOP, are widely used. Sarcopenia is measured by muscle strength, muscle quantity or mass and physical performance. Currently, the importance and urgency of sarcopenia have grown. The application of blood flow restriction (BFR) training has received increased attention in managing sarcopenia. BFR is accomplished using a pneumatic cuff on the proximal aspect of the exercising limb. Two main methods of exercise, aerobic exercise and resistance exercise, have been applied with BFR in treating sarcopenia. Both methods can increase muscle mass and muscle strength to a certain extent. Intricate mechanisms are involved during BFRT. Currently, the presented mechanisms mainly include responses in the blood vessels and related hormones, such as growth factors, tissue hypoxia-related factors and recruitment of muscle fiber as well as muscle satellite cells. These mechanisms contribute to the positive balance of skeletal muscle synthesis, which in turn mitigates sarcopenia. As a more suited and more effective way of treating sarcopenia and its comorbidities, BFRT can serve as an alternative to traditional exercise for people who have marked physical limitations or even show superior outcomes under low loads. However, the possibility of causing stress or muscle damage must be considered. Cuff size, pressure, training load and other variables can affect the outcome of sarcopenia, which must also be considered. Thoroughly studying these factors can help to better determine an ideal BFRT scheme and better manage sarcopenia and its associated comorbidities. As a well-tolerated and novel form of exercise, BFRT offers more potential in treating sarcopenia and involves deeper insights into the function and regulation of skeletal muscle.
Collapse
Affiliation(s)
- Xu-zhi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wen-qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Guo-dong Xu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Li Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yu-sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yu-sheng Li
| | - Yu-xiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
- Yu-xiang Wu
| |
Collapse
|
11
|
Immune system and sarcopenia: Presented relationship and future perspective. Exp Gerontol 2022; 164:111823. [DOI: 10.1016/j.exger.2022.111823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
|
12
|
Luo ZW, Sun YY, Lin JR, Qi BJ, Chen JW. Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World J Stem Cells 2021; 13:1762-1782. [PMID: 34909122 PMCID: PMC8641021 DOI: 10.4252/wjsc.v13.i11.1762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute muscle injuries are one of the most common injuries in sports. Severely injured muscles are prone to re-injury due to fibrotic scar formation caused by prolonged inflammation. How to regulate inflammation and suppress fibrosis is the focus of promoting muscle healing. Recent studies have found that myoblasts and macrophages play important roles in the inflammatory phase following muscle injury; however, the crosstalk between these two types of cells in the inflammatory environment, particularly the exosome-related mechanisms, had not been well studied.
AIM To evaluate the effects of exosomes from inflammatory C2C12 myoblasts (IF-C2C12-Exos) on macrophage polarization and myoblast proliferation/differentiation.
METHODS A model of inflammation was established in vitro by lipopolysaccharide stimulation of myoblasts. C2C12-Exos were isolated and purified from the supernatant of myoblasts by gradient centrifugation. Multiple methods were used to identify the exosomes. Gradient concentrations of IF-C2C12-Exos were added to normal macrophages and myoblasts. PKH67 fluorescence tracing was used to identify the interaction between exosomes and cells. Microscopic morphology, Giemsa stain, and immunofluorescence were carried out for histological analysis. Additionally, ELISA assays, flow cytometry, and western blot were conducted to analyze molecular changes. Moreover, myogenic proliferation was assessed by the BrdU test, scratch assay, and CCK-8 assay.
RESULTS We found that the PKH-67-marked C2C12-Exos can be endocytosed by both macrophages and myoblasts. IF-C2C12-Exos induced M1 macrophage polarization and suppressed the M2 phenotype in vitro. In addition, these exosomes also stimulated the inflammatory reactions of macrophages. Furthermore, we demonstrated that IF-C2C12-Exos disrupted the balance of myoblast proliferation/differentiation, leading to enhanced proliferation and suppressed fibrogenic/myogenic differentiation.
CONCLUSION IF-C2C12-Exos can induce M1 polarization, resulting in a sustained and aggravated inflammatory environment that impairs myoblast differentiation, and leads to enhanced myogenic proliferation. These results demonstrate why prolonged inflammation occurs after acute muscle injury and provide a new target for the regulation of muscle regeneration.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ya-Ying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jin-Rong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bei-Jie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji-Wu Chen
- Department of Sports Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Zwetsloot KA, Shanely RA, Godwin JS, Hodgman CF. Phytoecdysteroids Accelerate Recovery of Skeletal Muscle Function Following in vivo Eccentric Contraction-Induced Injury in Adult and Old Mice. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:757789. [PMID: 36188800 PMCID: PMC9397830 DOI: 10.3389/fresc.2021.757789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
Background: Eccentric muscle contractions are commonly used in exercise regimens, as well as in rehabilitation as a treatment against muscle atrophy and weakness. If repeated multiple times, eccentric contractions may result in skeletal muscle injury and loss of function. Skeletal muscle possesses the remarkable ability to repair and regenerate after an injury or damage; however, this ability is impaired with aging. Phytoecdysteroids are natural plant steroids that possess medicinal, pharmacological, and biological properties, with no adverse side effects in mammals. Previous research has demonstrated that administration of phytoecdysteroids, such as 20-hydroxyecdysone (20E), leads to an increase in protein synthesis signaling and skeletal muscle strength. Methods: To investigate whether 20E enhances skeletal muscle recovery from eccentric contraction-induced damage, adult (7–8 mo) and old (26–27 mo) mice were subjected to injurious eccentric contractions (EC), followed by 20E or placebo (PLA) supplementation for 7 days. Contractile function via torque-frequency relationships (TF) was measured three times in each mouse: pre- and post-EC, as well as after the 7-day recovery period. Mice were anesthetized with isoflurane and then electrically-stimulated isometric contractions were performed to obtain in vivo muscle function of the anterior crural muscle group before injury (pre), followed by 150 EC, and then again post-injury (post). Following recovery from anesthesia, mice received either 20E (50 mg•kg−1 BW) or PLA by oral gavage. Mice were gavaged daily for 6 days and on day 7, the TF relationship was reassessed (7-day). Results: EC resulted in significant reductions of muscle function post-injury, regardless of age or treatment condition (p < 0.001). 20E supplementation completely recovered muscle function after 7 days in both adult and old mice (pre vs. 7-day; p > 0.05), while PLA muscle function remained reduced (pre vs. 7-day; p < 0.01). In addition, histological markers of muscle damage appear lower in damaged muscle from 20E-treated mice after the 7-day recovery period, compared to PLA. Conclusions: Taken together, these findings demonstrate that 20E fully recovers skeletal muscle function in both adult and old mice just 7 days after eccentric contraction-induced damage. However, the underlying mechanics by which 20E contributes to the accelerated recovery from muscle damage warrant further investigation.
Collapse
Affiliation(s)
- Kevin A. Zwetsloot
- Integrative Muscle Physiology Laboratory, Appalachian State University, Boone, NC, United States
- Department of Health and Exercise Science, Appalachian State University, Boone, NC, United States
- Department of Biology, Appalachian State University, Boone, NC, United States
- *Correspondence: Kevin A. Zwetsloot
| | - R. Andrew Shanely
- Integrative Muscle Physiology Laboratory, Appalachian State University, Boone, NC, United States
- Department of Health and Exercise Science, Appalachian State University, Boone, NC, United States
| | - Joshua S. Godwin
- Integrative Muscle Physiology Laboratory, Appalachian State University, Boone, NC, United States
| | - Charles F. Hodgman
- Integrative Muscle Physiology Laboratory, Appalachian State University, Boone, NC, United States
| |
Collapse
|
14
|
Panci G, Chazaud B. Inflammation during post-injury skeletal muscle regeneration. Semin Cell Dev Biol 2021; 119:32-38. [PMID: 34140216 DOI: 10.1016/j.semcdb.2021.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/02/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
The adult skeletal muscle fully regenerates after injury thanks to the properties of muscle stem cells that follow the adult myogenic program to replace damaged myofibers. Muscle regeneration also relies upon the coordinated actions of several other cell types, among which immune cells. Leukocytes infiltrate the damaged muscle soon after injury and support the regeneration process in a variety of ways, from the activation of muscle stem cells to the maturation of newly formed myofibers. Leukocytes also interact with other cell types such as fibroadipogenic precursors and endothelial cells. This review presents the interactions that leukocytes develop with the cells present in their vicinity and the impact they have on skeletal muscle regeneration.
Collapse
Affiliation(s)
- Georgiana Panci
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, F-69008 Lyon, France.
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, F-69008 Lyon, France.
| |
Collapse
|
15
|
Markworth JF, Brown LA, Lim E, Castor‐Macias JA, Larouche J, Macpherson PCD, Davis C, Aguilar CA, Maddipati KR, Brooks SV. Metabolipidomic profiling reveals an age-related deficiency of skeletal muscle pro-resolving mediators that contributes to maladaptive tissue remodeling. Aging Cell 2021; 20:e13393. [PMID: 34075679 PMCID: PMC8208786 DOI: 10.1111/acel.13393] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/07/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Specialized pro-resolving mediators actively limit inflammation and support tissue regeneration, but their role in age-related muscle dysfunction has not been explored. We profiled the mediator lipidome of aging muscle via liquid chromatography-tandem mass spectrometry and tested whether treatment with the pro-resolving mediator resolvin D1 (RvD1) could rejuvenate the regenerative ability of aged muscle. Aged mice displayed chronic muscle inflammation and this was associated with a basal deficiency of pro-resolving mediators 8-oxo-RvD1, resolvin E3, and maresin 1, as well as many anti-inflammatory cytochrome P450-derived lipid epoxides. Following muscle injury, young and aged mice produced similar amounts of most pro-inflammatory eicosanoid metabolites of cyclooxygenase (e.g., prostaglandin E2 ) and 12-lipoxygenase (e.g., 12-hydroxy-eicosatetraenoic acid), but aged mice produced fewer markers of pro-resolving mediators including the lipoxins (15-hydroxy-eicosatetraenoic acid), D-resolvins/protectins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and maresins (14-hydroxy-docosahexaenoic acid). Similar absences of downstream pro-resolving mediators including lipoxin A4 , resolvin D6, protectin D1/DX, and maresin 1 in aged muscle were associated with greater inflammation, impaired myofiber regeneration, and delayed recovery of strength. Daily intraperitoneal injection of RvD1 had minimal impact on intramuscular leukocyte infiltration and myofiber regeneration but suppressed inflammatory cytokine expression, limited fibrosis, and improved recovery of muscle function. We conclude that aging results in deficient local biosynthesis of specialized pro-resolving mediators in muscle and that immunoresolvents may be attractive novel therapeutics for the treatment of muscular injuries and associated pain in the elderly, due to positive effects on recovery of muscle function without the negative side effects on tissue regeneration of non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- James F. Markworth
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Lemuel A. Brown
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Eunice Lim
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | | | - Jacqueline Larouche
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Peter C. D. Macpherson
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Carol Davis
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Krishna Rao Maddipati
- Department of Pathology Lipidomics Core Facility Wayne State University Detroit MI USA
| | - Susan V. Brooks
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| |
Collapse
|
16
|
Gao Y, Wang F, Zhou W, Pan S. Research progress in the pathogenic mechanisms and imaging of severe frostbite. Eur J Radiol 2021; 137:109605. [PMID: 33621855 DOI: 10.1016/j.ejrad.2021.109605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE This article reviews the pathological mechanisms and progress of imaging of severe frostbite to assist in the search for targets for clinical diagnosis and treatment of severe frostbite. This review also aims to provide strong evidence for clinical diagnosis and treatment of deep frostbite. METHODS The review was based on the summary and analysis of the existing literature, and explored the pathological mechanism of deep frostbite and the advantages and disadvantages of imaging diagnostic methods. RESULTS According to the depth of tissue involvement, frostbite is divided into 4 levels. Severe frostbite includes Grade 3 and Grade 4 frostbite. Clinical performance evaluation and imaging diagnostic research have always been the mainstream of severe frostbite diagnosis. Imaging methods focus on vascular patency and tissue vitality. This article introduces angiography, SETCT/CT and MRA, and we summarize the advantages and disadvantages of these imaging methods. We recommend corresponding imaging modalities according to the state of frostbite patients. CONCLUSIONS Imaging examination, especially angiography and bone scans, provide useful information for determining the diagnosis and prognosis of severe frostbite. In order to obtain a good clinical prognosis, clinicians should first perform SPECT/CT. MRA does not burden the patient's body, but the balance between cost and benefit must be considered. Angiography provides a good feedback on the changes in blood vessel status before and after treatment, which is helpful for discovering the response of limbs to treatment.
Collapse
Affiliation(s)
- Yue Gao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fengzhe Wang
- Department of Radiology, the Fourth People's Hospital of Shenyang: Shenyang Medical College, Shenyang, China
| | - Wei Zhou
- Department of Radiology, General Hospital of Northern Military Area: General Hospital of Northern Theatre Command, Shenyang, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Tidball JG, Flores I, Welc SS, Wehling-Henricks M, Ochi E. Aging of the immune system and impaired muscle regeneration: A failure of immunomodulation of adult myogenesis. Exp Gerontol 2020; 145:111200. [PMID: 33359378 DOI: 10.1016/j.exger.2020.111200] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Skeletal muscle regeneration that follows acute injury is strongly influenced by interactions with immune cells that invade and proliferate in the damaged tissue. Discoveries over the past 20 years have identified many of the key mechanisms through which myeloid cells, especially macrophages, regulate muscle regeneration. In addition, lymphoid cells that include CD8+ T-cells and regulatory T-cells also significantly affect the course of muscle regeneration. During aging, the regenerative capacity of skeletal muscle declines, which can contribute to progressive loss of muscle mass and function. Those age-related reductions in muscle regeneration are accompanied by systemic, age-related changes in the immune system, that affect many of the myeloid and lymphoid cell populations that can influence muscle regeneration. In this review, we present recent discoveries that indicate that aging of the immune system contributes to the diminished regenerative capacity of aging muscle. Intrinsic, age-related changes in immune cells modify their expression of factors that affect the function of a population of muscle stem cells, called satellite cells, that are necessary for normal muscle regeneration. For example, age-related reductions in the expression of growth differentiation factor-3 (GDF3) or CXCL10 by macrophages negatively affect adult myogenesis, by disrupting regulatory interactions between macrophages and satellite cells. Those changes contribute to a reduction in the numbers and myogenic capacity of satellite cells in old muscle, which reduces their ability to restore damaged muscle. In addition, aging produces changes in the expression of molecules that regulate the inflammatory response to injured muscle, which also contributes to age-related defects in muscle regeneration. For example, age-related increases in the production of osteopontin by macrophages disrupts the normal inflammatory response to muscle injury, resulting in regenerative defects. These nascent findings represent the beginning of a newly-developing field of investigation into mechanisms through which aging of the immune system affects muscle regeneration.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, United States of America; Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, United States of America.
| | - Ivan Flores
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, United States of America
| | - Steven S Welc
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America
| | - Eisuke Ochi
- Hosei University, Faculty of Bioscience and Applied Chemistry, 3-7-2, Kajino, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
18
|
Corvelyn M, De Beukelaer N, Duelen R, Deschrevel J, Van Campenhout A, Prinsen S, Gayan-Ramirez G, Maes K, Weide G, Desloovere K, Sampaolesi M, Costamagna D. Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Front Physiol 2020; 11:945. [PMID: 32848872 PMCID: PMC7424076 DOI: 10.3389/fphys.2020.00945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral palsy (CP), the single largest cause of childhood physical disability, is characterized firstly by a lesion in the immature brain, and secondly by musculoskeletal problems that progress with age. Previous research reported altered muscle properties, such as reduced volume and satellite cell (SC) numbers and hypertrophic extracellular matrix compared to typically developing (TD) children (>10 years). Unfortunately, data on younger CP patients are scarce and studies on SCs and other muscle stem cells in CP are insufficient or lacking. Therefore, it remains difficult to understand the early onset and trajectory of altered muscle properties in growing CP children. Because muscle stem cells are responsible for postnatal growth, repair and remodeling, multiple adult stem cell populations from young CP children could play a role in altered muscle development. To this end, new methods for studying muscle samples of young children, valid to delineate the features and to elucidate the regenerative potential of muscle tissue, are necessary. Using minimal invasive muscle microbiopsy, which was applied in young subjects under general anaesthesia for the first time, we aimed to isolate and characterize muscle stem cell-derived progenitors of TD children and patients with CP. Data of 15 CP patients, 3–9 years old, and 5 aged-matched TD children were reported. The muscle microbiopsy technique was tolerated well in all participants. Through the explant technique, we provided muscle stem cell-derived progenitors from the Medial Gastrocnemius. Via fluorescent activated cell sorting, using surface markers CD56, ALP, and PDGFRa, we obtained SC-derived progenitors, mesoangioblasts and fibro-adipogenic progenitors, respectively. Adipogenic, skeletal, and smooth muscle differentiation assays confirmed the cell identity and ability to give rise to different cell types after appropriate stimuli. Myogenic differentiation in CP SC-derived progenitors showed enhanced fusion index and altered myotube formation based on MYOSIN HEAVY CHAIN expression, as well as disorganization of nuclear spreading, which were not observed in TD myotubes. In conclusion, the microbiopsy technique allows more focused muscle research in young CP patients. Current results show altered differentiation abilities of muscle stem cell-derived progenitors and support the hypothesis of their involvement in CP-altered muscle growth.
Collapse
Affiliation(s)
- Marlies Corvelyn
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nathalie De Beukelaer
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jorieke Deschrevel
- Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Pediatric Orthopedics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Sandra Prinsen
- Pediatric Orthopedics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Guido Weide
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Jensen SM, Bechshøft CJL, Heisterberg MF, Schjerling P, Andersen JL, Kjaer M, Mackey AL. Macrophage Subpopulations and the Acute Inflammatory Response of Elderly Human Skeletal Muscle to Physiological Resistance Exercise. Front Physiol 2020; 11:811. [PMID: 32792975 PMCID: PMC7393256 DOI: 10.3389/fphys.2020.00811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
The current model for repair of damaged tissue includes immune cells, mediating the progression from a pro-inflammatory to an anti-inflammatory environment. How this process changes with aging in human skeletal muscle under conditions of physiological exercise loading remains unclear. To investigate this, 25 elderly males (mean age 70 ± SD 7 years), as well as 12 young (23 ± 3 years) and 12 elderly (74 ± 3 years) females, performed a unilateral bout of heavy resistance leg extension exercise. Biopsies were collected from the vastus lateralis muscle of the rested (control) leg, and post exercise from the exercised leg at 4.5 h, and on days 1, 4, and 7 for the male participants, or on day 5 for the female participants. Total macrophages (CD68+) as well as pro- (CD11b+) and anti-inflammatory (CD163+, CD206+) subpopulations were identified on sections by immunohistochemistry. Gene expression levels of COL1A1, TNF-a, CD68, myostatin, TCF7L2, IL-1B, IL-1R, IL-10, and Ki67 were determined by real-time RT-PCR. At rest, the muscle tissue from the elderly vs. young females was characterized by higher gene expression levels of CD68, IL-10, lower myostatin mRNA, and trends for a greater number of macrophages, while COL1A1 mRNA post exercise values were greater in the elderly vs young. For the male participants, mRNA levels of the inflammatory cytokines IL-1B, IL-1R were elevated in the early phase following exercise, followed by increases in COL1A1 and Ki67 on days 4 and 7. In general, exercise induced increases in all types of macrophages counted in the elderly, but not in young, individuals. Cells expressing CD68, CD11b, and CD206 simultaneously were the most frequently observed cell type, which raises the possibility that pure pro- and anti-inflammatory macrophages populations do not exist in healthy human skeletal muscle within the spectrum of tissue remodeling induced by physiological exercise designed to induce hypertrophy. Together these data provide insight into the time course of macrophage activity and associated molecular targets in human skeletal muscle in the context of aging and exercise.
Collapse
Affiliation(s)
- Simon M. Jensen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Cecilie J. L. Bechshøft
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette F. Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L. Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Wilkinson DJ, Rodriguez-Blanco G, Dunn WB, Phillips BE, Williams JP, Greenhaff PL, Smith K, Gallagher IJ, Atherton PJ. Untargeted metabolomics for uncovering biological markers of human skeletal muscle ageing. Aging (Albany NY) 2020; 12:12517-12533. [PMID: 32580166 PMCID: PMC7377844 DOI: 10.18632/aging.103513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Ageing compromises skeletal muscle mass and function through poorly defined molecular aetiology. Here we have used untargeted metabolomics using UHPLC-MS to profile muscle tissue from young (n=10, 25±4y), middle aged (n=18, 50±4y) and older (n=18, 70±3y) men and women (50:50). Random Forest was used to prioritise metabolite features most informative in stratifying older age, with potential biological context examined using the prize-collecting Steiner forest algorithm embedded in the PIUMet software, to identify metabolic pathways likely perturbed in ageing. This approach was able to filter a large dataset of several thousand metabolites down to subnetworks of age important metabolites. Identified networks included the common age-associated metabolites such as androgens, (poly)amines/amino acids and lipid metabolites, in addition to some potentially novel ageing related markers such as dihydrothymine and imidazolone-5-proprionic acid. The present study reveals that this approach is a potentially useful tool to identify processes underlying human tissue ageing, and could therefore be utilised in future studies to investigate the links between age predictive metabolites and common biomarkers linked to health and disease across age.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Giovanny Rodriguez-Blanco
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK.,Beatson Institute for Cancer Research, Glasgow, UK
| | - Warwick B Dunn
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - John P Williams
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Iain J Gallagher
- University of Stirling, Faculty of Health Sciences and Sport, Stirling, UK
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|