1
|
Perez M, Bak DW, Bergholtz SE, Crooks DR, Arimilli BS, Yang Y, Weerapana E, Linehan WM, Meier JL. Heterogeneous adaptation of cysteine reactivity to a covalent oncometabolite. J Biol Chem 2020; 295:13410-13418. [PMID: 32820045 DOI: 10.1074/jbc.ac120.014993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
An important context in which metabolism influences tumorigenesis is the genetic cancer syndrome hereditary leiomyomatosis and renal cell carcinoma (HLRCC), a disease in which mutation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) causes hyperaccumulation of fumarate. This electrophilic oncometabolite can alter gene activity at the level of transcription, via reversible inhibition of epigenetic dioxygenases, as well as posttranslationally, via covalent modification of cysteine residues. To better understand the potential for metabolites to influence posttranslational modifications important to tumorigenesis and cancer cell growth, here we report a chemoproteomic analysis of a kidney-derived HLRCC cell line. Using a general reactivity probe, we generated a data set of proteomic cysteine residues sensitive to the reduction in fumarate levels caused by genetic reintroduction of active FH into HLRCC cell lines. This revealed a broad up-regulation of cysteine reactivity upon FH rescue, which evidence suggests is caused by an approximately equal proportion of transcriptional and posttranslational modification-mediated regulation. Gene ontology analysis highlighted several new targets and pathways potentially modulated by FH mutation. Comparison of the new data set with prior studies highlights considerable heterogeneity in the adaptive response of cysteine-containing proteins in different models of HLRCC. This is consistent with emerging studies indicating the existence of cell- and tissue-specific cysteine-omes, further emphasizing the need for characterization of diverse models. Our analysis provides a resource for understanding the proteomic adaptation to fumarate accumulation and a foundation for future efforts to exploit this knowledge for cancer therapy.
Collapse
Affiliation(s)
- Minervo Perez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | - Sarah E Bergholtz
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Bhargav Srinivas Arimilli
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
2
|
Radical rearrangement and transfer reactions in proteins. Essays Biochem 2020; 64:87-96. [PMID: 31922197 DOI: 10.1042/ebc20190046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Radical rearrangement and transfer reactions play an important role in the chemical modifications of proteins in vivo and in vitro. These reactions depend on protein sequence, as well as structure and dynamics. Frequently, these reactions have well-defined precedents in the organic chemistry literature, but their occurrence in proteins provides a stage for a number of novel and, perhaps, unexpected reaction products. This essay will provide an overview over a few representative examples of radical rearrangement and transfer reactions.
Collapse
|