1
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2024:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Lv C, Huang Y, Yan R, Gao Y. Vascular endothelial growth factor induces the migration of human airway smooth muscle cells by activating the RhoA/ROCK pathway. BMC Pulm Med 2023; 23:505. [PMID: 38093231 PMCID: PMC10720058 DOI: 10.1186/s12890-023-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Airway remodeling due to increased airway smooth muscle cell (ASMC) mass, likely due to enhanced proliferation, hypertrophy, and migration, has been proven to be highly correlated with decreased lung function in asthma patients. Vascular endothelial growth factor (VEGF) mediates vascular and extravascular remodeling and inflammation and has been proven to be involved in the progression of asthma. Previous studies have focused on the effects of VEGF on ASMC proliferation, but few researchers have focused on the effects of VEGF on human ASMC migration. The purpose of this study was to explore the effect of VEGF on the migration of ASMCs and its related signaling pathway mechanism to provide evidence for the treatment of airway remodeling. METHODS We examined the effects of VEGF induction on ASMC migration and explored the mechanisms involved in ASMC migration. RESULTS We found by wound healing and Transwell assays that VEGF promoted ASMC migration. Through the Cell Counting Kit-8 (CCK-8) experiment, we found that VEGF had no significant effect on the proliferation of ASMCs, which excluded the involvement of cell proliferation in the process of wound healing. Moreover, a cellular immunofluorescence assay showed that VEGF promoted F-actin reorganization, and Western blotting showed that VEGF improved RhoA activation and myosin phosphatase targeting subunit-1 (MYPT1) and myosin light chain (MLC) phosphorylation in ASMCs. Treatment with the ROCK inhibitor Y27632 significantly attenuated the effects of VEGF on MYPT1/MLC activation and cell migration. CONCLUSION In conclusion, the results suggest that the promigratory function of VEGF activates the RhoA/ROCK pathway, induces F-actin reorganization, improves the migration of ASMCs, and provides a better rationale for targeting the RhoA/ROCK pathway for therapeutic approaches in airway remodeling.
Collapse
Affiliation(s)
- Chengtian Lv
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwen Huang
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruirong Yan
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanmei Gao
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Tan D, Lu M, Cai Y, Qi W, Wu F, Bao H, Qv M, He Q, Xu Y, Wang X, Shen T, Luo J, He Y, Wu J, Tang L, Barkat MQ, Xu C, Wu X. SUMOylation of Rho-associated protein kinase 2 induces goblet cell metaplasia in allergic airways. Nat Commun 2023; 14:3887. [PMID: 37393345 PMCID: PMC10314948 DOI: 10.1038/s41467-023-39600-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Allergic asthma is characterized by goblet cell metaplasia and subsequent mucus hypersecretion that contribute to the morbidity and mortality of this disease. Here, we explore the potential role and underlying mechanism of protein SUMOylation-mediated goblet cell metaplasia. The components of SUMOylaion machinery are specifically expressed in healthy human bronchial epithelia and robustly upregulated in bronchial epithelia of patients or mouse models with allergic asthma. Intratracheal suppression of SUMOylation by 2-D08 robustly attenuates not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Phosphoproteomics and biochemical analyses reveal SUMOylation on K1007 activates ROCK2, a master regulator of goblet cell metaplasia, by facilitating its binding to and activation by RhoA, and an E3 ligase PIAS1 is responsible for SUMOylation on K1007. As a result, knockdown of PIAS1 in bronchial epithelia inactivates ROCK2 to attenuate IL-13-induced goblet cell metaplasia, and bronchial epithelial knock-in of ROCK2(K1007R) consistently inactivates ROCK2 to alleviate not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Together, SUMOylation-mediated ROCK2 activation is an integral component of Rho/ROCK signaling in regulating the pathological conditions of asthma and thus SUMOylation is an additional target for the therapeutic intervention of this disease.
Collapse
Affiliation(s)
- Dan Tan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiping Lu
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Yuqing Cai
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Weibo Qi
- Department of Thoracic Surgery, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Fugen Wu
- Department of Paediatrics, the First People's Hospital of Wenling City, Wenling City, 317500, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiangzhi Wang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiahao Luo
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yangxun He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Junsong Wu
- Department of Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanfang Tang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
5
|
Lin X, Wang L, Lu X, Zhang Y, Zheng R, Chen R, Zhang W. Targeting of G-protein coupled receptor 40 alleviates airway hyperresponsiveness through RhoA/ROCK1 signaling pathway in obese asthmatic mice. Respir Res 2023; 24:56. [PMID: 36803977 PMCID: PMC9938616 DOI: 10.1186/s12931-023-02361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Obesity increases the severity of airway hyperresponsiveness (AHR) in individuals with asthma, but the mechanism is not well elucidated. G-protein coupled receptor 40 (GPR40) has been found to induce airway smooth muscle contraction after activated by long-chain fatty acids (LC-FFAs), suggesting a close correlation between GPR40 and AHR in obese. In this study, C57BL/6 mice were fed a high-fat diet (HFD) to induce obesity with or without ovalbumin (OVA) sensitization, the regulatory effects of GPR40 on AHR, inflammatory cells infiltration, and the expression of Th1/Th2 cytokines were evaluated by using a small-molecule antagonist of GPR40, DC260126. We found that the free fatty acids (FFAs) level and GPR40 expression were greatly elevated in the pulmonary tissues of obese asthmatic mice. DC260126 greatly reduced methacholine-induced AHR, ameliorated pulmonary pathological changes and decreased inflammatory cell infiltration in the airways in obese asthma. In addition, DC260126 could down-regulate the levels of Th2 cytokines (IL-4, IL-5, and IL-13) and pro-inflammatory cytokines (IL-1β, TNF-α), but elevated Th1 cytokine (IFN-γ) expression. In vitro, DC260126 could remarkedly reduce oleic acid (OA)-induced cell proliferation and migration in HASM cells. Mechanistically, the effects that DC260126 alleviated obese asthma was correlated with the down-regulation of GTP-RhoA and Rho-associated coiled-coil-forming protein kinase 1 (ROCK1). Herein, we proved that targeting of GPR40 with its antagonist helped to mitigate multiple parameters of obese asthma effectively.
Collapse
Affiliation(s)
- Xixi Lin
- grid.417384.d0000 0004 1764 2632Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Like Wang
- grid.417384.d0000 0004 1764 2632Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Xiaojie Lu
- grid.268099.c0000 0001 0348 3990School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Yuanyuan Zhang
- grid.417384.d0000 0004 1764 2632Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Rongying Zheng
- grid.417384.d0000 0004 1764 2632Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Ruijie Chen
- grid.417384.d0000 0004 1764 2632Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
6
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
7
|
Suppression of VEGFD expression by S-nitrosylation promotes the development of lung adenocarcinoma. J Exp Clin Cancer Res 2022; 41:239. [PMID: 35941690 PMCID: PMC9358865 DOI: 10.1186/s13046-022-02453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background Vascular endothelial growth factor D (VEGFD), a member of the VEGF family, is implicated in angiogenesis and lymphangiogenesis, and is deemed to be expressed at a low level in cancers. S-nitrosylation, a NO (nitric oxide)-mediated post-translational modification has a critical role in angiogenesis. Here, we attempt to dissect the role and underlying mechanism of S-nitrosylation-mediated VEGFD suppression in lung adenocarcinoma (LUAD). Methods Messenger RNA and protein expression of VEGFD in LUAD were analyzed by TCGA and CPTAC database, respectively, and Assistant for Clinical Bioinformatics was performed for complex analysis. Mouse models with urethane (Ure)–induced LUAD or LUAD xenograft were established to investigate the role of S-nitrosylation in VEGFD expression and of VEGFD mutants in the oncogenesis of LUAD. Molecular, cellular, and biochemical approaches were applied to explore the underlying mechanism of S-nitrosylation-mediated VEGFD suppression. Tube formation and wound healing assays were used to examine the role of VEGFD on the angiogenesis and migration of LUAD cells, and the molecular modeling was applied to predict the protein stability of VEGFD mutant. Results VEGFD mRNA and protein levels were decreased to a different extent in multiple primary malignancies, especially in LUAD. Low VEGFD protein expression was closely related to the oncogenesis of LUAD and resultant from excessive NO-induced VEGFD S-nitrosylation at Cys277. Moreover, inhibition of S-nitrosoglutathione reductase consistently decreased the VEGFD denitrosylation at Cys277 and consequently promoted angiogenesis of LUAD. Finally, the VEGFDC277S mutant decreased the secretion of mature VEGFD by attenuating the PC7-dependent proteolysis and VEGFDC277S mutant thus reversed the effect of VEGFD on angiogenesis of LUAD. Conclusion Low-expression of VEGFD positively correlates with LUAD development. Aberrant S-nitrosylation of VEGFD negates itself to induce the tumorigenesis of LUAD, whereas normal S-nitrosylation of VEGFD is indispensable for its secretion and repression of angiogenesis of LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02453-8.
Collapse
|
8
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
9
|
Fauser J, Huyot V, Matsche J, Szynal BN, Alexeev Y, Kota P, Karginov AV. Dissecting protein tyrosine phosphatase signaling by engineered chemogenetic control of its activity. J Cell Biol 2022; 221:e202111066. [PMID: 35829702 PMCID: PMC9284425 DOI: 10.1083/jcb.202111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 01/16/2023] Open
Abstract
Protein tyrosine phosphatases (PTPases) are critical mediators of dynamic cell signaling. A tool capable of identifying transient signaling events downstream of PTPases is essential to understand phosphatase function on a physiological time scale. We report a broadly applicable protein engineering method for allosteric regulation of PTPases. This method enables dissection of transient events and reconstruction of individual signaling pathways. Implementation of this approach for Shp2 phosphatase revealed parallel MAPK and ROCK II dependent pathways downstream of Shp2, mediating transient cell spreading and migration. Furthermore, we show that the N-SH2 domain of Shp2 regulates MAPK-independent, ROCK II-dependent cell migration. Engineered targeting of Shp2 activity to different protein complexes revealed that Shp2-FAK signaling induces cell spreading whereas Shp2-Gab1 or Shp2-Gab2 mediates cell migration. We identified specific transient morphodynamic processes induced by Shp2 and determined the role of individual signaling pathways downstream of Shp2 in regulating these events. Broad application of this approach is demonstrated by regulating PTP1B and PTP-PEST phosphatases.
Collapse
Affiliation(s)
- Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vincent Huyot
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob Matsche
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Barbara N. Szynal
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | | | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrei V. Karginov
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
10
|
Wang X, Xu C, Cai Y, Zou X, Chao Y, Yan Z, Zou C, Wu X, Tang L. CircZNF652 promotes the goblet cell metaplasia by targeting the miR-452-5p/JAK2 signaling pathway in allergic airway epithelia. J Allergy Clin Immunol 2022; 150:192-203. [PMID: 35120971 DOI: 10.1016/j.jaci.2021.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) play potentially important roles in various human diseases; however, their roles in the goblet cell metaplasia of asthma remain unknown. OBJECTIVE We sought to investigate the potential role and underlying mechanism of circZNF652 in the regulation of allergic airway epithelial remodeling. METHODS The differential expression profiles of circRNAs were analyzed by transcriptome microarray, and the effects and mechanisms underlying circZNF652-mediated goblet cell metaplasia were investigated by quantitative real-time PCR, RNA fluorescence in situ hybridization, Western blot, RNA pull-down, and RNA immunoprecipitation analyses. The roles of circZNF652 and miR-452-5p in allergic airway epithelial remodeling were explored in both the mouse model with allergic airway inflammation and children with asthma. RESULTS One hundred sixty circRNAs were differentially expressed in bronchoalveolar lavage fluid of children with asthma versus children with foreign body aspiration, and 52 and 108 of them were significantly upregulated and downregulated, respectively. Among them, circZNF652 was predominantly expressed and robustly upregulated in airway epithelia of both the children with asthma and the mouse model with allergic airway inflammation. circZNF652 promoted the goblet cell metaplasia by functioning as a sponge of miR-452-5p, which released the Janus kinase 2 (JAK2) expression and subsequently activated JAK2/signal transducer and activator of transcription 6 (STAT6) signaling in the allergic airway epithelia. In addition, epithelial splicing regulatory protein 1, a splicing factor, accelerated the biogenesis of circZNF652 by binding to its flanking intron to promote the goblet cell metaplasia in allergic airway epithelial remodeling. CONCLUSIONS Upregulation of circZNF652 expression in allergic bronchial epithelia contributed to the goblet cell metaplasia by activating the miR-452-5p/JAK2/STAT6 signaling pathway; thus, blockage of circZNF652 or agonism of miR-452-5p provided an alternative approach for the therapeutic intervention of epithelial remodeling in allergic airway inflammation.
Collapse
Affiliation(s)
- Xiangzhi Wang
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyun Xu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Cai
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zou
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yunqi Chao
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyi Yan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaochun Zou
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanfang Tang
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
12
|
ZHENG HZ, QIU Q, XIONG J, CHEN J, GUAN LC. Moxibustion pretreatment inhibits RhoA/ROCK signaling to prevent lung inflammation in asthmatic rats 艾灸预处理降低RhoA/ROCK信号表达预防哮喘大鼠肺炎. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Chang CJ, Lin CF, Chen BC, Lin PY, Chen CL. SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 2021; 74:131-142. [PMID: 34590785 DOI: 10.1002/iub.2559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
Chronic respiratory diseases (CRDs), including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), lung cancer, and asthma, are significant global health problems due to their prevalence and rising incidence. The roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in controlling tyrosine phosphorylation of targeting proteins modulate multiple physiological cellular responses and contribute to the pathogenesis of CRDs. Src homology-2 domain-containing PTP2 (SHP2) plays a pivotal role in modulating downstream growth factor receptor signaling and cytoplasmic PTKs, including MAPK/ERK, PI3K/AKT, and JAK/STAT pathways, to regulate cell survival and proliferation. In addition, SHP2 mutation and activation are commonly implicated in tumorigenesis. However, little is known about SHP2 in chronic pulmonary inflammation and fibrosis. This review discusses the potential involvement of SHP2 deregulation in chronic pulmonary inflammation and fibrosis, as well as the therapeutic effects of targeting SHP2 in CRDs.
Collapse
Affiliation(s)
- Chun-Jung Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Yun Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Do DC, Zhang Y, Tu W, Hu X, Xiao X, Chen J, Hao H, Liu Z, Li J, Huang SK, Wan M, Gao P. Type II alveolar epithelial cell-specific loss of RhoA exacerbates allergic airway inflammation through SLC26A4. JCI Insight 2021; 6:e148147. [PMID: 34101619 PMCID: PMC8410088 DOI: 10.1172/jci.insight.148147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The small GTPase RhoA and its downstream effectors are critical regulators in the pathophysiological processes of asthma. The underlying mechanism, however, remains undetermined. Here, we generated an asthma mouse model with RhoA–conditional KO mice (Sftpc-cre;RhoAfl/fl) in type II alveolar epithelial cells (AT2) and demonstrated that AT2 cell–specific deletion of RhoA leads to exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF). Notably, Sftpc-cre;RhoAfl/fl mice showed a significant reduction in Tgf-β1 levels in BALF and lung tissues, and administration of recombinant Tgf-β1 to the mice rescued Tgf-β1 and alleviated the increased allergic airway inflammation observed in Sftpc-cre;RhoAfl/fl mice. Using RNA sequencing technology, we identified Slc26a4 (pendrin), a transmembrane anion exchange, as the most upregulated gene in RhoA-deficient AT2 cells. The upregulation of SLC26A4 was further confirmed in AT2 cells of asthmatic patients and mouse models and in human airway epithelial cells expressing dominant-negative RHOA (RHOA-N19). SLA26A4 was also elevated in serum from asthmatic patients and negatively associated with the percentage of forced expiratory volume in 1 second (FEV1%). Furthermore, SLC26A4 inhibition promoted epithelial TGF-β1 release and attenuated allergic airway inflammation. Our study reveals a RhoA/SLC26A4 axis in AT2 cells that functions as a protective mechanism against allergic airway inflammation.
Collapse
Affiliation(s)
- Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinyue Hu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jingsi Chen
- Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Haiping Hao
- JHMI Deep Sequencing and Microarray Core Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhigang Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shau-Ku Huang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Zhu T, Zhang X, Chen X, Brown AP, Weirauch MT, Guilbert TW, Khurana Hershey GK, Biagini JM, Ji H. Nasal DNA methylation differentiates severe from non-severe asthma in African-American children. Allergy 2021; 76:1836-1845. [PMID: 33175399 PMCID: PMC8110596 DOI: 10.1111/all.14655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Asthma is highly heterogeneous, and severity evaluation is key to asthma management. DNA methylation (DNAm) contributes to asthma pathogenesis. This study aimed to identify nasal epithelial DNAm differences between severe and nonsevere asthmatic children and evaluate the impact of environmental exposures. METHODS Thirty-three nonsevere and 22 severe asthmatic African American children were included in an epigenome-wide association study. Genome-wide nasal epithelial DNAm and gene expression were measured. CpG sites associated with asthma severity and environmental exposures and predictive of severe asthma were identified. DNAm was correlated with gene expression. Enrichment for transcription factor (TF) binding sites or histone modifications surrounding DNAm differences were determined. RESULTS We identified 816 differentially methylated CpG positions (DMPs) and 10 differentially methylated regions (DMRs) associated with asthma severity. Three DMPs exhibited discriminatory ability for severe asthma. Intriguingly, six DMPs were simultaneously associated with asthma, allergic asthma, total IgE, environmental IgE, and FeNO in an independent cohort of children. Twenty-seven DMPs were associated with traffic-related air pollution or secondhand smoke. DNAm at 22 DMPs was altered by diesel particles or allergen in human bronchial epithelial cells. DNAm levels at 39 DMPs were correlated with mRNA expression. Proximal to 816 DMPs, three histone marks and several TFs involved in asthma pathogenesis were enriched. CONCLUSIONS Significant differences in nasal epithelial DNAm were observed between nonsevere and severe asthma in African American children, a subset of which may be useful to predict disease severity. These CpG sites are subjected to the influences of environmental exposures and may regulate gene expression.
Collapse
Affiliation(s)
- Tao Zhu
- California National Primate Research Center, Davis, CA
| | - Xue Zhang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | | | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Theresa W. Guilbert
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Divison of Asthma Research, Cincinnati Children’s Hospital Medical Center, Davis, CA
| | - Jocelyn M. Biagini
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Divison of Asthma Research, Cincinnati Children’s Hospital Medical Center, Davis, CA
| | - Hong Ji
- California National Primate Research Center, Davis, CA
- Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
16
|
Shao JB, Luo XQ, Mo LH, Yang G, Liu ZQ, Liu JQ, Liu ZG, Liu DB, Yang PC. Twist1 sustains the apoptosis resistance in eosinophils in nasal mucosa of allergic rhinitis. Arch Biochem Biophys 2021; 702:108828. [PMID: 33741336 DOI: 10.1016/j.abb.2021.108828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 11/27/2022]
Abstract
Eosinophils (Eos) are the canonical effector cells in allergic rhinitis (AR) and many inflammatory diseases. The mechanism of eosinophilia occurring in the lesion sites is not fully understood yet. Twist1 protein (Twist, in short) is an apoptosis inhibitor that also has immune regulatory functions. This study aims to investigate the role of Twist in the pathogenesis of eosinophilia in AR. In this study, surgically removed human nasal mucosal samples were obtained from patients with chronic sinusitis and nasal polyps with AR (the AR group) or without AR (the nAR group). Eos were isolated from the samples by flow cytometry. We found that abundant Eos were obtained from the surgically removed nasal mucosa tissues of both nAR and AR groups. Significantly higher Ras activation was detected in AR Eos than that in nAR Eos. Ras activation was associated with the apoptosis resistance in AR Eos. The Twist (an apoptosis inhibitor) expression was higher in AR Eos, which was positively correlated with the Ras activation status. The sensitization to IgG induced Twist expression in Eos, in which Ras activated the MAPK-HIF-1α pathway, the latter promoted the Twist gene transcription. Twist bound Rac GTPase activating protein-1 to sustain the Ras activation in Eos. Ras activation sustained the apoptosis resistance in Eos. In conclusion, high Ras activation was detected in the AR nasal mucosal tissue-isolated Eos. IgG-sensitization induced Ras activation and Twist expression in Eos, that conferred Eos the apoptosis resistance.
Collapse
Affiliation(s)
- Jian-Bo Shao
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiang-Qian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Li-Hua Mo
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China
| | - Zhi-Qiang Liu
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Jiang-Qi Liu
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Da-Bo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Ping-Chang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
17
|
Shi W, Xu C, Gong Y, Wang J, Ren Q, Yan Z, Mei L, Tang C, Ji X, Hu X, Qv M, Hussain M, Zeng LH, Wu X. RhoA/Rock activation represents a new mechanism for inactivating Wnt/β-catenin signaling in the aging-associated bone loss. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:8. [PMID: 33655459 PMCID: PMC7925793 DOI: 10.1186/s13619-020-00071-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
The Wnt/β-catenin signaling pathway appears to be particularly important for bone homeostasis, whereas nuclear accumulation of β-catenin requires the activation of Rac1, a member of the Rho small GTPase family. The aim of the present study was to investigate the role of RhoA/Rho kinase (Rock)-mediated Wnt/β-catenin signaling in the regulation of aging-associated bone loss. We find that Lrp5/6-dependent and Lrp5/6-independent RhoA/Rock activation by Wnt3a activates Jak1/2 to directly phosphorylate Gsk3β at Tyr216, resulting in Gsk3β activation and subsequent β-catenin destabilization. In line with these molecular events, RhoA loss- or gain-of-function in mouse embryonic limb bud ectoderms interacts genetically with Dkk1 gain-of-function to rescue the severe limb truncation phenotypes or to phenocopy the deletion of β-catenin, respectively. Likewise, RhoA loss-of-function in pre-osteoblasts robustly increases bone formation while gain-of-function decreases it. Importantly, high RhoA/Rock activity closely correlates with Jak and Gsk3β activities but inversely correlates with β-catenin signaling activity in bone marrow mesenchymal stromal cells from elderly male humans and mice, whereas systemic inhibition of Rock therefore activates the β-catenin signaling to antagonize aging-associated bone loss. Taken together, these results identify RhoA/Rock-dependent Gsk3β activation and subsequent β-catenin destabilization as a hitherto uncharacterized mechanism controlling limb outgrowth and bone homeostasis.
Collapse
Affiliation(s)
- Wei Shi
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Department of Biology and Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Department of Orthopeadic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ying Gong
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jirong Wang
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qianlei Ren
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou, 310015, China
| | - Ziyi Yan
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Liu Mei
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chao Tang
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xing Ji
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xinhua Hu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou, 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Department of Orthopeadic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
18
|
Targeting SHP2 as a therapeutic strategy for inflammatory diseases. Eur J Med Chem 2021; 214:113264. [PMID: 33582386 DOI: 10.1016/j.ejmech.2021.113264] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
With the change of lifestyle and the acceleration of aging process, inflammatory diseases have increasingly become one of the most vital threats to global human health. SHP2 protein is a non-receptor tyrosine phosphatase encoded by PTPN11 gene, and it is widely expressed in various tissues and cells. Numerous studies have shown that SHP2 plays important roles in the regulation of inflammatory diseases, including cancer-related inflammation, neurodegenerative diseases and metabolic diseases. In this paper, the roles of SHP2 in inflammatory diseases of various physiological systems were reviewed. At the same time, the latest SHP2 inhibitors were summarized, which will hold a promise for the therapeutic potential in future.
Collapse
|
19
|
Li L, Xu X, Du Y, Zhang M, Feng Y, Qian X, Li S, Du T, Peng X, Chen F. ATPR induces acute promyelocytic leukemia cells differentiation and growth arrest by blockade of SHP2/Rho/ROCK1 pathway. Toxicol Appl Pharmacol 2020; 399:115053. [DOI: 10.1016/j.taap.2020.115053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023]
|
20
|
Dexmedetomidine Attenuates Neurotoxicity in Developing Rats Induced by Sevoflurane through Upregulating BDNF-TrkB-CREB and Downregulating ProBDNF-P75NRT-RhoA Signaling Pathway. Mediators Inflamm 2020; 2020:5458061. [PMID: 32655312 PMCID: PMC7322616 DOI: 10.1155/2020/5458061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022] Open
Abstract
To investigate the mechanism dexmedetomidine in relieving the neurotoxicity of a developing brain induced by sevoflurane. Sprague-Dawley rats, 6 days old, were randomly divided into three groups. Rats in the control group were inhaled with air after injection of normal saline; rats in the sevoflurane group were injected with normal saline and inhaled with 3% sevoflurane for 2 h in three consecutive day; rats in the dexmedetomidine group were inhaled with 3% sevoflurane after intraperitoneal injection of dexmedetomidine 25 μg/kg. WB results showed that mBDNF, pTrkB/TrkB, and CREB were significantly decreased in the hippocampus of the sevoflurane group, which are significantly upregulated in the dexmedetomidine group. In the sevoflurane group, proBDNF, P75NRT, and RhoA were significantly increased, which were significantly lower than those in the dexmedetomidine group than those in the sevoflurane group. The expression BDNF was downregulated in the sevoflurane group, while the proBDNF was upregulated in the sevoflurane group. In the Morris water maze test, the escape latency of the sevoflurane group was significantly prolonged. In sevoflurane groups, the number of crossing platform was significantly reduced, the synaptic protein decreased significantly, and this effect was reversed in rats of the dexmedetomidine group. Dexmedetomidine could reduce synaptic plasticity decline in developing rats induced by sevoflurane, through downregulating the proBDNF-p75NTR-RhoA pathway and upregulating BDNF-TrkB-CREB.
Collapse
|
21
|
Zhang Y, Saradna A, Ratan R, Ke X, Tu W, Do DC, Hu C, Gao P. RhoA/Rho-kinases in asthma: from pathogenesis to therapeutic targets. Clin Transl Immunology 2020; 9:e01134. [PMID: 32355562 PMCID: PMC7190398 DOI: 10.1002/cti2.1134] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Asthma is a chronic and heterogeneous disease characterised by airway inflammation and intermittent airway narrowing. The key obstacle in the prevention and treatment of asthma has been our incomplete understanding of its aetiology and biological mechanisms. The ras homolog family member A (RhoA) of the Rho family GTPases has been considered to be one of the most promising and novel therapeutic targets for asthma. It is well known that RhoA/Rho‐kinases play an important role in the pathophysiology of asthma, including airway smooth muscle contraction, airway hyper‐responsiveness, β‐adrenergic desensitisation and airway remodelling. However, recent advances have suggested novel roles for RhoA in regulating allergic airway inflammation. Specifically, RhoA has been shown to regulate allergic airway inflammation through controlling Th2 or Th17 cell differentiation and to regulate airway remodelling through regulating mesenchymal stem cell (MSC) differentiation. In this review, we evaluate the literature regarding the recent advances in the activation of RhoA/Rho‐kinase, cytokine and epigenetic regulation of RhoA/Rho‐kinase, and the role of RhoA/Rho‐kinase in regulating major features of asthma, such as airway hyper‐responsiveness, remodelling and inflammation. We also discuss the importance of the newly identified role of RhoA/Rho‐kinase signalling in MSC differentiation and bronchial epithelial barrier dysfunction. These findings indicate the functional significance of the RhoA/Rho‐kinase pathway in the pathophysiology of asthma and suggest that RhoA/Rho‐kinase signalling may be a promising therapeutic target for the treatment of asthma.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA.,Department of Respiratory Medicine Xiangya Hospital Central South University Changsha China
| | - Arjun Saradna
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA.,Division of Pulmonary Critical Care and Sleep Medicine State University of New York at Buffalo Buffalo NY USA
| | - Rhea Ratan
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Xia Ke
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA.,Department of Otorhinolaryngology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Wei Tu
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA.,Department of Respirology and Allergy Third Affiliated Hospital of Shenzhen University Shenzhen China
| | - Danh C Do
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Chengping Hu
- Department of Respiratory Medicine Xiangya Hospital Central South University Changsha China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
22
|
Wang T, Zhou Q, Shang Y. MiRNA-451a inhibits airway remodeling by targeting Cadherin 11 in an allergic asthma model of neonatal mice. Int Immunopharmacol 2020; 83:106440. [PMID: 32234673 DOI: 10.1016/j.intimp.2020.106440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/29/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022]
Abstract
Airway remodeling happens in childhood asthma, in parallel with, but not necessarily subsequent to, airway inflammation. The differentiation of airway epithelial cells into myofibroblasts via epithelial-mesenchymal-transition (EMT) is one of the mechanisms underlying airway remodeling. This study aimed at identifying novel molecules involved in pediatric asthma-associated airway remodeling. Asthma model was established by challenging C57BL/6 mouse pups with ovalbumin (OVA). We found that the expression of Cadherin 11 (CDH11), a type II cadherin, was increased by OVA treatments in the airway epithelium. Our earlier microarray data suggested miRNA-451a-5p (miRNA-451a) as a potential regulator of CDH11. In contrast to CDH11, miRNA-451a expression decreased in the asthmatic lung. MiRNA-451a was then packaged into a lentivirus vector and systematically given to the asthmatic pups. Our data indicated that OVA-induced infiltration of inflammatory cells, including eosnophils, neutrophils, macrophages and lymphocytes, was reduced by miRNA-451a over-expression. EMT was initiated in asthmatic mice as demonstrated by increased alpha-smooth muscle actin (α-SMA) positive cells present in airway epithelium, which was inhibited by miRNA-451a. CDH11 elevation in vivo was also inhibited by miRNA-451a. Dual-Luciferase analysis further showed CDH11 as a novel valid target of miRNA-451a. Additionally, in vitro, EMT was triggered in human 16HBE airway epithelial cells by pro-fibrotic transforming growth factor β (TGF-β). Corresponding to the anti-EMT effects observed in vivo, miRNA-451a also inhibited TGF-β-induced collagen deposition in cultured airway epithelial cells by targeting in CDH11. In summary, our study demonstrates that the deregulated miRNA-451a-CDH11 axis contributes to airway remodeling in childhood asthma.
Collapse
Affiliation(s)
- Tianyue Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qianlan Zhou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|